mirror of
https://github.com/torvalds/linux.git
synced 2024-12-04 18:13:04 +00:00
b7ede5a1f5
Since commit35fa91eed8
("ARM: kernel: merge core and init PLTs"), the ARM module PLT code allocates all PLT entries in a single core section, since the overhead of having a separate init PLT section is not justified by the small number of PLT entries usually required for init code. However, the core and init module regions are allocated independently, and there is a corner case where the core region may be allocated from the VMALLOC region if the dedicated module region is exhausted, but the init region, being much smaller, can still be allocated from the module region. This puts the PLT entries out of reach of the relocated branch instructions, defeating the whole purpose of PLTs. So split the core and init PLT regions, and name the latter ".init.plt" so it gets allocated along with (and sufficiently close to) the .init sections that it serves. Also, given that init PLT entries may need to be emitted for branches that target the core module, modify the logic that disregards defined symbols to only disregard symbols that are defined in the same section. Fixes:35fa91eed8
("ARM: kernel: merge core and init PLTs") Cc: <stable@vger.kernel.org> # v4.9+ Reported-by: Angus Clark <angus@angusclark.org> Tested-by: Angus Clark <angus@angusclark.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
262 lines
7.5 KiB
C
262 lines
7.5 KiB
C
/*
|
|
* Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/elf.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sort.h>
|
|
|
|
#include <asm/cache.h>
|
|
#include <asm/opcodes.h>
|
|
|
|
#define PLT_ENT_STRIDE L1_CACHE_BYTES
|
|
#define PLT_ENT_COUNT (PLT_ENT_STRIDE / sizeof(u32))
|
|
#define PLT_ENT_SIZE (sizeof(struct plt_entries) / PLT_ENT_COUNT)
|
|
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
#define PLT_ENT_LDR __opcode_to_mem_thumb32(0xf8dff000 | \
|
|
(PLT_ENT_STRIDE - 4))
|
|
#else
|
|
#define PLT_ENT_LDR __opcode_to_mem_arm(0xe59ff000 | \
|
|
(PLT_ENT_STRIDE - 8))
|
|
#endif
|
|
|
|
struct plt_entries {
|
|
u32 ldr[PLT_ENT_COUNT];
|
|
u32 lit[PLT_ENT_COUNT];
|
|
};
|
|
|
|
static bool in_init(const struct module *mod, unsigned long loc)
|
|
{
|
|
return loc - (u32)mod->init_layout.base < mod->init_layout.size;
|
|
}
|
|
|
|
u32 get_module_plt(struct module *mod, unsigned long loc, Elf32_Addr val)
|
|
{
|
|
struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
|
|
&mod->arch.init;
|
|
|
|
struct plt_entries *plt = (struct plt_entries *)pltsec->plt->sh_addr;
|
|
int idx = 0;
|
|
|
|
/*
|
|
* Look for an existing entry pointing to 'val'. Given that the
|
|
* relocations are sorted, this will be the last entry we allocated.
|
|
* (if one exists).
