mirror of
https://github.com/torvalds/linux.git
synced 2024-12-23 19:31:53 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
465 lines
11 KiB
C
465 lines
11 KiB
C
/*
|
|
* drivers/input/serio/gscps2.c
|
|
*
|
|
* Copyright (c) 2004-2006 Helge Deller <deller@gmx.de>
|
|
* Copyright (c) 2002 Laurent Canet <canetl@esiee.fr>
|
|
* Copyright (c) 2002 Thibaut Varene <varenet@parisc-linux.org>
|
|
*
|
|
* Pieces of code based on linux-2.4's hp_mouse.c & hp_keyb.c
|
|
* Copyright (c) 1999 Alex deVries <alex@onefishtwo.ca>
|
|
* Copyright (c) 1999-2000 Philipp Rumpf <prumpf@tux.org>
|
|
* Copyright (c) 2000 Xavier Debacker <debackex@esiee.fr>
|
|
* Copyright (c) 2000-2001 Thomas Marteau <marteaut@esiee.fr>
|
|
*
|
|
* HP GSC PS/2 port driver, found in PA/RISC Workstations
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* TODO:
|
|
* - Dino testing (did HP ever shipped a machine on which this port
|
|
* was usable/enabled ?)
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/serio.h>
|
|
#include <linux/input.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/pci_ids.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/io.h>
|
|
#include <asm/parisc-device.h>
|
|
|
|
MODULE_AUTHOR("Laurent Canet <canetl@esiee.fr>, Thibaut Varene <varenet@parisc-linux.org>, Helge Deller <deller@gmx.de>");
|
|
MODULE_DESCRIPTION("HP GSC PS2 port driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DEVICE_TABLE(parisc, gscps2_device_tbl);
|
|
|
|
#define PFX "gscps2.c: "
|
|
|
|
/*
|
|
* Driver constants
|
|
*/
|
|
|
|
/* various constants */
|
|
#define ENABLE 1
|
|
#define DISABLE 0
|
|
|
|
#define GSC_DINO_OFFSET 0x0800 /* offset for DINO controller versus LASI one */
|
|
|
|
/* PS/2 IO port offsets */
|
|
#define GSC_ID 0x00 /* device ID offset (see: GSC_ID_XXX) */
|
|
#define GSC_RESET 0x00 /* reset port offset */
|
|
#define GSC_RCVDATA 0x04 /* receive port offset */
|
|
#define GSC_XMTDATA 0x04 /* transmit port offset */
|
|
#define GSC_CONTROL 0x08 /* see: Control register bits */
|
|
#define GSC_STATUS 0x0C /* see: Status register bits */
|
|
|
|
/* Control register bits */
|
|
#define GSC_CTRL_ENBL 0x01 /* enable interface */
|
|
#define GSC_CTRL_LPBXR 0x02 /* loopback operation */
|
|
#define GSC_CTRL_DIAG 0x20 /* directly control clock/data line */
|
|
#define GSC_CTRL_DATDIR 0x40 /* data line direct control */
|
|
#define GSC_CTRL_CLKDIR 0x80 /* clock line direct control */
|
|
|
|
/* Status register bits */
|
|
#define GSC_STAT_RBNE 0x01 /* Receive Buffer Not Empty */
|
|
#define GSC_STAT_TBNE 0x02 /* Transmit Buffer Not Empty */
|
|
#define GSC_STAT_TERR 0x04 /* Timeout Error */
|
|
#define GSC_STAT_PERR 0x08 /* Parity Error */
|
|
#define GSC_STAT_CMPINTR 0x10 /* Composite Interrupt = irq on any port */
|
|
#define GSC_STAT_DATSHD 0x40 /* Data Line Shadow */
|
|
#define GSC_STAT_CLKSHD 0x80 /* Clock Line Shadow */
|
|
|
|
/* IDs returned by GSC_ID port register */
|
|
#define GSC_ID_KEYBOARD 0 /* device ID values */
|
|
#define GSC_ID_MOUSE 1
|
|
|
|
|
|
static irqreturn_t gscps2_interrupt(int irq, void *dev);
|
|
|
|
#define BUFFER_SIZE 0x0f
|
|
|
|
/* GSC PS/2 port device struct */
|
|
struct gscps2port {
|
|
struct list_head node;
|
|
struct parisc_device *padev;
|
|
struct serio *port;
