mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 13:41:51 +00:00
5cec4eb7fa
For each CPU hotplug event, we will update per-CPU data slice size and
corresponding PCP configuration for every online CPU to make the
implementation simple. But, Kyle reported that this takes tens seconds
during boot on a machine with 34 zones and 3840 CPUs.
So, in this patch, for each CPU hotplug event, we only update per-CPU data
slice size and corresponding PCP configuration for the CPUs that share
caches with the hotplugged CPU. With the patch, the system boot time
reduces 67 seconds on the machine.
Link: https://lkml.kernel.org/r/20240126081944.414520-1-ying.huang@intel.com
Fixes: 362d37a106
("mm, pcp: reduce lock contention for draining high-order pages")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Originally-by: Kyle Meyer <kyle.meyer@hpe.com>
Reported-and-tested-by: Kyle Meyer <kyle.meyer@hpe.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1016 lines
25 KiB
C
1016 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* cacheinfo support - processor cache information via sysfs
|
|
*
|
|
* Based on arch/x86/kernel/cpu/intel_cacheinfo.c
|
|
* Author: Sudeep Holla <sudeep.holla@arm.com>
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/cacheinfo.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/device.h>
|
|
#include <linux/init.h>
|
|
#include <linux/of.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sysfs.h>
|
|
|
|
/* pointer to per cpu cacheinfo */
|
|
static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
|
|
#define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu))
|
|
#define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves)
|
|
#define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list)
|
|
#define per_cpu_cacheinfo_idx(cpu, idx) \
|
|
(per_cpu_cacheinfo(cpu) + (idx))
|
|
|
|
/* Set if no cache information is found in DT/ACPI. */
|
|
static bool use_arch_info;
|
|
|
|
struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
|
|
{
|
|
return ci_cacheinfo(cpu);
|
|
}
|
|
|
|
static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
|
|
struct cacheinfo *sib_leaf)
|
|
{
|
|
/*
|
|
* For non DT/ACPI systems, assume unique level 1 caches,
|
|
* system-wide shared caches for all other levels.
|
|
*/
|
|
if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
|
|
use_arch_info)
|
|
return (this_leaf->level != 1) && (sib_leaf->level != 1);
|
|
|
|
if ((sib_leaf->attributes & CACHE_ID) &&
|
|
(this_leaf->attributes & CACHE_ID))
|
|
return sib_leaf->id == this_leaf->id;
|
|
|
|
return sib_leaf->fw_token == this_leaf->fw_token;
|
|
}
|
|
|
|
bool last_level_cache_is_valid(unsigned int cpu)
|
|
{
|
|
struct cacheinfo *llc;
|
|
|
|
if (!cache_leaves(cpu))
|
|
return false;
|
|
|
|
llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
|
|
|
|
return (llc->attributes & CACHE_ID) || !!llc->fw_token;
|
|
|
|
}
|
|
|
|
bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
|
|
{
|
|
struct cacheinfo *llc_x, *llc_y;
|
|
|
|
if (!last_level_cache_is_valid(cpu_x) ||
|
|
!last_level_cache_is_valid(cpu_y))
|
|
return false;
|
|
|
|
llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
|
|
llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
|
|
|
|
return cache_leaves_are_shared(llc_x, llc_y);
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
|
|
static bool of_check_cache_nodes(struct device_node *np);
|
|
|
|
/* OF properties to query for a given cache type */
|
|
struct cache_type_info {
|
|
const char *size_prop;
|
|
const char *line_size_props[2];
|
|
const char *nr_sets_prop;
|
|
};
|
|
|
|
static const struct cache_type_info cache_type_info[] = {
|
|
{
|
|
.size_prop = "cache-size",
|
|
.line_size_props = { "cache-line-size",
|
|
"cache-block-size", },
|
|
.nr_sets_prop = "cache-sets",
|
|
}, {
|
|
.size_prop = "i-cache-size",
