mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 21:51:40 +00:00
2ed5b09b3e
Syzkaller reported a UAF bug a while back: ================================================================== BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127 Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958 CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted 5.15.0-0.30.3-20220406_1406 #3 Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106 print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459 xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127 xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159 xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36 __vfs_getxattr+0xdf/0x13d fs/xattr.c:399 cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300 security_inode_need_killpriv+0x4c/0x97 security/security.c:1408 dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912 dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908 do_truncate+0xc3/0x1e0 fs/open.c:56 handle_truncate fs/namei.c:3084 [inline] do_open fs/namei.c:3432 [inline] path_openat+0x30ab/0x396d fs/namei.c:3561 do_filp_open+0x1c4/0x290 fs/namei.c:3588 do_sys_openat2+0x60d/0x98c fs/open.c:1212 do_sys_open+0xcf/0x13c fs/open.c:1228 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 RIP: 0033:0x7f7ef4bb753d Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48 RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055 RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0 RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0 </TASK> Allocated by task 2953: kasan_save_stack+0x19/0x38 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:254 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3213 [inline] slab_alloc mm/slub.c:3221 [inline] kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226 kmem_cache_zalloc include/linux/slab.h:711 [inline] xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287 xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098 xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59 __vfs_setxattr+0x11b/0x177 fs/xattr.c:180 __vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214 __vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275 vfs_setxattr+0x154/0x33d fs/xattr.c:301 setxattr+0x216/0x29f fs/xattr.c:575 __do_sys_fsetxattr fs/xattr.c:632 [inline] __se_sys_fsetxattr fs/xattr.c:621 [inline] __x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 Freed by task 2949: kasan_save_stack+0x19/0x38 mm/kasan/common.c:38 kasan_set_track+0x1c/0x21 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:230 [inline] slab_free_hook mm/slub.c:1700 [inline] slab_free_freelist_hook mm/slub.c:1726 [inline] slab_free mm/slub.c:3492 [inline] kmem_cache_free+0xdc/0x3ce mm/slub.c:3508 xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773 xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822 xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413 xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684 xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59 __vfs_removexattr+0x106/0x16a fs/xattr.c:468 cap_inode_killpriv+0x24/0x47 security/commoncap.c:324 security_inode_killpriv+0x54/0xa1 security/security.c:1414 setattr_prepare+0x1a6/0x897 fs/attr.c:146 xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682 xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065 xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093 notify_change+0xae5/0x10a1 fs/attr.c:410 do_truncate+0x134/0x1e0 fs/open.c:64 handle_truncate fs/namei.c:3084 [inline] do_open fs/namei.c:3432 [inline] path_openat+0x30ab/0x396d fs/namei.c:3561 do_filp_open+0x1c4/0x290 fs/namei.c:3588 do_sys_openat2+0x60d/0x98c fs/open.c:1212 do_sys_open+0xcf/0x13c fs/open.c:1228 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 The buggy address belongs to the object at ffff88802cec9188 which belongs to the cache xfs_ifork of size 40 The buggy address is located 20 bytes inside of 40-byte region [ffff88802cec9188, ffff88802cec91b0) The buggy address belongs to the page: page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x2cec9 flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff) raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80 raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc >ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb ^ ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb ================================================================== The root cause of this bug is the unlocked access to xfs_inode.i_afp from the getxattr code paths while trying to determine which ILOCK mode to use to stabilize the xattr data. Unfortunately, the