|
|
spinlock_t lock;
|
|
char *addr;
|
|
u8 act, append; /* position in buffer[] */
|
|
struct {
|
|
u8 data;
|
|
u8 str;
|
|
} buffer[BUFFER_SIZE+1];
|
|
int id;
|
|
};
|
|
|
|
/*
|
|
* Various HW level routines
|
|
*/
|
|
|
|
#define gscps2_readb_input(x) readb((x)+GSC_RCVDATA)
|
|
#define gscps2_readb_control(x) readb((x)+GSC_CONTROL)
|
|
#define gscps2_readb_status(x) readb((x)+GSC_STATUS)
|
|
#define gscps2_writeb_control(x, y) writeb((x), (y)+GSC_CONTROL)
|
|
|
|
|
|
/*
|
|
* wait_TBE() - wait for Transmit Buffer Empty
|
|
*/
|
|
|
|
static int wait_TBE(char *addr)
|
|
{
|
|
int timeout = 25000; /* device is expected to react within 250 msec */
|
|
while (gscps2_readb_status(addr) & GSC_STAT_TBNE) {
|
|
if (!--timeout)
|
|
return 0; /* This should not happen */
|
|
udelay(10);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* gscps2_flush() - flush the receive buffer
|
|
*/
|
|
|
|
static void gscps2_flush(struct gscps2port *ps2port)
|
|
{
|
|
while (gscps2_readb_status(ps2port->addr) & GSC_STAT_RBNE)
|
|
gscps2_readb_input(ps2port->addr);
|
|
ps2port->act = ps2port->append = 0;
|
|
}
|
|
|
|
/*
|
|
* gscps2_writeb_output() - write a byte to the port
|
|
*
|
|
* returns 1 on success, 0 on error
|
|
*/
|
|
|
|
static inline int gscps2_writeb_output(struct gscps2port *ps2port, u8 data)
|
|
{
|
|
unsigned long flags;
|
|
char *addr = ps2port->addr;
|
|
|
|
if (!wait_TBE(addr)) {
|
|
printk(KERN_DEBUG PFX "timeout - could not write byte %#x\n", data);
|
|
return 0;
|
|
}
|
|
|
|
while (gscps2_readb_status(ps2port->addr) & GSC_STAT_RBNE)
|
|
/* wait */;
|
|
|
|
spin_lock_irqsave(&ps2port->lock, flags);
|
|
writeb(data, addr+GSC_XMTDATA);
|
|
spin_unlock_irqrestore(&ps2port->lock, flags);
|
|
|
|
/* this is ugly, but due to timing of the port it seems to be necessary. */
|
|
mdelay(6);
|
|
|
|
/* make sure any received data is returned as fast as possible */
|
|
/* this is important e.g. when we set the LEDs on the keyboard */
|
|
gscps2_interrupt(0, NULL);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* gscps2_enable() - enables or disables the port
|
|
*/
|
|
|
|
static void gscps2_enable(struct gscps2port *ps2port, int enable)
|
|
{
|
|
unsigned long flags;
|
|
u8 data;
|
|
|
|
/* now enable/disable the port */
|
|
spin_lock_irqsave(&ps2port->lock, flags);
|
|
gscps2_flush(ps2port);
|
|
data = gscps2_readb_control(ps2port->addr);
|
|
if (enable)
|
|
data |= GSC_CTRL_ENBL;
|
|
else
|
|
data &= ~GSC_CTRL_ENBL;
|
|
gscps2_writeb_control(data, ps2port->addr);
|
|
spin_unlock_irqrestore(&ps2port->lock, flags);
|
|
wait_TBE(ps2port->addr);
|
|
gscps2_flush(ps2port);
|
|
}
|
|
|
|
/*
|
|
* gscps2_reset() - resets the PS/2 port
|
|
*/
|
|
|
|
static void gscps2_reset(struct gscps2port *ps2port)
|
|
{
|
|
char *addr = ps2port->addr;
|
|
unsigned long flags;
|
|
|
|
/* reset the interface */
|
|
spin_lock_irqsave(&ps2port->lock, flags);
|
|
gscps2_flush(ps2port);
|
|
writeb(0xff, addr+GSC_RESET);
|
|
gscps2_flush(ps2port);
|
|
spin_unlock_irqrestore(&ps2port->lock, flags);
|
|
}
|
|
|
|
static LIST_HEAD(ps2port_list);
|
|
|
|
/**
|
|
* gscps2_interrupt() - Interruption service routine
|
|
*
|
|
* This function reads received PS/2 bytes and processes them on
|
|
* all interfaces.