|
|
.line_size_props = { "i-cache-line-size",
|
|
"i-cache-block-size", },
|
|
.nr_sets_prop = "i-cache-sets",
|
|
}, {
|
|
.size_prop = "d-cache-size",
|
|
.line_size_props = { "d-cache-line-size",
|
|
"d-cache-block-size", },
|
|
.nr_sets_prop = "d-cache-sets",
|
|
},
|
|
};
|
|
|
|
static inline int get_cacheinfo_idx(enum cache_type type)
|
|
{
|
|
if (type == CACHE_TYPE_UNIFIED)
|
|
return 0;
|
|
return type;
|
|
}
|
|
|
|
static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
|
|
{
|
|
const char *propname;
|
|
int ct_idx;
|
|
|
|
ct_idx = get_cacheinfo_idx(this_leaf->type);
|
|
propname = cache_type_info[ct_idx].size_prop;
|
|
|
|
of_property_read_u32(np, propname, &this_leaf->size);
|
|
}
|
|
|
|
/* not cache_line_size() because that's a macro in include/linux/cache.h */
|
|
static void cache_get_line_size(struct cacheinfo *this_leaf,
|
|
struct device_node *np)
|
|
{
|
|
int i, lim, ct_idx;
|
|
|
|
ct_idx = get_cacheinfo_idx(this_leaf->type);
|
|
lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
|
|
|
|
for (i = 0; i < lim; i++) {
|
|
int ret;
|
|
u32 line_size;
|
|
const char *propname;
|
|
|
|
propname = cache_type_info[ct_idx].line_size_props[i];
|
|
ret = of_property_read_u32(np, propname, &line_size);
|
|
if (!ret) {
|
|
this_leaf->coherency_line_size = line_size;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
|
|
{
|
|
const char *propname;
|
|
int ct_idx;
|
|
|
|
ct_idx = get_cacheinfo_idx(this_leaf->type);
|
|
propname = cache_type_info[ct_idx].nr_sets_prop;
|
|
|
|
of_property_read_u32(np, propname, &this_leaf->number_of_sets);
|
|
}
|
|
|
|
static void cache_associativity(struct cacheinfo *this_leaf)
|
|
{
|
|
unsigned int line_size = this_leaf->coherency_line_size;
|
|
unsigned int nr_sets = this_leaf->number_of_sets;
|
|
unsigned int size = this_leaf->size;
|
|
|
|
/*
|
|
* If the cache is fully associative, there is no need to
|
|
* check the other properties.
|
|
*/
|
|
if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
|
|
this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
|
|
}
|
|
|
|
static bool cache_node_is_unified(struct cacheinfo *this_leaf,
|
|
struct device_node *np)
|
|
{
|
|
return of_property_read_bool(np, "cache-unified");
|
|
}
|
|
|
|
static void cache_of_set_props(struct cacheinfo *this_leaf,
|
|
struct device_node *np)
|
|
{
|
|
/*
|
|
* init_cache_level must setup the cache level correctly
|
|
* overriding the architecturally specified levels, so
|
|
* if type is NONE at this stage, it should be unified
|
|
*/
|
|
if (this_leaf->type == CACHE_TYPE_NOCACHE &&
|
|
cache_node_is_unified(this_leaf, np))
|
|
this_leaf->type = CACHE_TYPE_UNIFIED;
|
|
cache_size(this_leaf, np);
|
|
cache_get_line_size(this_leaf, np);
|
|
cache_nr_sets(this_leaf, np);
|
|
cache_associativity(this_leaf);
|
|
}
|
|
|
|
static int cache_setup_of_node(unsigned int cpu)
|
|
{
|
|
struct device_node *np, *prev;
|
|
struct cacheinfo *this_leaf;
|
|
unsigned int index = 0;
|
|
|
|
np = of_cpu_device_node_get(cpu);
|
|
if (!np) {
|
|
pr_err("Failed to find cpu%d device node\n", cpu);
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (!of_check_cache_nodes(np)) {
|
|
of_node_put(np);
|
|
return -ENOENT;
|
|
}
|
|
|
|
prev = np;
|
|
|
|
while (index < cache_leaves(cpu)) {
|
|
this_leaf = per_cpu_cacheinfo_idx(cpu, index);
|
|
if (this_leaf->level != 1) {
|
|
np = of_find_next_cache_node(np);
|
|
of_node_put(prev);
|
|
prev = np;
|
|
if (!np)
|
|
break;
|
|
}
|
|
cache_of_set_props(this_leaf, np);
|
|
this_leaf->fw_token = np;
|
|
index++;
|
|
}
|
|
|
|
of_node_put(np);
|
|
|
|
if (index != cache_leaves(cpu)) /* not all OF nodes populated */
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool of_check_cache_nodes(struct device_node *np)
|
|
{
|
|
struct device_node *next;
|
|
|
|
if (of_property_present(np, "cache-size") ||
