mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 20:51:44 +00:00
2a8f82c4ce
When a USB device is reset, the xHCI hardware must know, in order to match the device state and disable all endpoints except control endpoint 0. Issue a Reset Device command after a USB device is successfully reset. Wait on the command to finish, and then cache or free the disabled endpoint rings. There are four different USB device states that the xHCI hardware tracks: - disabled/enabled - device connection has just been detected, - default - the device has been reset and has an address of 0, - addressed - the device has a non-zero address but no configuration has been set, - configured - a set configuration succeeded. The USB core may issue a port reset when a device is in any state, but the Reset Device command will fail for a 0.96 xHC if the device is not in the addressed or configured state. Don't consider this failure as an error, but don't free any endpoint rings if this command fails. A storage driver may request that the USB device be reset during error handling, so use GPF_NOIO instead of GPF_KERNEL while allocating memory for the Reset Device command. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de> |
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
class | ||
core | ||
early | ||
gadget | ||
host | ||
image | ||
misc | ||
mon | ||
musb | ||
otg | ||
serial | ||
storage | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-skeleton.c |
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("khubd"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.