linux/arch/arm64/kernel/module-plts.c
Catalin Marinas 14dcf78a6c Merge branch 'for-next/cpus_have_const_cap' into for-next/core
* for-next/cpus_have_const_cap: (38 commits)
  : cpus_have_const_cap() removal
  arm64: Remove cpus_have_const_cap()
  arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_REPEAT_TLBI
  arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_NVIDIA_CARMEL_CNP
  arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_CAVIUM_23154
  arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_2645198
  arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_1742098
  arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_1542419
  arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_843419
  arm64: Avoid cpus_have_const_cap() for ARM64_UNMAP_KERNEL_AT_EL0
  arm64: Avoid cpus_have_const_cap() for ARM64_{SVE,SME,SME2,FA64}
  arm64: Avoid cpus_have_const_cap() for ARM64_SPECTRE_V2
  arm64: Avoid cpus_have_const_cap() for ARM64_SSBS
  arm64: Avoid cpus_have_const_cap() for ARM64_MTE
  arm64: Avoid cpus_have_const_cap() for ARM64_HAS_TLB_RANGE
  arm64: Avoid cpus_have_const_cap() for ARM64_HAS_WFXT
  arm64: Avoid cpus_have_const_cap() for ARM64_HAS_RNG
  arm64: Avoid cpus_have_const_cap() for ARM64_HAS_EPAN
  arm64: Avoid cpus_have_const_cap() for ARM64_HAS_PAN
  arm64: Avoid cpus_have_const_cap() for ARM64_HAS_GIC_PRIO_MASKING
  arm64: Avoid cpus_have_const_cap() for ARM64_HAS_DIT
  ...
2023-10-26 17:10:18 +01:00

368 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
*/
#include <linux/elf.h>
#include <linux/ftrace.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleloader.h>
#include <linux/sort.h>
static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
enum aarch64_insn_register reg)
{
u32 adrp, add;
adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
AARCH64_INSN_VARIANT_64BIT,
AARCH64_INSN_ADSB_ADD);
return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
}
struct plt_entry get_plt_entry(u64 dst, void *pc)
{
struct plt_entry plt;
static u32 br;
if (!br)
br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
AARCH64_INSN_BRANCH_NOLINK);
plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
plt.br = cpu_to_le32(br);
return plt;
}
static bool plt_entries_equal(const struct plt_entry *a,
const struct plt_entry *b)
{
u64 p, q;
/*
* Check whether both entries refer to the same target:
* do the cheapest checks first.
* If the 'add' or 'br' opcodes are different, then the target
* cannot be the same.
*/
if (a->add != b->add || a->br != b->br)
return false;
p = ALIGN_DOWN((u64)a, SZ_4K);
q = ALIGN_DOWN((u64)b, SZ_4K);
/*
* If the 'adrp' opcodes are the same then we just need to check
* that they refer to the same 4k region.
*/
if (a->adrp == b->adrp && p == q)
return true;
return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
(q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
}
u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
void *loc, const Elf64_Rela *rela,
Elf64_Sym *sym)
{
struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ?
&mod->arch.core : &mod->arch.init;
struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
int i = pltsec->plt_num_entries;
int j = i - 1;
u64 val = sym->st_value + rela->r_addend;
if (is_forbidden_offset_for_adrp(&plt[i].adrp))
i++;
plt[i] = get_plt_entry(val, &plt[i]);
/*
* Check if the entry we just created is a duplicate. Given that the
* relocations are sorted, this will be the last entry we allocated.
* (if one exists).
*/
if (j >= 0 && plt_entries_equal(plt + i, plt + j))
return (u64)&plt[j];
pltsec->plt_num_entries += i - j;
if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
return 0;
return (u64)&plt[i];
}
#ifdef CONFIG_ARM64_ERRATUM_843419
u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
void *loc, u64 val)
{
struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ?
&mod->arch.core : &mod->arch.init;
struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
int i = pltsec->plt_num_entries++;
u32 br;
int rd;
if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
return 0;
if (is_forbidden_offset_for_adrp(&plt[i].adrp))
i = pltsec->plt_num_entries++;
/* get the destination register of the ADRP instruction */
rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
le32_to_cpup((__le32 *)loc));
br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
AARCH64_INSN_BRANCH_NOLINK);
plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
plt[i].br = cpu_to_le32(br);
return (u64)&plt[i];
}
#endif
#define cmp_3way(a, b) ((a) < (b) ? -1 : (a) > (b))
static int cmp_rela(const void *a, const void *b)
{
const Elf64_Rela *x = a, *y = b;
int i;
/* sort by type, symbol index and addend */
i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
if (i == 0)
i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
if (i == 0)
i = cmp_3way(x->r_addend, y->r_addend);
return i;
}
static bool duplicate_rel(const Elf64_Rela *rela, int num)
{
/*
* Entries are sorted by type, symbol index and addend. That means
* that, if a duplicate entry exists, it must be in the preceding
* slot.
*/
return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
}
static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
Elf64_Word dstidx, Elf_Shdr *dstsec)
{
unsigned int ret = 0;
Elf64_Sym *s;
int i;
for (i = 0; i < num; i++) {
u64 min_align;
switch (ELF64_R_TYPE(rela[i].r_info)) {
case R_AARCH64_JUMP26:
case R_AARCH64_CALL26:
/*
* We only have to consider branch targets that resolve
* to symbols that are defined in a different section.