|
|
of_property_present(np, "i-cache-size") ||
|
|
of_property_present(np, "d-cache-size") ||
|
|
of_property_present(np, "cache-unified"))
|
|
return true;
|
|
|
|
next = of_find_next_cache_node(np);
|
|
if (next) {
|
|
of_node_put(next);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int of_count_cache_leaves(struct device_node *np)
|
|
{
|
|
unsigned int leaves = 0;
|
|
|
|
if (of_property_read_bool(np, "cache-size"))
|
|
++leaves;
|
|
if (of_property_read_bool(np, "i-cache-size"))
|
|
++leaves;
|
|
if (of_property_read_bool(np, "d-cache-size"))
|
|
++leaves;
|
|
|
|
if (!leaves) {
|
|
/* The '[i-|d-|]cache-size' property is required, but
|
|
* if absent, fallback on the 'cache-unified' property.
|
|
*/
|
|
if (of_property_read_bool(np, "cache-unified"))
|
|
return 1;
|
|
else
|
|
return 2;
|
|
}
|
|
|
|
return leaves;
|
|
}
|
|
|
|
int init_of_cache_level(unsigned int cpu)
|
|
{
|
|
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
|
|
struct device_node *np = of_cpu_device_node_get(cpu);
|
|
struct device_node *prev = NULL;
|
|
unsigned int levels = 0, leaves, level;
|
|
|
|
if (!of_check_cache_nodes(np)) {
|
|
of_node_put(np);
|
|
return -ENOENT;
|
|
}
|
|
|
|
leaves = of_count_cache_leaves(np);
|
|
if (leaves > 0)
|
|
levels = 1;
|
|
|
|
prev = np;
|
|
while ((np = of_find_next_cache_node(np))) {
|
|
of_node_put(prev);
|
|
prev = np;
|
|
if (!of_device_is_compatible(np, "cache"))
|
|
goto err_out;
|
|
if (of_property_read_u32(np, "cache-level", &level))
|
|
goto err_out;
|
|
if (level <= levels)
|
|
goto err_out;
|
|
|
|
leaves += of_count_cache_leaves(np);
|
|
levels = level;
|
|
}
|
|
|
|
of_node_put(np);
|
|
this_cpu_ci->num_levels = levels;
|
|
this_cpu_ci->num_leaves = leaves;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
of_node_put(np);
|
|
return -EINVAL;
|
|
}
|
|
|
|
#else
|
|
static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
|
|
int init_of_cache_level(unsigned int cpu) { return 0; }
|
|
#endif
|
|
|
|
int __weak cache_setup_acpi(unsigned int cpu)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
unsigned int coherency_max_size;
|
|
|
|
static int cache_setup_properties(unsigned int cpu)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (of_have_populated_dt())
|
|
ret = cache_setup_of_node(cpu);
|
|
else if (!acpi_disabled)
|
|
ret = cache_setup_acpi(cpu);
|
|
|
|
// Assume there is no cache information available in DT/ACPI from now.
|
|
if (ret && use_arch_cache_info())
|
|
use_arch_info = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cache_shared_cpu_map_setup(unsigned int cpu)
|
|
{
|
|
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
|
|
struct cacheinfo *this_leaf, *sib_leaf;
|
|
unsigned int index, sib_index;
|
|
int ret = 0;
|
|
|
|
if (this_cpu_ci->cpu_map_populated)
|
|
return 0;
|
|
|
|
/*
|
|
* skip setting up cache properties if LLC is valid, just need
|
|
* to update the shared cpu_map if the cache attributes were
|
|
* populated early before all the cpus are brought online
|
|
*/
|
|
if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
|
|
ret = cache_setup_properties(cpu);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
for (index = 0; index < cache_leaves(cpu); index++) {
|
|
unsigned int i;
|
|
|
|
this_leaf = per_cpu_cacheinfo_idx(cpu, index);
|
|
|
|
cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
|
|
for_each_online_cpu(i) {
|
|
struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
|
|
|
|
if (i == cpu || !sib_cpu_ci->info_list)
|
|
continue;/* skip if itself or no cacheinfo */
|
|
for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
|
|
sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
|
|
|
|
/*
|
|
* Comparing cache IDs only makes sense if the leaves
|
|
* belong to the same cache level of same type. Skip
|
|
* the check if level and type do not match.