VFS does not acquire i_rwsem when vfs_getxattr (or listxattr) call into the filesystem, which means that getxattr can race with a removexattr that's tearing down the attr fork and crash: xfs_attr_set: xfs_attr_get: xfs_attr_fork_remove: xfs_ilock_attr_map_shared: xfs_idestroy_fork(ip->i_afp); kmem_cache_free(xfs_ifork_cache, ip->i_afp); if (ip->i_afp && ip->i_afp = NULL; xfs_need_iread_extents(ip->i_afp)) <KABOOM> ip->i_forkoff = 0; Regrettably, the VFS is much more lax about i_rwsem and getxattr than is immediately obvious -- not only does it not guarantee that we hold i_rwsem, it actually doesn't guarantee that we *don't* hold it either. The getxattr system call won't acquire the lock before calling XFS, but the file capabilities code calls getxattr with and without i_rwsem held to determine if the "security.capabilities" xattr is set on the file. Fixing the VFS locking requires a treewide investigation into every code path that could touch an xattr and what i_rwsem state it expects or sets up. That could take years or even prove impossible; fortunately, we can fix this UAF problem inside XFS. An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to ensure that i_forkoff is always zeroed before i_afp is set to null and changed the read paths to use smp_rmb before accessing i_forkoff and i_afp, which avoided these UAF problems. However, the patch author was too busy dealing with other problems in the meantime, and by the time he came back to this issue, the situation had changed a bit. On a modern system with selinux, each inode will always have at least one xattr for the selinux label, so it doesn't make much sense to keep incurring the extra pointer dereference. Furthermore, Allison's upcoming parent pointer patchset will also cause nearly every inode in the filesystem to have extended attributes. Therefore, make the inode attribute fork structure part of struct xfs_inode, at a cost of 40 more bytes. This patch adds a clunky if_present field where necessary to maintain the existing logic of xattr fork null pointer testing in the existing codebase. The next patch switches the logic over to XFS_IFORK_Q and it all goes away. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
1013 lines
28 KiB
C
1013 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_error.h"
|
|
|
|
#include <linux/iversion.h>
|
|
|
|
struct kmem_cache *xfs_ili_cache; /* inode log item */
|
|
|
|
static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_inode_log_item, ili_item);
|
|
}
|
|
|
|
/*
|
|
* The logged size of an inode fork is always the current size of the inode
|
|
* fork. This means that when an inode fork is relogged, the size of the logged
|
|
* region is determined by the current state, not the combination of the
|
|
* previously logged state + the current state. This is different relogging
|
|
* behaviour to most other log items which will retain the size of the
|
|
* previously logged changes when smaller regions are relogged.
|
|
*
|
|
* Hence operations that remove data from the inode fork (e.g. shortform
|
|
* dir/attr remove, extent form extent removal, etc), the size of the relogged
|
|
* inode gets -smaller- rather than stays the same size as the previously logged
|
|
* size and this can result in the committing transaction reducing the amount of
|
|
* space being consumed by the CIL.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_data_fork_size(
|
|
struct xfs_inode_log_item *iip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
switch (ip->i_df.if_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
|
|
ip->i_df.if_nextents > 0 &&
|
|
ip->i_df.if_bytes > 0) {
|
|
/* worst case, doesn't subtract delalloc extents */
|
|
*nbytes += XFS_IFORK_DSIZE(ip);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
|
|
ip->i_df.if_broot_bytes > 0) {
|
|
*nbytes += ip->i_df.if_broot_bytes;
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
|
|
ip->i_df.if_bytes > 0) {
|
|
*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_DEV:
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_attr_fork_size(
|
|
struct xfs_inode_log_item *iip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
switch (ip->i_af.if_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
|
|
ip->i_af.if_nextents > 0 &&
|
|
ip->i_af.if_bytes > 0) {
|
|
/* worst case, doesn't subtract unused space */
|
|
*nbytes += XFS_IFORK_ASIZE(ip);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
|
|
ip->i_af.if_broot_bytes > 0) {
|
|
*nbytes += ip->i_af.if_broot_bytes;
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
|
|
ip->i_af.if_bytes > 0) {
|
|