|
|
*/
|
|
if (pltsec->plt_count > 0) {
|
|
plt += (pltsec->plt_count - 1) / PLT_ENT_COUNT;
|
|
idx = (pltsec->plt_count - 1) % PLT_ENT_COUNT;
|
|
|
|
if (plt->lit[idx] == val)
|
|
return (u32)&plt->ldr[idx];
|
|
|
|
idx = (idx + 1) % PLT_ENT_COUNT;
|
|
if (!idx)
|
|
plt++;
|
|
}
|
|
|
|
pltsec->plt_count++;
|
|
BUG_ON(pltsec->plt_count * PLT_ENT_SIZE > pltsec->plt->sh_size);
|
|
|
|
if (!idx)
|
|
/* Populate a new set of entries */
|
|
*plt = (struct plt_entries){
|
|
{ [0 ... PLT_ENT_COUNT - 1] = PLT_ENT_LDR, },
|
|
{ val, }
|
|
};
|
|
else
|
|
plt->lit[idx] = val;
|
|
|
|
return (u32)&plt->ldr[idx];
|
|
}
|
|
|
|
#define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
|
|
|
|
static int cmp_rel(const void *a, const void *b)
|
|
{
|
|
const Elf32_Rel *x = a, *y = b;
|
|
int i;
|
|
|
|
/* sort by type and symbol index */
|
|
i = cmp_3way(ELF32_R_TYPE(x->r_info), ELF32_R_TYPE(y->r_info));
|
|
if (i == 0)
|
|
i = cmp_3way(ELF32_R_SYM(x->r_info), ELF32_R_SYM(y->r_info));
|
|
return i;
|
|
}
|
|
|
|
static bool is_zero_addend_relocation(Elf32_Addr base, const Elf32_Rel *rel)
|
|
{
|
|
u32 *tval = (u32 *)(base + rel->r_offset);
|
|
|
|
/*
|
|
* Do a bitwise compare on the raw addend rather than fully decoding
|
|
* the offset and doing an arithmetic comparison.
|
|
* Note that a zero-addend jump/call relocation is encoded taking the
|
|
* PC bias into account, i.e., -8 for ARM and -4 for Thumb2.
|
|
*/
|
|
switch (ELF32_R_TYPE(rel->r_info)) {
|
|
u16 upper, lower;
|
|
|
|
case R_ARM_THM_CALL:
|
|
case R_ARM_THM_JUMP24:
|
|
upper = __mem_to_opcode_thumb16(((u16 *)tval)[0]);
|
|
lower = __mem_to_opcode_thumb16(((u16 *)tval)[1]);
|
|
|
|
return (upper & 0x7ff) == 0x7ff && (lower & 0x2fff) == 0x2ffe;
|
|
|
|
case R_ARM_CALL:
|
|
case R_ARM_PC24:
|
|
case R_ARM_JUMP24:
|
|
return (__mem_to_opcode_arm(*tval) & 0xffffff) == 0xfffffe;
|
|
}
|
|
BUG();
|
|
}
|
|
|
|
static bool duplicate_rel(Elf32_Addr base, const Elf32_Rel *rel, int num)
|
|
{
|
|
const Elf32_Rel *prev;
|
|
|
|
/*
|
|
* Entries are sorted by type and symbol index. That means that,
|
|
* if a duplicate entry exists, it must be in the preceding
|
|
* slot.
|
|
*/
|
|
if (!num)
|
|
return false;
|
|
|
|
prev = rel + num - 1;
|
|
return cmp_rel(rel + num, prev) == 0 &&
|
|
is_zero_addend_relocation(base, prev);
|
|
}
|
|
|
|
/* Count how many PLT entries we may need */
|
|
static unsigned int count_plts(const Elf32_Sym *syms, Elf32_Addr base,
|
|
const Elf32_Rel *rel, int num, Elf32_Word dstidx)
|
|
{
|
|
unsigned int ret = 0;
|
|
const Elf32_Sym *s;
|
|
int i;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
switch (ELF32_R_TYPE(rel[i].r_info)) {
|
|
case R_ARM_CALL:
|
|
case R_ARM_PC24:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_THM_CALL:
|
|
case R_ARM_THM_JUMP24:
|
|
/*
|
|
* We only have to consider branch targets that resolve
|
|
* to symbols that are defined in a different section.
|
|
* This is not simply a heuristic, it is a fundamental
|
|
* limitation, since there is no guaranteed way to emit
|
|
* PLT entries sufficiently close to the branch if the
|
|
* section size exceeds the range of a branch
|
|
* instruction. So ignore relocations against defined
|
|
* symbols if they live in the same section as the
|
|
* relocation target.
|
|
*/
|
|
s = syms + ELF32_R_SYM(rel[i].r_info);
|
|
if (s->st_shndx == dstidx)
|
|
break;
|
|
|
|
/*
|
|
* Jump relocations with non-zero addends against
|
|
* undefined symbols are supported by the ELF spec, but
|
|
* do not occur in practice (e.g., 'jump n bytes past
|
|
* the entry point of undefined function symbol f').