|
|
*/
|
|
if (sib_leaf->level != this_leaf->level ||
|
|
sib_leaf->type != this_leaf->type)
|
|
continue;
|
|
|
|
if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
|
|
cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
|
|
cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* record the maximum cache line size */
|
|
if (this_leaf->coherency_line_size > coherency_max_size)
|
|
coherency_max_size = this_leaf->coherency_line_size;
|
|
}
|
|
|
|
/* shared_cpu_map is now populated for the cpu */
|
|
this_cpu_ci->cpu_map_populated = true;
|
|
return 0;
|
|
}
|
|
|
|
static void cache_shared_cpu_map_remove(unsigned int cpu)
|
|
{
|
|
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
|
|
struct cacheinfo *this_leaf, *sib_leaf;
|
|
unsigned int sibling, index, sib_index;
|
|
|
|
for (index = 0; index < cache_leaves(cpu); index++) {
|
|
this_leaf = per_cpu_cacheinfo_idx(cpu, index);
|
|
for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
|
|
struct cpu_cacheinfo *sib_cpu_ci =
|
|
get_cpu_cacheinfo(sibling);
|
|
|
|
if (sibling == cpu || !sib_cpu_ci->info_list)
|
|
continue;/* skip if itself or no cacheinfo */
|
|
|
|
for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
|
|
sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
|
|
|
|
/*
|
|
* Comparing cache IDs only makes sense if the leaves
|
|
* belong to the same cache level of same type. Skip
|
|
* the check if level and type do not match.
|
|
*/
|
|
if (sib_leaf->level != this_leaf->level ||
|
|
sib_leaf->type != this_leaf->type)
|
|
continue;
|
|
|
|
if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
|
|
cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
|
|
cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* cpu is no longer populated in the shared map */
|
|
this_cpu_ci->cpu_map_populated = false;
|
|
}
|
|
|
|
static void free_cache_attributes(unsigned int cpu)
|
|
{
|
|
if (!per_cpu_cacheinfo(cpu))
|
|
return;
|
|
|
|
cache_shared_cpu_map_remove(cpu);
|
|
}
|
|
|
|
int __weak early_cache_level(unsigned int cpu)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
|
|
int __weak init_cache_level(unsigned int cpu)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
|
|
int __weak populate_cache_leaves(unsigned int cpu)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
|
|
static inline
|
|
int allocate_cache_info(int cpu)
|
|
{
|
|
per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
|
|
sizeof(struct cacheinfo), GFP_ATOMIC);
|
|
if (!per_cpu_cacheinfo(cpu)) {
|
|
cache_leaves(cpu) = 0;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fetch_cache_info(unsigned int cpu)
|
|
{
|
|
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
|
|
unsigned int levels = 0, split_levels = 0;
|
|
int ret;
|
|
|
|
if (acpi_disabled) {
|
|
ret = init_of_cache_level(cpu);
|
|
} else {
|
|
ret = acpi_get_cache_info(cpu, &levels, &split_levels);
|
|
if (!ret) {
|
|
this_cpu_ci->num_levels = levels;
|
|
/*
|
|
* This assumes that:
|
|
* - there cannot be any split caches (data/instruction)
|
|
* above a unified cache
|
|
* - data/instruction caches come by pair
|
|
*/
|
|
this_cpu_ci->num_leaves = levels + split_levels;
|
|
}
|
|
}
|
|
|
|
if (ret || !cache_leaves(cpu)) {
|
|
ret = early_cache_level(cpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!cache_leaves(cpu))
|
|
return -ENOENT;
|
|
|
|
this_cpu_ci->early_ci_levels = true;
|
|
}
|
|
|
|
return allocate_cache_info(cpu);
|
|
}
|
|
|
|
static inline int init_level_allocate_ci(unsigned int cpu)
|
|
{
|
|
unsigned int early_leaves = cache_leaves(cpu);
|
|
|
|
/* Since early initialization/allocation of the cacheinfo is allowed
|
|
* via fetch_cache_info() and this also gets called as CPU hotplug
|
|
* callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
|
|
* as it will happen only once (the cacheinfo memory is never freed).