*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This returns the number of iovecs needed to log the given inode item.
|
|
*
|
|
* We need one iovec for the inode log format structure, one for the
|
|
* inode core, and possibly one for the inode data/extents/b-tree root
|
|
* and one for the inode attribute data/extents/b-tree root.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
*nvecs += 2;
|
|
*nbytes += sizeof(struct xfs_inode_log_format) +
|
|
xfs_log_dinode_size(ip->i_mount);
|
|
|
|
xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
|
|
if (XFS_IFORK_Q(ip))
|
|
xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_format_data_fork(
|
|
struct xfs_inode_log_item *iip,
|
|
struct xfs_inode_log_format *ilf,
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
size_t data_bytes;
|
|
|
|
switch (ip->i_df.if_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
|
|
ip->i_df.if_nextents > 0 &&
|
|
ip->i_df.if_bytes > 0) {
|
|
struct xfs_bmbt_rec *p;
|
|
|
|
ASSERT(xfs_iext_count(&ip->i_df) > 0);
|
|
|
|
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
|
|
data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
|
|
xlog_finish_iovec(lv, *vecp, data_bytes);
|
|
|
|
ASSERT(data_bytes <= ip->i_df.if_bytes);
|
|
|
|
ilf->ilf_dsize = data_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_DEXT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
|
|
ip->i_df.if_broot_bytes > 0) {
|
|
ASSERT(ip->i_df.if_broot != NULL);
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
|
|
ip->i_df.if_broot,
|
|
ip->i_df.if_broot_bytes);
|
|
ilf->ilf_dsize = ip->i_df.if_broot_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
ASSERT(!(iip->ili_fields &
|
|
XFS_ILOG_DBROOT));
|
|
iip->ili_fields &= ~XFS_ILOG_DBROOT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
|
|
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
|
|
ip->i_df.if_bytes > 0) {
|
|
ASSERT(ip->i_df.if_u1.if_data != NULL);
|
|
ASSERT(ip->i_disk_size > 0);
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
|
|
ip->i_df.if_u1.if_data,
|
|
ip->i_df.if_bytes);
|
|
ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_DDATA;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_DEV:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
|
|
if (iip->ili_fields & XFS_ILOG_DEV)
|
|
ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_format_attr_fork(
|
|
struct xfs_inode_log_item *iip,
|
|
struct xfs_inode_log_format *ilf,
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
size_t data_bytes;
|
|
|
|
switch (ip->i_af.if_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
|
|
ip->i_af.if_nextents > 0 &&
|
|
ip->i_af.if_bytes > 0) {
|
|
struct xfs_bmbt_rec *p;
|
|
|
|
ASSERT(xfs_iext_count(&ip->i_af) ==
|
|
ip->i_af.if_nextents);
|
|
|
|
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
|
|
data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
|
|
xlog_finish_iovec(lv, *vecp, data_bytes);
|
|
|
|
ilf->ilf_asize = data_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_AEXT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
|
|
ip->i_af.if_broot_bytes > 0) {
|
|
ASSERT(ip->i_af.if_broot != NULL);
|
|
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
|
|
ip->i_af.if_broot,
|
|
ip->i_af.if_broot_bytes);
|
|
ilf->ilf_asize = ip->i_af.if_broot_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_ABROOT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
|
|
ip->i_af.if_bytes > 0) {
|
|
ASSERT(ip->i_af.if_u1.if_data != NULL);
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
|
|
ip->i_af.if_u1.if_data,
|
|
ip->i_af.if_bytes);
|
|
ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_ADATA;
|
|
}
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert an incore timestamp to a log timestamp. Note that the log format
|
|
* specifies host endian format!
|
|
*/
|
|
static inline xfs_log_timestamp_t
|
|
xfs_inode_to_log_dinode_ts(
|
|
struct xfs_inode *ip,
|
|
const struct timespec64 tv)
|
|
{
|
|
struct xfs_log_legacy_timestamp *lits;
|
|
xfs_log_timestamp_t its;
|
|
|
|
if (xfs_inode_has_bigtime(ip))
|
|
return xfs_inode_encode_bigtime(tv);
|
|
|
|
lits = (struct xfs_log_legacy_timestamp *)&its;
|
|
lits->t_sec = tv.tv_sec;
|
|
lits->t_nsec = tv.tv_nsec;
|
|
|
|
return its;
|
|
}
|
|
|
|
/*
|
|
* The legacy DMAPI fields are only present in the on-disk and in-log inodes,
|
|
* but not in the in-memory one. But we are guaranteed to have an inode buffer
|
|
* in memory when logging an inode, so we can just copy it from the on-disk
|
|
* inode to the in-log inode here so that recovery of file system with these
|
|
* fields set to non-zero values doesn't lose them. For all other cases we zero
|
|
* the fields.
