linux/security/security.c
Linus Torvalds fa8380a06b bpf-next-6.12-struct-fd
-----BEGIN PGP SIGNATURE-----
 
 iQIyBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmbyniwACgkQ6rmadz2v
 bTqE0w/2J8TJWfR+1Z0Bf2Nzt3kFd/wLNn6FpWsq+z0/pzoP5AzborvmLzNiZmeh
 0vJFieOL7pV4+NcaIHBPqfW1eMsXu+BlrtkHGLLYiCPJUr8o5jU9SrVKfF3arMZS
 a6+zcX6EivX0MYWobZ2F7/8XF0nRQADxzInLazFmtJmLmOAyIch417KOg9ylwr3m
 WVqhtCImUFyVz83XMFgbf2jXrvL9xD08iHN62GzcAioRF5LeJSPX0U/N15gWDqF7
 V68F0PnvUf6/hkFvYVynhpMivE8u+8VXCHX+heZ8yUyf4ExV/+KSZrImupJ0WLeO
 iX/qJ/9XP+g6ad9Olqpu6hmPi/6c6epQgbSOchpG04FGBGmJv1j9w4wnlHCgQDdB
 i2oKHRtMKdqNZc0sOSfvw/KyxZXJuD1VQ9YgGVpZbHUbSZDoj7T40zWziUp8VgyR
 nNtOmfJLDbtYlPV7/cQY5Ui4ccMJm6GzxxLBcqcMWxBu/90Ng0wTSubLbg3RHmWu
 d9cCL6IprjJnliEUqC4k4gqZy6RJlHvQ8+NDllaW+4iPnz7B2WaUbwRX/oZ5yiYK
 bLjWCWo+SzntVPAzTsmAYs2G47vWoALxo2NpNXLfmhJiWwfakJaQu7fwrDxsY11M
 OgByiOzcbAcvkJzeVIDhfLVq5z49KF6k4D8Qu0uvXHDeC8Mraw==
 =zzmh
 -----END PGP SIGNATURE-----

Merge tag 'bpf-next-6.12-struct-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next

Pull bpf 'struct fd' updates from Alexei Starovoitov:
 "This includes struct_fd BPF changes from Al and Andrii"

* tag 'bpf-next-6.12-struct-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next:
  bpf: convert bpf_token_create() to CLASS(fd, ...)
  security,bpf: constify struct path in bpf_token_create() LSM hook
  bpf: more trivial fdget() conversions
  bpf: trivial conversions for fdget()
  bpf: switch maps to CLASS(fd, ...)
  bpf: factor out fetching bpf_map from FD and adding it to used_maps list
  bpf: switch fdget_raw() uses to CLASS(fd_raw, ...)
  bpf: convert __bpf_prog_get() to CLASS(fd, ...)
2024-09-24 14:54:26 -07:00