|
|
* Just populate the cacheinfo. However, if the cacheinfo has been
|
|
* allocated early through the arch-specific early_cache_level() call,
|
|
* there is a chance the info is wrong (this can happen on arm64). In
|
|
* that case, call init_cache_level() anyway to give the arch-specific
|
|
* code a chance to make things right.
|
|
*/
|
|
if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
|
|
return 0;
|
|
|
|
if (init_cache_level(cpu) || !cache_leaves(cpu))
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Now that we have properly initialized the cache level info, make
|
|
* sure we don't try to do that again the next time we are called
|
|
* (e.g. as CPU hotplug callbacks).
|
|
*/
|
|
ci_cacheinfo(cpu)->early_ci_levels = false;
|
|
|
|
if (cache_leaves(cpu) <= early_leaves)
|
|
return 0;
|
|
|
|
kfree(per_cpu_cacheinfo(cpu));
|
|
return allocate_cache_info(cpu);
|
|
}
|
|
|
|
int detect_cache_attributes(unsigned int cpu)
|
|
{
|
|
int ret;
|
|
|
|
ret = init_level_allocate_ci(cpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If LLC is valid the cache leaves were already populated so just go to
|
|
* update the cpu map.
|
|
*/
|
|
if (!last_level_cache_is_valid(cpu)) {
|
|
/*
|
|
* populate_cache_leaves() may completely setup the cache leaves and
|
|
* shared_cpu_map or it may leave it partially setup.
|
|
*/
|
|
ret = populate_cache_leaves(cpu);
|
|
if (ret)
|
|
goto free_ci;
|
|
}
|
|
|
|
/*
|
|
* For systems using DT for cache hierarchy, fw_token
|
|
* and shared_cpu_map will be set up here only if they are
|
|
* not populated already
|
|
*/
|
|
ret = cache_shared_cpu_map_setup(cpu);
|
|
if (ret) {
|
|
pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
|
|
goto free_ci;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_ci:
|
|
free_cache_attributes(cpu);
|
|
return ret;
|
|
}
|
|
|
|
/* pointer to cpuX/cache device */
|
|
static DEFINE_PER_CPU(struct device *, ci_cache_dev);
|
|
#define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu))
|
|
|
|
static cpumask_t cache_dev_map;
|
|
|
|
/* pointer to array of devices for cpuX/cache/indexY */
|
|
static DEFINE_PER_CPU(struct device **, ci_index_dev);
|
|
#define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu))
|
|
#define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx])
|
|
|
|
#define show_one(file_name, object) \
|
|
static ssize_t file_name##_show(struct device *dev, \
|
|
struct device_attribute *attr, char *buf) \
|
|
{ \
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
|
|
return sysfs_emit(buf, "%u\n", this_leaf->object); \
|
|
}
|
|
|
|
show_one(id, id);
|
|
show_one(level, level);
|
|
show_one(coherency_line_size, coherency_line_size);
|
|
show_one(number_of_sets, number_of_sets);
|
|
show_one(physical_line_partition, physical_line_partition);
|
|
show_one(ways_of_associativity, ways_of_associativity);
|
|
|
|
static ssize_t size_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
|
|
|
|
return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
|
|
}
|
|
|
|
static ssize_t shared_cpu_map_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
|
|
const struct cpumask *mask = &this_leaf->shared_cpu_map;
|
|
|
|
return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
|
|
}
|
|
|
|
static ssize_t shared_cpu_list_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
|
|
const struct cpumask *mask = &this_leaf->shared_cpu_map;