|
|
*/
|
|
static void
|
|
xfs_copy_dm_fields_to_log_dinode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_log_dinode *to)
|
|
{
|
|
struct xfs_dinode *dip;
|
|
|
|
dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
|
|
ip->i_imap.im_boffset);
|
|
|
|
if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
|
|
to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
|
|
to->di_dmstate = be16_to_cpu(dip->di_dmstate);
|
|
} else {
|
|
to->di_dmevmask = 0;
|
|
to->di_dmstate = 0;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
xfs_inode_to_log_dinode_iext_counters(
|
|
struct xfs_inode *ip,
|
|
struct xfs_log_dinode *to)
|
|
{
|
|
if (xfs_inode_has_large_extent_counts(ip)) {
|
|
to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
|
|
to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
|
|
to->di_nrext64_pad = 0;
|
|
} else {
|
|
to->di_nextents = xfs_ifork_nextents(&ip->i_df);
|
|
to->di_anextents = xfs_ifork_nextents(&ip->i_af);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_inode_to_log_dinode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_log_dinode *to,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
|
|
to->di_magic = XFS_DINODE_MAGIC;
|
|
to->di_format = xfs_ifork_format(&ip->i_df);
|
|
to->di_uid = i_uid_read(inode);
|
|
to->di_gid = i_gid_read(inode);
|
|
to->di_projid_lo = ip->i_projid & 0xffff;
|
|
to->di_projid_hi = ip->i_projid >> 16;
|
|
|
|
memset(to->di_pad3, 0, sizeof(to->di_pad3));
|
|
to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
|
|
to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
|
|
to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
|
|
to->di_nlink = inode->i_nlink;
|
|
to->di_gen = inode->i_generation;
|
|
to->di_mode = inode->i_mode;
|
|
|
|
to->di_size = ip->i_disk_size;
|
|
to->di_nblocks = ip->i_nblocks;
|
|
to->di_extsize = ip->i_extsize;
|
|
to->di_forkoff = ip->i_forkoff;
|
|
to->di_aformat = xfs_ifork_format(&ip->i_af);
|
|
to->di_flags = ip->i_diflags;
|
|
|
|
xfs_copy_dm_fields_to_log_dinode(ip, to);
|
|
|
|
/* log a dummy value to ensure log structure is fully initialised */
|
|
to->di_next_unlinked = NULLAGINO;
|
|
|
|
if (xfs_has_v3inodes(ip->i_mount)) {
|
|
to->di_version = 3;
|
|
to->di_changecount = inode_peek_iversion(inode);
|
|
to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
|
|
to->di_flags2 = ip->i_diflags2;
|
|
to->di_cowextsize = ip->i_cowextsize;
|
|
to->di_ino = ip->i_ino;
|
|
to->di_lsn = lsn;
|
|
memset(to->di_pad2, 0, sizeof(to->di_pad2));
|
|
uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
|
|
to->di_v3_pad = 0;
|
|
} else {
|
|
to->di_version = 2;
|
|
to->di_flushiter = ip->i_flushiter;
|
|
memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
|
|
}
|
|
|
|
xfs_inode_to_log_dinode_iext_counters(ip, to);
|
|
}
|
|
|
|
/*
|
|
* Format the inode core. Current timestamp data is only in the VFS inode
|
|
* fields, so we need to grab them from there. Hence rather than just copying
|
|
* the XFS inode core structure, format the fields directly into the iovec.
|
|
*/
|
|
static void
|
|
xfs_inode_item_format_core(
|
|
struct xfs_inode *ip,
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp)
|
|
{
|
|
struct xfs_log_dinode *dic;
|
|
|
|
dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
|
|
xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
|
|
xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the given inode
|
|
* log item. It fills the first item with an inode log format structure,
|
|
* the second with the on-disk inode structure, and a possible third and/or
|
|
* fourth with the inode data/extents/b-tree root and inode attributes
|
|
* data/extents/b-tree root.
|
|
*
|
|
* Note: Always use the 64 bit inode log format structure so we don't
|
|
* leave an uninitialised hole in the format item on 64 bit systems. Log
|
|
* recovery on 32 bit systems handles this just fine, so there's no reason
|
|
* for not using an initialising the properly padded structure all the time.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
struct xfs_inode_log_format *ilf;
|
|
|
|
ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
|
|
ilf->ilf_type = XFS_LI_INODE;
|
|
ilf->ilf_ino = ip->i_ino;
|
|
ilf->ilf_blkno = ip->i_imap.im_blkno;
|
|
ilf->ilf_len = ip->i_imap.im_len;
|
|
ilf->ilf_boffset = ip->i_imap.im_boffset;
|
|
ilf->ilf_fields = XFS_ILOG_CORE;
|
|
ilf->ilf_size = 2; /* format + core */
|
|
|
|
/*
|
|
* make sure we don't leak uninitialised data into the log in the case
|
|
* when we don't log every field in the inode.
|
|
*/
|
|
ilf->ilf_dsize = 0;
|
|
ilf->ilf_asize = 0;
|
|
ilf->ilf_pad = 0;
|
|
memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
|
|
|
|
xlog_finish_iovec(lv, vecp, sizeof(*ilf));
|
|
|
|
xfs_inode_item_format_core(ip, lv, &vecp);
|
|
xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
|
|
if (XFS_IFORK_Q(ip)) {
|
|
xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
|
|
} else {
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
|
|
}
|
|
|
|
/* update the format with the exact fields we actually logged */
|
|
ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
|
|
}
|
|
|
|
/*
|
|
* This is called to pin the inode associated with the inode log
|
|
* item in memory so it cannot be written out.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_pin(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
|
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
ASSERT(lip->li_buf);
|
|
|
|
trace_xfs_inode_pin(ip, _RET_IP_);
|
|
atomic_inc(&ip->i_pincount);
|
|
}
|
|
|
|
|
|
/*
|
|
* This is called to unpin the inode associated with the inode log
|
|
* item which was previously pinned with a call to xfs_inode_item_pin().
