mirror of
https://github.com/torvalds/linux.git
synced 2024-12-12 14:12:51 +00:00
4824e5917f
Add some write-side stats to count buffered writes, buffered writethrough, and writepages calls. Whilst we're at it, clean up the naming on some of the existing stats counters and organise the output into two sets. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org
646 lines
19 KiB
C
646 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Network filesystem high-level buffered read support.
|
|
*
|
|
* Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Unlock the folios in a read operation. We need to set PG_writeback on any
|
|
* folios we're going to write back before we unlock them.
|
|
*
|
|
* Note that if the deprecated NETFS_RREQ_USE_PGPRIV2 is set then we use
|
|
* PG_private_2 and do a direct write to the cache from here instead.
|
|
*/
|
|
void netfs_rreq_unlock_folios(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
struct netfs_folio *finfo;
|
|
struct folio *folio;
|
|
pgoff_t start_page = rreq->start / PAGE_SIZE;
|
|
pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
|
|
size_t account = 0;
|
|
bool subreq_failed = false;
|
|
|
|
XA_STATE(xas, &rreq->mapping->i_pages, start_page);
|
|
|
|
if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
|
|
__clear_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
__clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
|
|
}
|
|
}
|
|
|
|
/* Walk through the pagecache and the I/O request lists simultaneously.
|
|
* We may have a mixture of cached and uncached sections and we only
|
|
* really want to write out the uncached sections. This is slightly
|
|
* complicated by the possibility that we might have huge pages with a
|
|
* mixture inside.
|
|
*/
|
|
subreq = list_first_entry(&rreq->subrequests,
|
|
struct netfs_io_subrequest, rreq_link);
|
|
subreq_failed = (subreq->error < 0);
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);
|
|
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, folio, last_page) {
|
|
loff_t pg_end;
|
|
bool pg_failed = false;
|
|
bool wback_to_cache = false;
|
|
bool folio_started = false;
|
|
|
|
if (xas_retry(&xas, folio))
|
|
continue;
|
|
|
|
pg_end = folio_pos(folio) + folio_size(folio) - 1;
|
|
|
|
for (;;) {
|
|
loff_t sreq_end;
|
|
|
|
if (!subreq) {
|
|
pg_failed = true;
|
|
break;
|
|
}
|
|
if (test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)) {
|
|
if (!folio_started && test_bit(NETFS_SREQ_COPY_TO_CACHE,
|
|
&subreq->flags)) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
|
|
folio_start_private_2(folio);
|
|
folio_started = true;
|
|
}
|
|
} else {
|
|
wback_to_cache |=
|
|
test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
|
|
}
|
|
pg_failed |= subreq_failed;
|
|
sreq_end = subreq->start + subreq->len - 1;
|
|
if (pg_end < sreq_end)
|
|
break;
|
|
|
|
account += subreq->transferred;
|
|
if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
|
|
subreq = list_next_entry(subreq, rreq_link);
|
|
subreq_failed = (subreq->error < 0);
|
|
} else {
|
|
subreq = NULL;
|
|
subreq_failed = false;
|
|
}
|
|
|
|
if (pg_end == sreq_end)
|
|
break;
|
|
}
|
|
|
|
if (!pg_failed) {
|
|
flush_dcache_folio(folio);
|
|
finfo = netfs_folio_info(folio);
|
|
if (finfo) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_filled_gaps);
|
|
if (finfo->netfs_group)
|
|
folio_change_private(folio, finfo->netfs_group);
|
|
else
|
|
folio_detach_private(folio);
|
|
kfree(finfo);
|
|
}
|
|
folio_mark_uptodate(folio);
|
|
if (wback_to_cache && !WARN_ON_ONCE(folio_get_private(folio) != NULL)) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
|
|
folio_attach_private(folio, NETFS_FOLIO_COPY_TO_CACHE);
|
|
filemap_dirty_folio(folio->mapping, folio);
|
|
}
|
|
}
|
|
|
|
if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) {
|
|
if (folio->index == rreq->no_unlock_folio &&
|
|
test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags))
|
|
_debug("no unlock");
|
|
else
|
|
folio_unlock(folio);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
task_io_account_read(account);
|
|
if (rreq->netfs_ops->done)
|
|
rreq->netfs_ops->done(rreq);
|
|
}
|
|
|
|
static void netfs_cache_expand_readahead(struct netfs_io_request *rreq,
|
|
unsigned long long *_start,
|
|
unsigned long long *_len,
|
|
unsigned long long i_size)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
if (cres->ops && cres->ops->expand_readahead)
|
|
cres->ops->expand_readahead(cres, _start, _len, i_size);
|
|
}
|
|
|
|
static void netfs_rreq_expand(struct netfs_io_request *rreq,
|
|
struct readahead_control *ractl)
|
|
{
|
|
/* Give the cache a chance to change the request parameters. The
|
|
* resultant request must contain the original region.