|
|
|
|
return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
|
|
}
|
|
|
|
static ssize_t type_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
|
|
const char *output;
|
|
|
|
switch (this_leaf->type) {
|
|
case CACHE_TYPE_DATA:
|
|
output = "Data";
|
|
break;
|
|
case CACHE_TYPE_INST:
|
|
output = "Instruction";
|
|
break;
|
|
case CACHE_TYPE_UNIFIED:
|
|
output = "Unified";
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return sysfs_emit(buf, "%s\n", output);
|
|
}
|
|
|
|
static ssize_t allocation_policy_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
|
|
unsigned int ci_attr = this_leaf->attributes;
|
|
const char *output;
|
|
|
|
if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
|
|
output = "ReadWriteAllocate";
|
|
else if (ci_attr & CACHE_READ_ALLOCATE)
|
|
output = "ReadAllocate";
|
|
else if (ci_attr & CACHE_WRITE_ALLOCATE)
|
|
output = "WriteAllocate";
|
|
else
|
|
return 0;
|
|
|
|
return sysfs_emit(buf, "%s\n", output);
|
|
}
|
|
|
|
static ssize_t write_policy_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
|
|
unsigned int ci_attr = this_leaf->attributes;
|
|
int n = 0;
|
|
|
|
if (ci_attr & CACHE_WRITE_THROUGH)
|
|
n = sysfs_emit(buf, "WriteThrough\n");
|
|
else if (ci_attr & CACHE_WRITE_BACK)
|
|
n = sysfs_emit(buf, "WriteBack\n");
|
|
return n;
|
|
}
|
|
|
|
static DEVICE_ATTR_RO(id);
|
|
static DEVICE_ATTR_RO(level);
|
|
static DEVICE_ATTR_RO(type);
|
|
static DEVICE_ATTR_RO(coherency_line_size);
|
|
static DEVICE_ATTR_RO(ways_of_associativity);
|
|
static DEVICE_ATTR_RO(number_of_sets);
|
|
static DEVICE_ATTR_RO(size);
|
|
static DEVICE_ATTR_RO(allocation_policy);
|
|
static DEVICE_ATTR_RO(write_policy);
|
|
static DEVICE_ATTR_RO(shared_cpu_map);
|
|
static DEVICE_ATTR_RO(shared_cpu_list);
|
|
static DEVICE_ATTR_RO(physical_line_partition);
|
|
|
|
static struct attribute *cache_default_attrs[] = {
|
|
&dev_attr_id.attr,
|
|
&dev_attr_type.attr,
|
|
&dev_attr_level.attr,
|
|
&dev_attr_shared_cpu_map.attr,
|
|
&dev_attr_shared_cpu_list.attr,
|
|
&dev_attr_coherency_line_size.attr,
|
|
&dev_attr_ways_of_associativity.attr,
|
|
&dev_attr_number_of_sets.attr,
|
|
&dev_attr_size.attr,
|
|
&dev_attr_allocation_policy.attr,
|
|
&dev_attr_write_policy.attr,
|
|
&dev_attr_physical_line_partition.attr,
|
|
NULL
|
|
};
|
|
|
|
static umode_t
|
|
cache_default_attrs_is_visible(struct kobject *kobj,
|
|
struct attribute *attr, int unused)
|
|
{
|
|
struct device *dev = kobj_to_dev(kobj);
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
|
|
const struct cpumask *mask = &this_leaf->shared_cpu_map;
|
|
umode_t mode = attr->mode;
|
|
|
|
if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
|
|
return mode;
|
|
if ((attr == &dev_attr_type.attr) && this_leaf->type)
|
|
return mode;
|
|
if ((attr == &dev_attr_level.attr) && this_leaf->level)
|
|
return mode;
|
|
if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
|
|
return mode;
|
|
if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
|
|
return mode;
|
|
if ((attr == &dev_attr_coherency_line_size.attr) &&
|
|
this_leaf->coherency_line_size)
|
|
return mode;
|
|
if ((attr == &dev_attr_ways_of_associativity.attr) &&
|
|
this_leaf->size) /* allow 0 = full associativity */
|
|
return mode;
|
|
if ((attr == &dev_attr_number_of_sets.attr) &&
|
|
this_leaf->number_of_sets)
|
|
return mode;
|
|