|
|
*
|
|
* Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
|
|
*
|
|
* Note that unpin can race with inode cluster buffer freeing marking the buffer
|
|
* stale. In that case, flush completions are run from the buffer unpin call,
|
|
* which may happen before the inode is unpinned. If we lose the race, there
|
|
* will be no buffer attached to the log item, but the inode will be marked
|
|
* XFS_ISTALE.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
|
|
|
|
trace_xfs_inode_unpin(ip, _RET_IP_);
|
|
ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
|
|
ASSERT(atomic_read(&ip->i_pincount) > 0);
|
|
if (atomic_dec_and_test(&ip->i_pincount))
|
|
wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
|
|
}
|
|
|
|
STATIC uint
|
|
xfs_inode_item_push(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *buffer_list)
|
|
__releases(&lip->li_ailp->ail_lock)
|
|
__acquires(&lip->li_ailp->ail_lock)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
struct xfs_buf *bp = lip->li_buf;
|
|
uint rval = XFS_ITEM_SUCCESS;
|
|
int error;
|
|
|
|
if (!bp || (ip->i_flags & XFS_ISTALE)) {
|
|
/*
|
|
* Inode item/buffer is being being aborted due to cluster
|
|
* buffer deletion. Trigger a log force to have that operation
|
|
* completed and items removed from the AIL before the next push
|
|
* attempt.
|
|
*/
|
|
return XFS_ITEM_PINNED;
|
|
}
|
|
|
|
if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
|
|
return XFS_ITEM_PINNED;
|
|
|
|
if (xfs_iflags_test(ip, XFS_IFLUSHING))
|
|
return XFS_ITEM_FLUSHING;
|
|
|
|
if (!xfs_buf_trylock(bp))
|
|
return XFS_ITEM_LOCKED;
|
|
|
|
spin_unlock(&lip->li_ailp->ail_lock);
|
|
|
|
/*
|
|
* We need to hold a reference for flushing the cluster buffer as it may
|
|
* fail the buffer without IO submission. In which case, we better get a
|
|
* reference for that completion because otherwise we don't get a
|
|
* reference for IO until we queue the buffer for delwri submission.
|
|
*/
|
|
xfs_buf_hold(bp);
|
|
error = xfs_iflush_cluster(bp);
|
|
if (!error) {
|
|
if (!xfs_buf_delwri_queue(bp, buffer_list))
|
|
rval = XFS_ITEM_FLUSHING;
|
|
xfs_buf_relse(bp);
|
|
} else {
|
|
/*
|
|
* Release the buffer if we were unable to flush anything. On
|
|
* any other error, the buffer has already been released.
|
|
*/
|
|
if (error == -EAGAIN)
|
|
xfs_buf_relse(bp);
|
|
rval = XFS_ITEM_LOCKED;
|
|
}
|
|
|
|
spin_lock(&lip->li_ailp->ail_lock);
|
|
return rval;
|
|
}
|
|
|
|
/*
|
|
* Unlock the inode associated with the inode log item.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_release(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
unsigned short lock_flags;
|
|
|
|
ASSERT(ip->i_itemp != NULL);
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
|
|
lock_flags = iip->ili_lock_flags;
|
|
iip->ili_lock_flags = 0;
|
|
if (lock_flags)
|
|
xfs_iunlock(ip, lock_flags);
|
|
}
|
|
|
|
/*
|
|
* This is called to find out where the oldest active copy of the inode log
|
|
* item in the on disk log resides now that the last log write of it completed
|
|
* at the given lsn. Since we always re-log all dirty data in an inode, the
|
|
* latest copy in the on disk log is the only one that matters. Therefore,
|
|
* simply return the given lsn.
|
|
*
|
|
* If the inode has been marked stale because the cluster is being freed, we
|
|
* don't want to (re-)insert this inode into the AIL. There is a race condition
|
|
* where the cluster buffer may be unpinned before the inode is inserted into
|
|
* the AIL during transaction committed processing. If the buffer is unpinned
|
|
* before the inode item has been committed and inserted, then it is possible
|
|
* for the buffer to be written and IO completes before the inode is inserted
|
|
* into the AIL. In that case, we'd be inserting a clean, stale inode into the
|
|
* AIL which will never get removed. It will, however, get reclaimed which
|
|
* triggers an assert in xfs_inode_free() complaining about freein an inode
|
|
* still in the AIL.