|
|
* The problematic part here is, that the keyboard and mouse PS/2 port
|
|
* share the same interrupt and it's not possible to send data if any
|
|
* one of them holds input data. To solve this problem we try to receive
|
|
* the data as fast as possible and handle the reporting to the upper layer
|
|
* later.
|
|
*/
|
|
|
|
static irqreturn_t gscps2_interrupt(int irq, void *dev)
|
|
{
|
|
struct gscps2port *ps2port;
|
|
|
|
list_for_each_entry(ps2port, &ps2port_list, node) {
|
|
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&ps2port->lock, flags);
|
|
|
|
while ( (ps2port->buffer[ps2port->append].str =
|
|
gscps2_readb_status(ps2port->addr)) & GSC_STAT_RBNE ) {
|
|
ps2port->buffer[ps2port->append].data =
|
|
gscps2_readb_input(ps2port->addr);
|
|
ps2port->append = ((ps2port->append+1) & BUFFER_SIZE);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ps2port->lock, flags);
|
|
|
|
} /* list_for_each_entry */
|
|
|
|
/* all data was read from the ports - now report the data to upper layer */
|
|
|
|
list_for_each_entry(ps2port, &ps2port_list, node) {
|
|
|
|
while (ps2port->act != ps2port->append) {
|
|
|
|
unsigned int rxflags;
|
|
u8 data, status;
|
|
|
|
/* Did new data arrived while we read existing data ?
|
|
If yes, exit now and let the new irq handler start over again */
|
|
if (gscps2_readb_status(ps2port->addr) & GSC_STAT_CMPINTR)
|
|
return IRQ_HANDLED;
|
|
|
|
status = ps2port->buffer[ps2port->act].str;
|
|
data = ps2port->buffer[ps2port->act].data;
|
|
|
|
ps2port->act = ((ps2port->act+1) & BUFFER_SIZE);
|
|
rxflags = ((status & GSC_STAT_TERR) ? SERIO_TIMEOUT : 0 ) |
|
|
((status & GSC_STAT_PERR) ? SERIO_PARITY : 0 );
|
|
|
|
serio_interrupt(ps2port->port, data, rxflags);
|
|
|
|
} /* while() */
|
|
|
|
} /* list_for_each_entry */
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
/*
|
|
* gscps2_write() - send a byte out through the aux interface.
|
|
*/
|
|
|
|
static int gscps2_write(struct serio *port, unsigned char data)
|
|
{
|
|
struct gscps2port *ps2port = port->port_data;
|
|
|
|
if (!gscps2_writeb_output(ps2port, data)) {
|
|
printk(KERN_DEBUG PFX "sending byte %#x failed.\n", data);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* gscps2_open() is called when a port is opened by the higher layer.
|
|
* It resets and enables the port.
|
|
*/
|
|
|
|
static int gscps2_open(struct serio *port)
|
|
{
|
|
struct gscps2port *ps2port = port->port_data;
|
|
|
|
gscps2_reset(ps2port);
|
|
|
|
/* enable it */
|
|
gscps2_enable(ps2port, ENABLE);
|
|
|
|
gscps2_interrupt(0, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* gscps2_close() disables the port
|
|
*/
|
|
|
|
static void gscps2_close(struct serio *port)
|
|
{
|
|
struct gscps2port *ps2port = port->port_data;
|
|
gscps2_enable(ps2port, DISABLE);
|
|
}
|
|
|
|
/**
|
|
* gscps2_probe() - Probes PS2 devices
|
|
* @return: success/error report
|
|
*/
|
|
|
|
static int __devinit gscps2_probe(struct parisc_device *dev)
|
|
{
|
|
struct gscps2port *ps2port;
|
|
struct serio *serio;
|
|
unsigned long hpa = dev->hpa.start;
|
|
int ret;
|
|
|
|
if (!dev->irq)
|
|
return -ENODEV;
|
|
|
|
/* Offset for DINO PS/2. Works with LASI even */
|
|
if (dev->id.sversion == 0x96)
|
|
hpa += GSC_DINO_OFFSET;
|
|