if ((attr == &dev_attr_size.attr) && this_leaf->size)
|
|
return mode;
|
|
if ((attr == &dev_attr_write_policy.attr) &&
|
|
(this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
|
|
return mode;
|
|
if ((attr == &dev_attr_allocation_policy.attr) &&
|
|
(this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
|
|
return mode;
|
|
if ((attr == &dev_attr_physical_line_partition.attr) &&
|
|
this_leaf->physical_line_partition)
|
|
return mode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct attribute_group cache_default_group = {
|
|
.attrs = cache_default_attrs,
|
|
.is_visible = cache_default_attrs_is_visible,
|
|
};
|
|
|
|
static const struct attribute_group *cache_default_groups[] = {
|
|
&cache_default_group,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group *cache_private_groups[] = {
|
|
&cache_default_group,
|
|
NULL, /* Place holder for private group */
|
|
NULL,
|
|
};
|
|
|
|
const struct attribute_group *
|
|
__weak cache_get_priv_group(struct cacheinfo *this_leaf)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static const struct attribute_group **
|
|
cache_get_attribute_groups(struct cacheinfo *this_leaf)
|
|
{
|
|
const struct attribute_group *priv_group =
|
|
cache_get_priv_group(this_leaf);
|
|
|
|
if (!priv_group)
|
|
return cache_default_groups;
|
|
|
|
if (!cache_private_groups[1])
|
|
cache_private_groups[1] = priv_group;
|
|
|
|
return cache_private_groups;
|
|
}
|
|
|
|
/* Add/Remove cache interface for CPU device */
|
|
static void cpu_cache_sysfs_exit(unsigned int cpu)
|
|
{
|
|
int i;
|
|
struct device *ci_dev;
|
|
|
|
if (per_cpu_index_dev(cpu)) {
|
|
for (i = 0; i < cache_leaves(cpu); i++) {
|
|
ci_dev = per_cache_index_dev(cpu, i);
|
|
if (!ci_dev)
|
|
continue;
|
|
device_unregister(ci_dev);
|
|
}
|
|
kfree(per_cpu_index_dev(cpu));
|
|
per_cpu_index_dev(cpu) = NULL;
|
|
}
|
|
device_unregister(per_cpu_cache_dev(cpu));
|
|
per_cpu_cache_dev(cpu) = NULL;
|
|
}
|
|
|
|
static int cpu_cache_sysfs_init(unsigned int cpu)
|
|
{
|
|
struct device *dev = get_cpu_device(cpu);
|
|
|
|
if (per_cpu_cacheinfo(cpu) == NULL)
|
|
return -ENOENT;
|
|
|
|
per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
|
|
if (IS_ERR(per_cpu_cache_dev(cpu)))
|
|
return PTR_ERR(per_cpu_cache_dev(cpu));
|
|
|
|
/* Allocate all required memory */
|
|
per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
|
|
sizeof(struct device *), GFP_KERNEL);
|
|
if (unlikely(per_cpu_index_dev(cpu) == NULL))
|
|
goto err_out;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
cpu_cache_sysfs_exit(cpu);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int cache_add_dev(unsigned int cpu)
|
|
{
|
|
unsigned int i;
|
|
int rc;
|
|
struct device *ci_dev, *parent;
|
|
struct cacheinfo *this_leaf;
|
|
const struct attribute_group **cache_groups;
|
|
|
|
rc = cpu_cache_sysfs_init(cpu);
|
|
if (unlikely(rc < 0))
|
|
return rc;
|
|
|
|
parent = per_cpu_cache_dev(cpu);
|
|
for (i = 0; i < cache_leaves(cpu); i++) {
|
|
this_leaf = per_cpu_cacheinfo_idx(cpu, i);
|
|
if (this_leaf->disable_sysfs)
|
|
continue;
|
|
if (this_leaf->type == CACHE_TYPE_NOCACHE)
|
|
break;
|
|
cache_groups = cache_get_attribute_groups(this_leaf);
|
|
ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
|
|
"index%1u", i);
|
|
if (IS_ERR(ci_dev)) {
|
|
rc = PTR_ERR(ci_dev);
|
|
goto err;
|
|
}
|
|
per_cache_index_dev(cpu, i) = ci_dev;
|