|
|
*
|
|
* To avoid this, just unpin the inode directly and return a LSN of -1 so the
|
|
* transaction committed code knows that it does not need to do any further
|
|
* processing on the item.
|
|
*/
|
|
STATIC xfs_lsn_t
|
|
xfs_inode_item_committed(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
if (xfs_iflags_test(ip, XFS_ISTALE)) {
|
|
xfs_inode_item_unpin(lip, 0);
|
|
return -1;
|
|
}
|
|
return lsn;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_committing(
|
|
struct xfs_log_item *lip,
|
|
xfs_csn_t seq)
|
|
{
|
|
INODE_ITEM(lip)->ili_commit_seq = seq;
|
|
return xfs_inode_item_release(lip);
|
|
}
|
|
|
|
static const struct xfs_item_ops xfs_inode_item_ops = {
|
|
.iop_size = xfs_inode_item_size,
|
|
.iop_format = xfs_inode_item_format,
|
|
.iop_pin = xfs_inode_item_pin,
|
|
.iop_unpin = xfs_inode_item_unpin,
|
|
.iop_release = xfs_inode_item_release,
|
|
.iop_committed = xfs_inode_item_committed,
|
|
.iop_push = xfs_inode_item_push,
|
|
.iop_committing = xfs_inode_item_committing,
|
|
};
|
|
|
|
|
|
/*
|
|
* Initialize the inode log item for a newly allocated (in-core) inode.
|
|
*/
|
|
void
|
|
xfs_inode_item_init(
|
|
struct xfs_inode *ip,
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_inode_log_item *iip;
|
|
|
|
ASSERT(ip->i_itemp == NULL);
|
|
iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
iip->ili_inode = ip;
|
|
spin_lock_init(&iip->ili_lock);
|
|
xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
|
|
&xfs_inode_item_ops);
|
|
}
|
|
|
|
/*
|
|
* Free the inode log item and any memory hanging off of it.
|
|
*/
|
|
void
|
|
xfs_inode_item_destroy(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_inode_log_item *iip = ip->i_itemp;
|
|
|
|
ASSERT(iip->ili_item.li_buf == NULL);
|
|
|
|
ip->i_itemp = NULL;
|
|
kmem_free(iip->ili_item.li_lv_shadow);
|
|
kmem_cache_free(xfs_ili_cache, iip);
|
|
}
|
|
|
|
|
|
/*
|
|
* We only want to pull the item from the AIL if it is actually there
|
|
* and its location in the log has not changed since we started the
|
|
* flush. Thus, we only bother if the inode's lsn has not changed.
|
|
*/
|
|
static void
|
|
xfs_iflush_ail_updates(
|
|
struct xfs_ail *ailp,
|
|
struct list_head *list)
|
|
{
|
|
struct xfs_log_item *lip;
|
|
xfs_lsn_t tail_lsn = 0;
|
|
|
|
/* this is an opencoded batch version of xfs_trans_ail_delete */
|
|
spin_lock(&ailp->ail_lock);
|
|
list_for_each_entry(lip, list, li_bio_list) {
|
|
xfs_lsn_t lsn;
|
|
|
|
clear_bit(XFS_LI_FAILED, &lip->li_flags);
|
|
if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
|
|
continue;
|
|
|
|
/*
|
|
* dgc: Not sure how this happens, but it happens very
|
|
* occassionaly via generic/388. xfs_iflush_abort() also
|
|
* silently handles this same "under writeback but not in AIL at
|
|
* shutdown" condition via xfs_trans_ail_delete().
|
|
*/
|
|
if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
|
|
ASSERT(xlog_is_shutdown(lip->li_log));
|
|
continue;
|
|
}
|
|
|
|
lsn = xfs_ail_delete_one(ailp, lip);
|
|
if (!tail_lsn && lsn)
|
|
tail_lsn = lsn;
|
|
}
|
|
xfs_ail_update_finish(ailp, tail_lsn);
|
|
}
|
|
|
|
/*
|
|
* Walk the list of inodes that have completed their IOs. If they are clean
|
|
* remove them from the list and dissociate them from the buffer. Buffers that
|
|
* are still dirty remain linked to the buffer and on the list. Caller must
|
|
* handle them appropriately.