5979 lines
172 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Security plug functions
*
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
* Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
* Copyright (C) 2016 Mellanox Technologies
* Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
*/
#define pr_fmt(fmt) "LSM: " fmt
#include <linux/bpf.h>
#include <linux/capability.h>
#include <linux/dcache.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kernel_read_file.h>
#include <linux/lsm_hooks.h>
#include <linux/fsnotify.h>
#include <linux/mman.h>
#include <linux/mount.h>
#include <linux/personality.h>
#include <linux/backing-dev.h>
#include <linux/string.h>
#include <linux/xattr.h>
#include <linux/msg.h>
#include <linux/overflow.h>
#include <linux/perf_event.h>
#include <linux/fs.h>
#include <net/flow.h>
#include <net/sock.h>
#define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
/*
* Identifier for the LSM static calls.
* HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
* IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
*/
#define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
/*
* Call the macro M for each LSM hook MAX_LSM_COUNT times.
*/
#define LSM_LOOP_UNROLL(M, ...) \
do { \
UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) \
} while (0)
#define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
/*
* These are descriptions of the reasons that can be passed to the
* security_locked_down() LSM hook. Placing this array here allows
* all security modules to use the same descriptions for auditing
* purposes.
*/
const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
[LOCKDOWN_NONE] = "none",
[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
[LOCKDOWN_KEXEC] = "kexec of unsigned images",
[LOCKDOWN_HIBERNATION] = "hibernation",
[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
[LOCKDOWN_IOPORT] = "raw io port access",
[LOCKDOWN_MSR] = "raw MSR access",
[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
[LOCKDOWN_DEBUGFS] = "debugfs access",
[LOCKDOWN_XMON_WR] = "xmon write access",
[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
[LOCKDOWN_INTEGRITY_MAX] = "integrity",
[LOCKDOWN_KCORE] = "/proc/kcore access",
[LOCKDOWN_KPROBES] = "use of kprobes",
[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
[LOCKDOWN_PERF] = "unsafe use of perf",
[LOCKDOWN_TRACEFS] = "use of tracefs",
[LOCKDOWN_XMON_RW] = "xmon read and write access",
[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
};
static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
static struct kmem_cache *lsm_file_cache;
static struct kmem_cache *lsm_inode_cache;
char *lsm_names;
static struct lsm_blob_sizes blob_sizes __ro_after_init;
/* Boot-time LSM user choice */
static __initdata const char *chosen_lsm_order;
static __initdata const char *chosen_major_lsm;
static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
/* Ordered list of LSMs to initialize. */
static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
static __initdata struct lsm_info *exclusive;
#ifdef CONFIG_HAVE_STATIC_CALL
#define LSM_HOOK_TRAMP(NAME, NUM) \
&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
#else
#define LSM_HOOK_TRAMP(NAME, NUM) NULL
#endif
/*
* Define static calls and static keys for each LSM hook.
*/
#define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...) \
DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM), \
*((RET(*)(__VA_ARGS__))NULL)); \
DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
#include <linux/lsm_hook_defs.h>
#undef LSM_HOOK
#undef DEFINE_LSM_STATIC_CALL
/*
* Initialise a table of static calls for each LSM hook.
* DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
* and a trampoline (STATIC_CALL_TRAMP) which are used to call
* __static_call_update when updating the static call.
*
* The static calls table is used by early LSMs, some architectures can fault on
* unaligned accesses and the fault handling code may not be ready by then.
* Thus, the static calls table should be aligned to avoid any unhandled faults
* in early init.
*/
struct lsm_static_calls_table
static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
#define INIT_LSM_STATIC_CALL(NUM, NAME) \
(struct lsm_static_call) { \
.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)), \
.trampoline = LSM_HOOK_TRAMP(NAME, NUM), \
.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM), \
},
#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
.NAME = { \
LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME) \
},
#include <linux/lsm_hook_defs.h>
#undef LSM_HOOK
#undef INIT_LSM_STATIC_CALL
};
static __initdata bool debug;
#define init_debug(...) \
do { \
if (debug) \
pr_info(__VA_ARGS__); \
} while (0)
static bool __init is_enabled(struct lsm_info *lsm)
{
if (!lsm->enabled)
return false;
return *lsm->enabled;
}
/* Mark an LSM's enabled flag. */
static int lsm_enabled_true __initdata = 1;
static int lsm_enabled_false __initdata = 0;
static void __init set_enabled(struct lsm_info *lsm, bool enabled)
{
/*
* When an LSM hasn't configured an enable variable, we can use
* a hard-coded location for storing the default enabled state.
*/
if (!lsm->enabled) {
if (enabled)
lsm->enabled = &lsm_enabled_true;
else
lsm->enabled = &lsm_enabled_false;
} else if (lsm->enabled == &lsm_enabled_true) {
if (!enabled)