|
|
*/
|
|
netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
|
|
|
|
/* Give the netfs a chance to change the request parameters. The
|
|
* resultant request must contain the original region.
|
|
*/
|
|
if (rreq->netfs_ops->expand_readahead)
|
|
rreq->netfs_ops->expand_readahead(rreq);
|
|
|
|
/* Expand the request if the cache wants it to start earlier. Note
|
|
* that the expansion may get further extended if the VM wishes to
|
|
* insert THPs and the preferred start and/or end wind up in the middle
|
|
* of THPs.
|
|
*
|
|
* If this is the case, however, the THP size should be an integer
|
|
* multiple of the cache granule size, so we get a whole number of
|
|
* granules to deal with.
|
|
*/
|
|
if (rreq->start != readahead_pos(ractl) ||
|
|
rreq->len != readahead_length(ractl)) {
|
|
readahead_expand(ractl, rreq->start, rreq->len);
|
|
rreq->start = readahead_pos(ractl);
|
|
rreq->len = readahead_length(ractl);
|
|
|
|
trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
|
|
netfs_read_trace_expanded);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Begin an operation, and fetch the stored zero point value from the cookie if
|
|
* available.
|
|
*/
|
|
static int netfs_begin_cache_read(struct netfs_io_request *rreq, struct netfs_inode *ctx)
|
|
{
|
|
return fscache_begin_read_operation(&rreq->cache_resources, netfs_i_cookie(ctx));
|
|
}
|
|
|
|
/**
|
|
* netfs_readahead - Helper to manage a read request
|
|
* @ractl: The description of the readahead request
|
|
*
|
|
* Fulfil a readahead request by drawing data from the cache if possible, or
|
|
* the netfs if not. Space beyond the EOF is zero-filled. Multiple I/O
|
|
* requests from different sources will get munged together. If necessary, the
|
|
* readahead window can be expanded in either direction to a more convenient
|
|
* alighment for RPC efficiency or to make storage in the cache feasible.
|
|
*
|
|
* The calling netfs must initialise a netfs context contiguous to the vfs
|
|
* inode before calling this.
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
void netfs_readahead(struct readahead_control *ractl)
|
|
{
|
|
struct netfs_io_request *rreq;
|
|
struct netfs_inode *ctx = netfs_inode(ractl->mapping->host);
|
|
int ret;
|
|
|
|
_enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));
|
|
|
|
if (readahead_count(ractl) == 0)
|
|
return;
|
|
|
|
rreq = netfs_alloc_request(ractl->mapping, ractl->file,
|
|
readahead_pos(ractl),
|
|
readahead_length(ractl),
|
|
NETFS_READAHEAD);
|
|
if (IS_ERR(rreq))
|
|
return;
|
|
|
|
ret = netfs_begin_cache_read(rreq, ctx);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto cleanup_free;
|
|
|
|
netfs_stat(&netfs_n_rh_readahead);
|
|
trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
|
|
netfs_read_trace_readahead);
|
|
|
|
netfs_rreq_expand(rreq, ractl);
|
|
|
|
/* Set up the output buffer */
|
|
iov_iter_xarray(&rreq->iter, ITER_DEST, &ractl->mapping->i_pages,
|
|
rreq->start, rreq->len);
|
|
|
|
/* Drop the refs on the folios here rather than in the cache or
|
|
* filesystem. The locks will be dropped in netfs_rreq_unlock().
|
|
*/
|
|
while (readahead_folio(ractl))
|
|
;
|
|
|
|
netfs_begin_read(rreq, false);
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
|
|
return;
|
|
|
|
cleanup_free:
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
|
|
return;
|
|
}
|
|
EXPORT_SYMBOL(netfs_readahead);
|
|
|
|
/**
|
|
* netfs_read_folio - Helper to manage a read_folio request
|
|
* @file: The file to read from
|
|
* @folio: The folio to read
|
|
*
|
|
* Fulfil a read_folio request by drawing data from the cache if
|
|
* possible, or the netfs if not. Space beyond the EOF is zero-filled.
|
|
* Multiple I/O requests from different sources will get munged together.
|
|
*
|
|
* The calling netfs must initialise a netfs context contiguous to the vfs
|
|
* inode before calling this.