* This is not simply a heuristic, it is a fundamental
* limitation, since there is no guaranteed way to emit
* PLT entries sufficiently close to the branch if the
* section size exceeds the range of a branch
* instruction. So ignore relocations against defined
* symbols if they live in the same section as the
* relocation target.
*/
s = syms + ELF64_R_SYM(rela[i].r_info);
if (s->st_shndx == dstidx)
break;
/*
* Jump relocations with non-zero addends against
* undefined symbols are supported by the ELF spec, but
* do not occur in practice (e.g., 'jump n bytes past
* the entry point of undefined function symbol f').
* So we need to support them, but there is no need to
* take them into consideration when trying to optimize
* this code. So let's only check for duplicates when
* the addend is zero: this allows us to record the PLT
* entry address in the symbol table itself, rather than
* having to search the list for duplicates each time we
* emit one.
*/
if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
ret++;
break;
case R_AARCH64_ADR_PREL_PG_HI21_NC:
case R_AARCH64_ADR_PREL_PG_HI21:
if (!cpus_have_final_cap(ARM64_WORKAROUND_843419))
break;
/*
* Determine the minimal safe alignment for this ADRP
* instruction: the section alignment at which it is
* guaranteed not to appear at a vulnerable offset.
*
* This comes down to finding the least significant zero
* bit in bits [11:3] of the section offset, and
* increasing the section's alignment so that the
* resulting address of this instruction is guaranteed
* to equal the offset in that particular bit (as well
* as all less significant bits). This ensures that the
* address modulo 4 KB != 0xfff8 or 0xfffc (which would
* have all ones in bits [11:3])
*/
min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
/*
* Allocate veneer space for each ADRP that may appear
* at a vulnerable offset nonetheless. At relocation
* time, some of these will remain unused since some
* ADRP instructions can be patched to ADR instructions
* instead.
*/
if (min_align > SZ_4K)
ret++;
else
dstsec->sh_addralign = max(dstsec->sh_addralign,
min_align);
break;
}
}
if (cpus_have_final_cap(ARM64_WORKAROUND_843419)) {
/*
* Add some slack so we can skip PLT slots that may trigger
* the erratum due to the placement of the ADRP instruction.
*/
ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
}
return ret;
}
static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
Elf64_Word dstidx)
{
Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
if (s->st_shndx == dstidx)
return false;
return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
}
/* Group branch PLT relas at the front end of the array. */
static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
int numrels, Elf64_Word dstidx)
{
int i = 0, j = numrels - 1;
while (i < j) {
if (branch_rela_needs_plt(syms, &rela[i], dstidx))
i++;
else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
swap(rela[i], rela[j]);
else
j--;
}
return i;
}
int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
char *secstrings, struct module *mod)
{
unsigned long core_plts = 0;
unsigned long init_plts = 0;
Elf64_Sym *syms = NULL;
Elf_Shdr *pltsec, *tramp = NULL;
int i;
/*
* Find the empty .plt section so we can expand it to store the PLT
* entries. Record the symtab address as well.
*/
for (i = 0; i < ehdr->e_shnum; i++) {
if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
mod->arch.core.plt_shndx = i;
else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
mod->arch.init.plt_shndx = i;
else if (!strcmp(secstrings + sechdrs[i].sh_name,
".text.ftrace_trampoline"))
tramp = sechdrs + i;
else if (sechdrs[i].sh_type == SHT_SYMTAB)
syms = (Elf64_Sym *)sechdrs[i].sh_addr;
}
if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
pr_err("%s: module PLT section(s) missing\n", mod->name);
return -ENOEXEC;
}
if (!syms) {
pr_err("%s: module symtab section missing\n", mod->name);
return -ENOEXEC;
}
for (i = 0; i < ehdr->e_shnum; i++) {
Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
if (sechdrs[i].sh_type != SHT_RELA)
continue;
/* ignore relocations that operate on non-exec sections */
if (!(dstsec->sh_flags & SHF_EXECINSTR))
continue;
/*
* sort branch relocations requiring a PLT by type, symbol index
* and addend
*/
nents = partition_branch_plt_relas(syms, rels, numrels,
sechdrs[i].sh_info);
if (nents)
sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
if (!module_init_layout_section(secstrings + dstsec->sh_name))
core_plts += count_plts(syms, rels, numrels,
sechdrs[i].sh_info, dstsec);
else
init_plts += count_plts(syms, rels, numrels,
sechdrs[i].sh_info, dstsec);
}
pltsec = sechdrs + mod->arch.core.plt_shndx;
pltsec->sh_type = SHT_NOBITS;
pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
pltsec->sh_addralign = L1_CACHE_BYTES;
pltsec->sh_size = (core_plts + 1) * sizeof(struct plt_entry);
mod->arch.core.plt_num_entries = 0;
mod->arch.core.plt_max_entries = core_plts;
pltsec = sechdrs + mod->arch.init.plt_shndx;
pltsec->sh_type = SHT_NOBITS;
pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
pltsec->sh_addralign = L1_CACHE_BYTES;
pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
mod->arch.init.plt_num_entries = 0;
mod->arch.init.plt_max_entries = init_plts;
if (tramp) {
tramp->sh_type = SHT_NOBITS;
tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
tramp->sh_addralign = __alignof__(struct plt_entry);
tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
}
return 0;
}