|
}
|
|
cpumask_set_cpu(cpu, &cache_dev_map);
|
|
|
|
return 0;
|
|
err:
|
|
cpu_cache_sysfs_exit(cpu);
|
|
return rc;
|
|
}
|
|
|
|
static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu,
|
|
cpumask_t **map)
|
|
{
|
|
struct cacheinfo *llc, *sib_llc;
|
|
unsigned int sibling;
|
|
|
|
if (!last_level_cache_is_valid(cpu))
|
|
return 0;
|
|
|
|
llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
|
|
|
|
if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
|
|
return 0;
|
|
|
|
if (online) {
|
|
*map = &llc->shared_cpu_map;
|
|
return cpumask_weight(*map);
|
|
}
|
|
|
|
/* shared_cpu_map of offlined CPU will be cleared, so use sibling map */
|
|
for_each_cpu(sibling, &llc->shared_cpu_map) {
|
|
if (sibling == cpu || !last_level_cache_is_valid(sibling))
|
|
continue;
|
|
sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1);
|
|
*map = &sib_llc->shared_cpu_map;
|
|
return cpumask_weight(*map);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate the size of the per-CPU data cache slice. This can be
|
|
* used to estimate the size of the data cache slice that can be used
|
|
* by one CPU under ideal circumstances. UNIFIED caches are counted
|
|
* in addition to DATA caches. So, please consider code cache usage
|
|
* when use the result.
|
|
*
|
|
* Because the cache inclusive/non-inclusive information isn't
|
|
* available, we just use the size of the per-CPU slice of LLC to make
|
|
* the result more predictable across architectures.
|
|
*/
|
|
static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
|
|
{
|
|
struct cpu_cacheinfo *ci;
|
|
struct cacheinfo *llc;
|
|
unsigned int nr_shared;
|
|
|
|
if (!last_level_cache_is_valid(cpu))
|
|
return;
|
|
|
|
ci = ci_cacheinfo(cpu);
|
|
llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
|
|
|
|
if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
|
|
return;
|
|
|
|
nr_shared = cpumask_weight(&llc->shared_cpu_map);
|
|
if (nr_shared)
|
|
ci->per_cpu_data_slice_size = llc->size / nr_shared;
|
|
}
|
|
|
|
static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu,
|
|
cpumask_t *cpu_map)
|
|
{
|
|
unsigned int icpu;
|
|
|
|
for_each_cpu(icpu, cpu_map) {
|
|
if (!cpu_online && icpu == cpu)
|
|
continue;
|
|
update_per_cpu_data_slice_size_cpu(icpu);
|
|
setup_pcp_cacheinfo(icpu);
|
|
}
|
|
}
|
|
|
|
static int cacheinfo_cpu_online(unsigned int cpu)
|
|
{
|
|
int rc = detect_cache_attributes(cpu);
|
|
cpumask_t *cpu_map;
|
|
|
|
if (rc)
|
|
return rc;
|
|
rc = cache_add_dev(cpu);
|
|
if (rc)
|
|
goto err;
|
|
if (cpu_map_shared_cache(true, cpu, &cpu_map))
|
|
update_per_cpu_data_slice_size(true, cpu, cpu_map);
|
|
return 0;
|
|
err:
|
|
free_cache_attributes(cpu);
|
|
return rc;
|
|
}
|
|
|
|
static int cacheinfo_cpu_pre_down(unsigned int cpu)
|
|
{
|
|
cpumask_t *cpu_map;
|
|
unsigned int nr_shared;
|
|
|
|
nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map);
|
|
if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
|
|
cpu_cache_sysfs_exit(cpu);
|
|
|
|
free_cache_attributes(cpu);
|
|
if (nr_shared > 1)
|
|
update_per_cpu_data_slice_size(false, cpu, cpu_map);
|
|
return 0;
|
|
}
|
|
|
|
static int __init cacheinfo_sysfs_init(void)
|
|
{
|
|
return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
|
|
"base/cacheinfo:online",
|
|
cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
|
|
}
|
|
device_initcall(cacheinfo_sysfs_init);
|