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
int netfs_read_folio(struct file *file, struct folio *folio)
|
|
{
|
|
struct address_space *mapping = folio->mapping;
|
|
struct netfs_io_request *rreq;
|
|
struct netfs_inode *ctx = netfs_inode(mapping->host);
|
|
struct folio *sink = NULL;
|
|
int ret;
|
|
|
|
_enter("%lx", folio->index);
|
|
|
|
rreq = netfs_alloc_request(mapping, file,
|
|
folio_file_pos(folio), folio_size(folio),
|
|
NETFS_READPAGE);
|
|
if (IS_ERR(rreq)) {
|
|
ret = PTR_ERR(rreq);
|
|
goto alloc_error;
|
|
}
|
|
|
|
ret = netfs_begin_cache_read(rreq, ctx);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto discard;
|
|
|
|
netfs_stat(&netfs_n_rh_read_folio);
|
|
trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
|
|
|
|
/* Set up the output buffer */
|
|
if (folio_test_dirty(folio)) {
|
|
/* Handle someone trying to read from an unflushed streaming
|
|
* write. We fiddle the buffer so that a gap at the beginning
|
|
* and/or a gap at the end get copied to, but the middle is
|
|
* discarded.
|
|
*/
|
|
struct netfs_folio *finfo = netfs_folio_info(folio);
|
|
struct bio_vec *bvec;
|
|
unsigned int from = finfo->dirty_offset;
|
|
unsigned int to = from + finfo->dirty_len;
|
|
unsigned int off = 0, i = 0;
|
|
size_t flen = folio_size(folio);
|
|
size_t nr_bvec = flen / PAGE_SIZE + 2;
|
|
size_t part;
|
|
|
|
ret = -ENOMEM;
|
|
bvec = kmalloc_array(nr_bvec, sizeof(*bvec), GFP_KERNEL);
|
|
if (!bvec)
|
|
goto discard;
|
|
|
|
sink = folio_alloc(GFP_KERNEL, 0);
|
|
if (!sink)
|
|
goto discard;
|
|
|
|
trace_netfs_folio(folio, netfs_folio_trace_read_gaps);
|
|
|
|
rreq->direct_bv = bvec;
|
|
rreq->direct_bv_count = nr_bvec;
|
|
if (from > 0) {
|
|
bvec_set_folio(&bvec[i++], folio, from, 0);
|
|
off = from;
|
|
}
|
|
while (off < to) {
|
|
part = min_t(size_t, to - off, PAGE_SIZE);
|
|
bvec_set_folio(&bvec[i++], sink, part, 0);
|
|
off += part;
|
|
}
|
|
if (to < flen)
|
|
bvec_set_folio(&bvec[i++], folio, flen - to, to);
|
|
iov_iter_bvec(&rreq->iter, ITER_DEST, bvec, i, rreq->len);
|
|
} else {
|
|
iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
|
|
rreq->start, rreq->len);
|
|
}
|
|
|
|
ret = netfs_begin_read(rreq, true);
|
|
if (sink)
|
|
folio_put(sink);
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
|
|
return ret < 0 ? ret : 0;
|
|
|
|
discard:
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
|
|
alloc_error:
|
|
folio_unlock(folio);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_read_folio);
|
|
|
|
/*
|
|
* Prepare a folio for writing without reading first
|
|
* @folio: The folio being prepared
|
|
* @pos: starting position for the write
|
|
* @len: length of write
|
|
* @always_fill: T if the folio should always be completely filled/cleared
|
|
*
|
|
* In some cases, write_begin doesn't need to read at all:
|
|
* - full folio write
|
|
* - write that lies in a folio that is completely beyond EOF
|
|
* - write that covers the folio from start to EOF or beyond it
|
|
*
|
|
* If any of these criteria are met, then zero out the unwritten parts
|
|
* of the folio and return true. Otherwise, return false.
|
|
*/
|
|
static bool netfs_skip_folio_read(struct folio *folio, loff_t pos, size_t len,
|
|
bool always_fill)
|
|
{
|
|
struct inode *inode = folio_inode(folio);
|
|
loff_t i_size = i_size_read(inode);
|
|
size_t offset = offset_in_folio(folio, pos);
|
|
size_t plen = folio_size(folio);
|
|
|
|
if (unlikely(always_fill)) {
|
|
if (pos - offset + len <= i_size)
|
|
return false; /* Page entirely before EOF */
|
|
zero_user_segment(&folio->page, 0, plen);
|
|
folio_mark_uptodate(folio);
|
|
return true;
|
|
}
|
|
|
|
/* Full folio write */
|
|
if (offset == 0 && len >= plen)
|
|
return true;
|
|
|
|
/* Page entirely beyond the end of the file */
|
|
if (pos - offset >= i_size)
|
|
goto zero_out;
|
|
|
|
/* Write that covers from the start of the folio to EOF or beyond */
|
|
if (offset == 0 && (pos + len) >= i_size)
|
|
goto zero_out;
|
|
|
|
return false;
|
|
zero_out:
|
|
zero_user_segments(&folio->page, 0, offset, offset + len, plen);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* netfs_write_begin - Helper to prepare for writing
|
|
* @ctx: The netfs context
|
|
* @file: The file to read from
|
|
* @mapping: The mapping to read from
|
|
* @pos: File position at which the write will begin
|
|
* @len: The length of the write (may extend beyond the end of the folio chosen)
|
|
* @_folio: Where to put the resultant folio
|
|
* @_fsdata: Place for the netfs to store a cookie
|
|
*
|
|
* Pre-read data for a write-begin request by drawing data from the cache if
|
|
* possible, or the netfs if not. Space beyond the EOF is zero-filled.