|
|
*/
|
|
static void
|
|
xfs_iflush_finish(
|
|
struct xfs_buf *bp,
|
|
struct list_head *list)
|
|
{
|
|
struct xfs_log_item *lip, *n;
|
|
|
|
list_for_each_entry_safe(lip, n, list, li_bio_list) {
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
bool drop_buffer = false;
|
|
|
|
spin_lock(&iip->ili_lock);
|
|
|
|
/*
|
|
* Remove the reference to the cluster buffer if the inode is
|
|
* clean in memory and drop the buffer reference once we've
|
|
* dropped the locks we hold.
|
|
*/
|
|
ASSERT(iip->ili_item.li_buf == bp);
|
|
if (!iip->ili_fields) {
|
|
iip->ili_item.li_buf = NULL;
|
|
list_del_init(&lip->li_bio_list);
|
|
drop_buffer = true;
|
|
}
|
|
iip->ili_last_fields = 0;
|
|
iip->ili_flush_lsn = 0;
|
|
spin_unlock(&iip->ili_lock);
|
|
xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
|
|
if (drop_buffer)
|
|
xfs_buf_rele(bp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Inode buffer IO completion routine. It is responsible for removing inodes
|
|
* attached to the buffer from the AIL if they have not been re-logged and
|
|
* completing the inode flush.
|
|
*/
|
|
void
|
|
xfs_buf_inode_iodone(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_log_item *lip, *n;
|
|
LIST_HEAD(flushed_inodes);
|
|
LIST_HEAD(ail_updates);
|
|
|
|
/*
|
|
* Pull the attached inodes from the buffer one at a time and take the
|
|
* appropriate action on them.
|
|
*/
|
|
list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
|
|
if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
|
|
xfs_iflush_abort(iip->ili_inode);
|
|
continue;
|
|
}
|
|
if (!iip->ili_last_fields)
|
|
continue;
|
|
|
|
/* Do an unlocked check for needing the AIL lock. */
|
|
if (iip->ili_flush_lsn == lip->li_lsn ||
|
|
test_bit(XFS_LI_FAILED, &lip->li_flags))
|
|
list_move_tail(&lip->li_bio_list, &ail_updates);
|
|
else
|
|
list_move_tail(&lip->li_bio_list, &flushed_inodes);
|
|
}
|
|
|
|
if (!list_empty(&ail_updates)) {
|
|
xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
|
|
list_splice_tail(&ail_updates, &flushed_inodes);
|
|
}
|
|
|
|
xfs_iflush_finish(bp, &flushed_inodes);
|
|
if (!list_empty(&flushed_inodes))
|
|
list_splice_tail(&flushed_inodes, &bp->b_li_list);
|
|
}
|
|
|
|
void
|
|
xfs_buf_inode_io_fail(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_log_item *lip;
|
|
|
|
list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
|
|
set_bit(XFS_LI_FAILED, &lip->li_flags);
|
|
}
|
|
|
|
/*
|
|
* Clear the inode logging fields so no more flushes are attempted. If we are
|
|
* on a buffer list, it is now safe to remove it because the buffer is
|
|
* guaranteed to be locked. The caller will drop the reference to the buffer
|
|
* the log item held.
|
|
*/
|
|
static void
|
|
xfs_iflush_abort_clean(
|
|
struct xfs_inode_log_item *iip)
|
|
{
|
|
iip->ili_last_fields = 0;
|
|
iip->ili_fields = 0;
|
|
iip->ili_fsync_fields = 0;
|
|
iip->ili_flush_lsn = 0;
|
|
iip->ili_item.li_buf = NULL;
|
|
list_del_init(&iip->ili_item.li_bio_list);
|
|
}
|
|
|
|
/*
|
|
* Abort flushing the inode from a context holding the cluster buffer locked.
|
|
*
|
|
* This is the normal runtime method of aborting writeback of an inode that is
|
|
* attached to a cluster buffer. It occurs when the inode and the backing
|
|
* cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
|
|
* flushing or buffer IO completion encounters a log shutdown situation.
|
|
*
|
|
* If we need to abort inode writeback and we don't already hold the buffer
|
|
* locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
|
|
* necessary in a shutdown situation.