|
|
* So we need to support them, but there is no need to
|
|
* take them into consideration when trying to optimize
|
|
* this code. So let's only check for duplicates when
|
|
* the addend is zero. (Note that calls into the core
|
|
* module via init PLT entries could involve section
|
|
* relative symbol references with non-zero addends, for
|
|
* which we may end up emitting duplicates, but the init
|
|
* PLT is released along with the rest of the .init
|
|
* region as soon as module loading completes.)
|
|
*/
|
|
if (!is_zero_addend_relocation(base, rel + i) ||
|
|
!duplicate_rel(base, rel, i))
|
|
ret++;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
|
|
char *secstrings, struct module *mod)
|
|
{
|
|
unsigned long core_plts = 0;
|
|
unsigned long init_plts = 0;
|
|
Elf32_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum;
|
|
Elf32_Sym *syms = NULL;
|
|
|
|
/*
|
|
* To store the PLTs, we expand the .text section for core module code
|
|
* and for initialization code.
|
|
*/
|
|
for (s = sechdrs; s < sechdrs_end; ++s) {
|
|
if (strcmp(".plt", secstrings + s->sh_name) == 0)
|
|
mod->arch.core.plt = s;
|
|
else if (strcmp(".init.plt", secstrings + s->sh_name) == 0)
|
|
mod->arch.init.plt = s;
|
|
else if (s->sh_type == SHT_SYMTAB)
|
|
syms = (Elf32_Sym *)s->sh_addr;
|
|
}
|
|
|
|
if (!mod->arch.core.plt || !mod->arch.init.plt) {
|
|
pr_err("%s: module PLT section(s) missing\n", mod->name);
|
|
return -ENOEXEC;
|
|
}
|
|
if (!syms) {
|
|
pr_err("%s: module symtab section missing\n", mod->name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
for (s = sechdrs + 1; s < sechdrs_end; ++s) {
|
|
Elf32_Rel *rels = (void *)ehdr + s->sh_offset;
|
|
int numrels = s->sh_size / sizeof(Elf32_Rel);
|
|
Elf32_Shdr *dstsec = sechdrs + s->sh_info;
|
|
|
|
if (s->sh_type != SHT_REL)
|
|
continue;
|
|
|
|
/* ignore relocations that operate on non-exec sections */
|
|
if (!(dstsec->sh_flags & SHF_EXECINSTR))
|
|
continue;
|
|
|
|
/* sort by type and symbol index */
|
|
sort(rels, numrels, sizeof(Elf32_Rel), cmp_rel, NULL);
|
|
|
|
if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0)
|
|
core_plts += count_plts(syms, dstsec->sh_addr, rels,
|
|
numrels, s->sh_info);
|
|
else
|
|
init_plts += count_plts(syms, dstsec->sh_addr, rels,
|
|
numrels, s->sh_info);
|
|
}
|
|
|
|
mod->arch.core.plt->sh_type = SHT_NOBITS;
|
|
mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
|
mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES;
|
|
mod->arch.core.plt->sh_size = round_up(core_plts * PLT_ENT_SIZE,
|
|
sizeof(struct plt_entries));
|
|
mod->arch.core.plt_count = 0;
|
|
|
|
mod->arch.init.plt->sh_type = SHT_NOBITS;
|
|
mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
|
mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES;
|
|
mod->arch.init.plt->sh_size = round_up(init_plts * PLT_ENT_SIZE,
|
|
sizeof(struct plt_entries));
|
|
mod->arch.init.plt_count = 0;
|
|
|
|
pr_debug("%s: plt=%x, init.plt=%x\n", __func__,
|
|
mod->arch.core.plt->sh_size, mod->arch.init.plt->sh_size);
|
|
return 0;
|
|
}
|