|
|
* Multiple I/O requests from different sources will get munged together. If
|
|
* necessary, the readahead window can be expanded in either direction to a
|
|
* more convenient alighment for RPC efficiency or to make storage in the cache
|
|
* feasible.
|
|
*
|
|
* The calling netfs must provide a table of operations, only one of which,
|
|
* issue_op, is mandatory.
|
|
*
|
|
* The check_write_begin() operation can be provided to check for and flush
|
|
* conflicting writes once the folio is grabbed and locked. It is passed a
|
|
* pointer to the fsdata cookie that gets returned to the VM to be passed to
|
|
* write_end. It is permitted to sleep. It should return 0 if the request
|
|
* should go ahead or it may return an error. It may also unlock and put the
|
|
* folio, provided it sets ``*foliop`` to NULL, in which case a return of 0
|
|
* will cause the folio to be re-got and the process to be retried.
|
|
*
|
|
* The calling netfs must initialise a netfs context contiguous to the vfs
|
|
* inode before calling this.
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
int netfs_write_begin(struct netfs_inode *ctx,
|
|
struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned int len, struct folio **_folio,
|
|
void **_fsdata)
|
|
{
|
|
struct netfs_io_request *rreq;
|
|
struct folio *folio;
|
|
pgoff_t index = pos >> PAGE_SHIFT;
|
|
int ret;
|
|
|
|
DEFINE_READAHEAD(ractl, file, NULL, mapping, index);
|
|
|
|
retry:
|
|
folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
|
|
mapping_gfp_mask(mapping));
|
|
if (IS_ERR(folio))
|
|
return PTR_ERR(folio);
|
|
|
|
if (ctx->ops->check_write_begin) {
|
|
/* Allow the netfs (eg. ceph) to flush conflicts. */
|
|
ret = ctx->ops->check_write_begin(file, pos, len, &folio, _fsdata);
|
|
if (ret < 0) {
|
|
trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
|
|
goto error;
|
|
}
|
|
if (!folio)
|
|
goto retry;
|
|
}
|
|
|
|
if (folio_test_uptodate(folio))
|
|
goto have_folio;
|
|
|
|
/* If the page is beyond the EOF, we want to clear it - unless it's
|
|
* within the cache granule containing the EOF, in which case we need
|
|
* to preload the granule.
|
|
*/
|
|
if (!netfs_is_cache_enabled(ctx) &&
|
|
netfs_skip_folio_read(folio, pos, len, false)) {
|
|
netfs_stat(&netfs_n_rh_write_zskip);
|
|
goto have_folio;
|
|
}
|
|
|
|
rreq = netfs_alloc_request(mapping, file,
|
|
folio_file_pos(folio), folio_size(folio),
|
|
NETFS_READ_FOR_WRITE);
|
|
if (IS_ERR(rreq)) {
|
|
ret = PTR_ERR(rreq);
|
|
goto error;
|
|
}
|
|
rreq->no_unlock_folio = folio->index;
|
|
__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
|
|
|
|
ret = netfs_begin_cache_read(rreq, ctx);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto error_put;
|
|
|
|
netfs_stat(&netfs_n_rh_write_begin);
|
|
trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
|
|
|
|
/* Expand the request to meet caching requirements and download
|
|
* preferences.
|
|
*/
|
|
ractl._nr_pages = folio_nr_pages(folio);
|
|
netfs_rreq_expand(rreq, &ractl);
|
|
|
|
/* Set up the output buffer */
|
|
iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
|
|
rreq->start, rreq->len);
|
|
|
|
/* We hold the folio locks, so we can drop the references */
|
|
folio_get(folio);
|
|
while (readahead_folio(&ractl))
|
|
;
|
|
|
|
ret = netfs_begin_read(rreq, true);
|
|
if (ret < 0)
|
|
goto error;
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
|
|
|
|
have_folio:
|
|
*_folio = folio;
|
|
_leave(" = 0");
|
|
return 0;
|
|
|
|
error_put:
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
|
|
error:
|
|
if (folio) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_write_begin);
|
|
|
|
/*
|
|
* Preload the data into a page we're proposing to write into.