|
|
*/
|
|
void
|
|
xfs_iflush_abort(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_inode_log_item *iip = ip->i_itemp;
|
|
struct xfs_buf *bp;
|
|
|
|
if (!iip) {
|
|
/* clean inode, nothing to do */
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Remove the inode item from the AIL before we clear its internal
|
|
* state. Whilst the inode is in the AIL, it should have a valid buffer
|
|
* pointer for push operations to access - it is only safe to remove the
|
|
* inode from the buffer once it has been removed from the AIL.
|
|
*
|
|
* We also clear the failed bit before removing the item from the AIL
|
|
* as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
|
|
* references the inode item owns and needs to hold until we've fully
|
|
* aborted the inode log item and detached it from the buffer.
|
|
*/
|
|
clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
|
|
xfs_trans_ail_delete(&iip->ili_item, 0);
|
|
|
|
/*
|
|
* Grab the inode buffer so can we release the reference the inode log
|
|
* item holds on it.
|
|
*/
|
|
spin_lock(&iip->ili_lock);
|
|
bp = iip->ili_item.li_buf;
|
|
xfs_iflush_abort_clean(iip);
|
|
spin_unlock(&iip->ili_lock);
|
|
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
if (bp)
|
|
xfs_buf_rele(bp);
|
|
}
|
|
|
|
/*
|
|
* Abort an inode flush in the case of a shutdown filesystem. This can be called
|
|
* from anywhere with just an inode reference and does not require holding the
|
|
* inode cluster buffer locked. If the inode is attached to a cluster buffer,
|
|
* it will grab and lock it safely, then abort the inode flush.
|
|
*/
|
|
void
|
|
xfs_iflush_shutdown_abort(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_inode_log_item *iip = ip->i_itemp;
|
|
struct xfs_buf *bp;
|
|
|
|
if (!iip) {
|
|
/* clean inode, nothing to do */
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
return;
|
|
}
|
|
|
|
spin_lock(&iip->ili_lock);
|
|
bp = iip->ili_item.li_buf;
|
|
if (!bp) {
|
|
spin_unlock(&iip->ili_lock);
|
|
xfs_iflush_abort(ip);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We have to take a reference to the buffer so that it doesn't get
|
|
* freed when we drop the ili_lock and then wait to lock the buffer.
|
|
* We'll clean up the extra reference after we pick up the ili_lock
|
|
* again.
|
|
*/
|
|
xfs_buf_hold(bp);
|
|
spin_unlock(&iip->ili_lock);
|
|
xfs_buf_lock(bp);
|
|
|
|
spin_lock(&iip->ili_lock);
|
|
if (!iip->ili_item.li_buf) {
|
|
/*
|
|
* Raced with another removal, hold the only reference
|
|
* to bp now. Inode should not be in the AIL now, so just clean
|
|
* up and return;
|
|
*/
|
|
ASSERT(list_empty(&iip->ili_item.li_bio_list));
|
|
ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
|
|
xfs_iflush_abort_clean(iip);
|
|
spin_unlock(&iip->ili_lock);
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
xfs_buf_relse(bp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Got two references to bp. The first will get dropped by
|
|
* xfs_iflush_abort() when the item is removed from the buffer list, but
|
|
* we can't drop our reference until _abort() returns because we have to
|
|
* unlock the buffer as well. Hence we abort and then unlock and release
|
|
* our reference to the buffer.
|
|
*/
|
|
ASSERT(iip->ili_item.li_buf == bp);
|
|
spin_unlock(&iip->ili_lock);
|
|
xfs_iflush_abort(ip);
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
|
|
/*
|
|
* convert an xfs_inode_log_format struct from the old 32 bit version
|
|
* (which can have different field alignments) to the native 64 bit version
|
|
*/
|
|
int
|
|
xfs_inode_item_format_convert(
|
|
struct xfs_log_iovec *buf,
|
|
struct xfs_inode_log_format *in_f)
|
|
{
|
|
struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
|
|
|
|
if (buf->i_len != sizeof(*in_f32)) {
|
|
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
in_f->ilf_type = in_f32->ilf_type;
|
|
in_f->ilf_size = in_f32->ilf_size;
|
|
in_f->ilf_fields = in_f32->ilf_fields;
|
|
in_f->ilf_asize = in_f32->ilf_asize;
|
|
in_f->ilf_dsize = in_f32->ilf_dsize;
|
|
in_f->ilf_ino = in_f32->ilf_ino;
|
|
memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
|
|
in_f->ilf_blkno = in_f32->ilf_blkno;
|
|
in_f->ilf_len = in_f32->ilf_len;
|
|
in_f->ilf_boffset = in_f32->ilf_boffset;
|
|
return 0;
|
|
}
|