|
|
ps2port = kzalloc(sizeof(struct gscps2port), GFP_KERNEL);
|
|
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
|
|
if (!ps2port || !serio) {
|
|
ret = -ENOMEM;
|
|
goto fail_nomem;
|
|
}
|
|
|
|
dev_set_drvdata(&dev->dev, ps2port);
|
|
|
|
ps2port->port = serio;
|
|
ps2port->padev = dev;
|
|
ps2port->addr = ioremap_nocache(hpa, GSC_STATUS + 4);
|
|
spin_lock_init(&ps2port->lock);
|
|
|
|
gscps2_reset(ps2port);
|
|
ps2port->id = readb(ps2port->addr + GSC_ID) & 0x0f;
|
|
|
|
snprintf(serio->name, sizeof(serio->name), "GSC PS/2 %s",
|
|
(ps2port->id == GSC_ID_KEYBOARD) ? "keyboard" : "mouse");
|
|
strlcpy(serio->phys, dev_name(&dev->dev), sizeof(serio->phys));
|
|
serio->id.type = SERIO_8042;
|
|
serio->write = gscps2_write;
|
|
serio->open = gscps2_open;
|
|
serio->close = gscps2_close;
|
|
serio->port_data = ps2port;
|
|
serio->dev.parent = &dev->dev;
|
|
|
|
ret = -EBUSY;
|
|
if (request_irq(dev->irq, gscps2_interrupt, IRQF_SHARED, ps2port->port->name, ps2port))
|
|
goto fail_miserably;
|
|
|
|
if (ps2port->id != GSC_ID_KEYBOARD && ps2port->id != GSC_ID_MOUSE) {
|
|
printk(KERN_WARNING PFX "Unsupported PS/2 port at 0x%08lx (id=%d) ignored\n",
|
|
hpa, ps2port->id);
|
|
ret = -ENODEV;
|
|
goto fail;
|
|
}
|
|
|
|
#if 0
|
|
if (!request_mem_region(hpa, GSC_STATUS + 4, ps2port->port.name))
|
|
goto fail;
|
|
#endif
|
|
|
|
printk(KERN_INFO "serio: %s port at 0x%p irq %d @ %s\n",
|
|
ps2port->port->name,
|
|
ps2port->addr,
|
|
ps2port->padev->irq,
|
|
ps2port->port->phys);
|
|
|
|
serio_register_port(ps2port->port);
|
|
|
|
list_add_tail(&ps2port->node, &ps2port_list);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
free_irq(dev->irq, ps2port);
|
|
|
|
fail_miserably:
|
|
iounmap(ps2port->addr);
|
|
release_mem_region(dev->hpa.start, GSC_STATUS + 4);
|
|
|
|
fail_nomem:
|
|
kfree(ps2port);
|
|
kfree(serio);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* gscps2_remove() - Removes PS2 devices
|
|
* @return: success/error report
|
|
*/
|
|
|
|
static int __devexit gscps2_remove(struct parisc_device *dev)
|
|
{
|
|
struct gscps2port *ps2port = dev_get_drvdata(&dev->dev);
|
|
|
|
serio_unregister_port(ps2port->port);
|
|
free_irq(dev->irq, ps2port);
|
|
gscps2_flush(ps2port);
|
|
list_del(&ps2port->node);
|
|
iounmap(ps2port->addr);
|
|
#if 0
|
|
release_mem_region(dev->hpa, GSC_STATUS + 4);
|
|
#endif
|
|
dev_set_drvdata(&dev->dev, NULL);
|
|
kfree(ps2port);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct parisc_device_id gscps2_device_tbl[] = {
|
|
{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x00084 }, /* LASI PS/2 */
|
|
#ifdef DINO_TESTED
|
|
{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x00096 }, /* DINO PS/2 */
|
|
#endif
|
|
{ 0, } /* 0 terminated list */
|
|
};
|
|
|
|
static struct parisc_driver parisc_ps2_driver = {
|
|
.name = "gsc_ps2",
|
|
.id_table = gscps2_device_tbl,
|
|
.probe = gscps2_probe,
|
|
.remove = __devexit_p(gscps2_remove),
|
|
};
|
|
|
|
static int __init gscps2_init(void)
|
|
{
|
|
register_parisc_driver(&parisc_ps2_driver);
|
|
return 0;
|
|
}
|
|
|
|
static void __exit gscps2_exit(void)
|
|
{
|
|
unregister_parisc_driver(&parisc_ps2_driver);
|
|
}
|
|
|
|
|
|
module_init(gscps2_init);
|
|
module_exit(gscps2_exit);
|
|
|