|
|
*/
|
|
int netfs_prefetch_for_write(struct file *file, struct folio *folio,
|
|
size_t offset, size_t len)
|
|
{
|
|
struct netfs_io_request *rreq;
|
|
struct address_space *mapping = folio->mapping;
|
|
struct netfs_inode *ctx = netfs_inode(mapping->host);
|
|
unsigned long long start = folio_pos(folio);
|
|
size_t flen = folio_size(folio);
|
|
int ret;
|
|
|
|
_enter("%zx @%llx", flen, start);
|
|
|
|
ret = -ENOMEM;
|
|
|
|
rreq = netfs_alloc_request(mapping, file, start, flen,
|
|
NETFS_READ_FOR_WRITE);
|
|
if (IS_ERR(rreq)) {
|
|
ret = PTR_ERR(rreq);
|
|
goto error;
|
|
}
|
|
|
|
rreq->no_unlock_folio = folio->index;
|
|
__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
|
|
ret = netfs_begin_cache_read(rreq, ctx);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto error_put;
|
|
|
|
netfs_stat(&netfs_n_rh_write_begin);
|
|
trace_netfs_read(rreq, start, flen, netfs_read_trace_prefetch_for_write);
|
|
|
|
/* Set up the output buffer */
|
|
iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
|
|
rreq->start, rreq->len);
|
|
|
|
ret = netfs_begin_read(rreq, true);
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
|
|
return ret;
|
|
|
|
error_put:
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
|
|
error:
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* netfs_buffered_read_iter - Filesystem buffered I/O read routine
|
|
* @iocb: kernel I/O control block
|
|
* @iter: destination for the data read
|
|
*
|
|
* This is the ->read_iter() routine for all filesystems that can use the page
|
|
* cache directly.
|
|
*
|
|
* The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
|
|
* returned when no data can be read without waiting for I/O requests to
|
|
* complete; it doesn't prevent readahead.
|
|
*
|
|
* The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
|
|
* shall be made for the read or for readahead. When no data can be read,
|
|
* -EAGAIN shall be returned. When readahead would be triggered, a partial,
|
|
* possibly empty read shall be returned.
|
|
*
|
|
* Return:
|
|
* * number of bytes copied, even for partial reads
|
|
* * negative error code (or 0 if IOCB_NOIO) if nothing was read
|
|
*/
|
|
ssize_t netfs_buffered_read_iter(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
struct netfs_inode *ictx = netfs_inode(inode);
|
|
ssize_t ret;
|
|
|
|
if (WARN_ON_ONCE((iocb->ki_flags & IOCB_DIRECT) ||
|
|
test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)))
|
|
return -EINVAL;
|
|
|
|
ret = netfs_start_io_read(inode);
|
|
if (ret == 0) {
|
|
ret = filemap_read(iocb, iter, 0);
|
|
netfs_end_io_read(inode);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_buffered_read_iter);
|
|
|
|
/**
|
|
* netfs_file_read_iter - Generic filesystem read routine
|
|
* @iocb: kernel I/O control block
|
|
* @iter: destination for the data read
|
|
*
|
|
* This is the ->read_iter() routine for all filesystems that can use the page
|
|
* cache directly.
|
|
*
|
|
* The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
|
|
* returned when no data can be read without waiting for I/O requests to
|
|
* complete; it doesn't prevent readahead.
|
|
*
|
|
* The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
|
|
* shall be made for the read or for readahead. When no data can be read,
|
|
* -EAGAIN shall be returned. When readahead would be triggered, a partial,
|
|
* possibly empty read shall be returned.
|
|
*
|
|
* Return:
|
|
* * number of bytes copied, even for partial reads
|
|
* * negative error code (or 0 if IOCB_NOIO) if nothing was read
|
|
*/
|
|
ssize_t netfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct netfs_inode *ictx = netfs_inode(iocb->ki_filp->f_mapping->host);
|
|
|
|
if ((iocb->ki_flags & IOCB_DIRECT) ||
|
|
test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
|
|
return netfs_unbuffered_read_iter(iocb, iter);
|
|
|
|
return netfs_buffered_read_iter(iocb, iter);
|
|
}
|
|
EXPORT_SYMBOL(netfs_file_read_iter);
|