linux/drivers/mtd/spi-nor/sst.c
Tudor Ambarus 75386810d3 mtd: spi-nor: sst: Add support for Global Unlock on sst26vf
Even if sst26vf shares the SPINOR_OP_GBULK opcode with
Macronix (ex. MX25U12835F) and Winbound (ex. W25Q128FV),
it has its own Individual Block Protection scheme, which
is also capable to read-lock individual parameter blocks.
Thus the sst26vf's Individual Block Protection scheme will
reside in the sst.c manufacturer driver.

Add support to unlock the entire flash memory. The device
is write-protected by default after a power-on reset cycle
(volatile software protection), in order to avoid inadvertent
writes during power-up. Could do an erase, write, read back,
and compare when MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE=y.

Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Reviewed-by: Michael Walle <michael@walle.cc>
Link: https://lore.kernel.org/r/20210121110546.382633-2-tudor.ambarus@microchip.com
2021-02-05 15:24:59 +02:00

196 lines
5.3 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
#define SST26VF_CR_BPNV BIT(3)
static int sst26vf_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
return -EOPNOTSUPP;
}
static int sst26vf_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
int ret;
/* We only support unlocking the entire flash array. */
if (ofs != 0 || len != nor->params->size)
return -EINVAL;
ret = spi_nor_read_cr(nor, nor->bouncebuf);
if (ret)
return ret;
if (!(nor->bouncebuf[0] & SST26VF_CR_BPNV)) {
dev_dbg(nor->dev, "Any block has been permanently locked\n");
return -EINVAL;
}
return spi_nor_global_block_unlock(nor);
}
static int sst26vf_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
return -EOPNOTSUPP;
}
static const struct spi_nor_locking_ops sst26vf_locking_ops = {
.lock = sst26vf_lock,
.unlock = sst26vf_unlock,
.is_locked = sst26vf_is_locked,
};
static void sst26vf_default_init(struct spi_nor *nor)
{
nor->params->locking_ops = &sst26vf_locking_ops;
}
static const struct spi_nor_fixups sst26vf_fixups = {
.default_init = sst26vf_default_init,
};
static const struct flash_info sst_parts[] = {
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8,
SECT_4K | SST_WRITE | SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) },
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16,
SECT_4K | SST_WRITE | SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) },
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32,
SECT_4K | SST_WRITE | SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) },
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64,
SECT_4K | SST_WRITE | SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) },
{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_4BIT_BP | SPI_NOR_HAS_LOCK |
SPI_NOR_SWP_IS_VOLATILE) },
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1,
SECT_4K | SST_WRITE | SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) },
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2,
SECT_4K | SST_WRITE | SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) },
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4,
SECT_4K | SST_WRITE | SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) },
{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K | SPI_NOR_HAS_LOCK) },
{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_HAS_LOCK) },
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8,
SECT_4K | SST_WRITE | SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) },
{ "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16,
SECT_4K | SST_WRITE | SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) },
{ "sst26wf016b", INFO(0xbf2651, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "sst26vf016b", INFO(0xbf2641, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE)
.fixups = &sst26vf_fixups },
};
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t actual = 0;
int ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
ret = spi_nor_write_enable(nor);
if (ret)
goto out;
nor->sst_write_second = false;
/* Start write from odd address. */
if (to % 2) {
nor->program_opcode = SPINOR_OP_BP;
/* write one byte. */
ret = spi_nor_write_data(nor, to, 1, buf);
if (ret < 0)
goto out;
WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto out;
to++;
actual++;
}
/* Write out most of the data here. */
for (; actual < len - 1; actual += 2) {
nor->program_opcode = SPINOR_OP_AAI_WP;
/* write two bytes. */
ret = spi_nor_write_data(nor, to, 2, buf + actual);
if (ret < 0)
goto out;
WARN(ret != 2, "While writing 2 bytes written %i bytes\n", ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto out;
to += 2;
nor->sst_write_second = true;
}
nor->sst_write_second = false;
ret = spi_nor_write_disable(nor);
if (ret)
goto out;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto out;
/* Write out trailing byte if it exists. */
if (actual != len) {
ret = spi_nor_write_enable(nor);
if (ret)
goto out;
nor->program_opcode = SPINOR_OP_BP;
ret = spi_nor_write_data(nor, to, 1, buf + actual);
if (ret < 0)
goto out;
WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto out;
actual += 1;
ret = spi_nor_write_disable(nor);
}
out:
*retlen += actual;
spi_nor_unlock_and_unprep(nor);
return ret;
}
static void sst_post_sfdp_fixups(struct spi_nor *nor)
{
if (nor->info->flags & SST_WRITE)
nor->mtd._write = sst_write;
}
static const struct spi_nor_fixups sst_fixups = {
.post_sfdp = sst_post_sfdp_fixups,
};
const struct spi_nor_manufacturer spi_nor_sst = {
.name = "sst",
.parts = sst_parts,
.nparts = ARRAY_SIZE(sst_parts),
.fixups = &sst_fixups,
};