lsm->enabled = &lsm_enabled_false;
} else if (lsm->enabled == &lsm_enabled_false) {
if (enabled)
lsm->enabled = &lsm_enabled_true;
} else {
*lsm->enabled = enabled;
}
}
/* Is an LSM already listed in the ordered LSMs list? */
static bool __init exists_ordered_lsm(struct lsm_info *lsm)
{
struct lsm_info **check;
for (check = ordered_lsms; *check; check++)
if (*check == lsm)
return true;
return false;
}
/* Append an LSM to the list of ordered LSMs to initialize. */
static int last_lsm __initdata;
static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
{
/* Ignore duplicate selections. */
if (exists_ordered_lsm(lsm))
return;
if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
return;
/* Enable this LSM, if it is not already set. */
if (!lsm->enabled)
lsm->enabled = &lsm_enabled_true;
ordered_lsms[last_lsm++] = lsm;
init_debug("%s ordered: %s (%s)\n", from, lsm->name,
is_enabled(lsm) ? "enabled" : "disabled");
}
/* Is an LSM allowed to be initialized? */
static bool __init lsm_allowed(struct lsm_info *lsm)
{
/* Skip if the LSM is disabled. */
if (!is_enabled(lsm))
return false;
/* Not allowed if another exclusive LSM already initialized. */
if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
init_debug("exclusive disabled: %s\n", lsm->name);
return false;
}
return true;
}
static void __init lsm_set_blob_size(int *need, int *lbs)
{
int offset;
if (*need <= 0)
return;
offset = ALIGN(*lbs, sizeof(void *));
*lbs = offset + *need;
*need = offset;
}
static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
{
if (!needed)
return;
lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
/*
* The inode blob gets an rcu_head in addition to
* what the modules might need.
*/
if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
blob_sizes.lbs_inode = sizeof(struct rcu_head);
lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
lsm_set_blob_size(&needed->lbs_xattr_count,
&blob_sizes.lbs_xattr_count);
lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
}
/* Prepare LSM for initialization. */
static void __init prepare_lsm(struct lsm_info *lsm)
{
int enabled = lsm_allowed(lsm);
/* Record enablement (to handle any following exclusive LSMs). */
set_enabled(lsm, enabled);
/* If enabled, do pre-initialization work. */
if (enabled) {
if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
exclusive = lsm;
init_debug("exclusive chosen: %s\n", lsm->name);
}
lsm_set_blob_sizes(lsm->blobs);
}
}
/* Initialize a given LSM, if it is enabled. */
static void __init initialize_lsm(struct lsm_info *lsm)
{
if (is_enabled(lsm)) {
int ret;
init_debug("initializing %s\n", lsm->name);
ret = lsm->init();
WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
}
}
/*
* Current index to use while initializing the lsm id list.
*/
u32 lsm_active_cnt __ro_after_init;
const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
/* Populate ordered LSMs list from comma-separated LSM name list. */
static void __init ordered_lsm_parse(const char *order, const char *origin)
{
struct lsm_info *lsm;
char *sep, *name, *next;
/* LSM_ORDER_FIRST is always first. */
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
if (lsm->order == LSM_ORDER_FIRST)
append_ordered_lsm(lsm, " first");
}
/* Process "security=", if given. */
if (chosen_major_lsm) {
struct lsm_info *major;
/*
* To match the original "security=" behavior, this
* explicitly does NOT fallback to another Legacy Major
* if the selected one was separately disabled: disable
* all non-matching Legacy Major LSMs.
*/
for (major = __start_lsm_info; major < __end_lsm_info;
major++) {
if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
strcmp(major->name, chosen_major_lsm) != 0) {
set_enabled(major, false);
init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
chosen_major_lsm, major->name);
}
}
}
sep = kstrdup(order, GFP_KERNEL);
next = sep;
/* Walk the list, looking for matching LSMs. */
while ((name = strsep(&next, ",")) != NULL) {
bool found = false;
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
if (strcmp(lsm->name, name) == 0) {
if (lsm->order == LSM_ORDER_MUTABLE)
append_ordered_lsm(lsm, origin);
found = true;
}
}
if (!found)
init_debug("%s ignored: %s (not built into kernel)\n",
origin, name);
}
/* Process "security=", if given. */
if (chosen_major_lsm) {
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
if (exists_ordered_lsm(lsm))
continue;
if (strcmp(lsm->name, chosen_major_lsm) == 0)
append_ordered_lsm(lsm, "security=");
}
}
/* LSM_ORDER_LAST is always last. */
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
if (lsm->order == LSM_ORDER_LAST)
append_ordered_lsm(lsm, " last");
}
/* Disable all LSMs not in the ordered list. */
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
if (exists_ordered_lsm(lsm))
continue;
set_enabled(lsm, false);
init_debug("%s skipped: %s (not in requested order)\n",
origin, lsm->name);
}
kfree(sep);
}
static void __init lsm_static_call_init(struct security_hook_list *hl)
{
struct lsm_static_call *scall = hl->scalls;
int i;
for (i = 0; i < MAX_LSM_COUNT; i++) {
/* Update the first static call that is not used yet */
if (!scall->hl) {
__static_call_update(scall->key, scall->trampoline,
hl->hook.lsm_func_addr);
scall->hl = hl;
static_branch_enable(scall->active);
return;
}
scall++;
}
panic("%s - Ran out of static slots.\n", __func__);
}
static void __init lsm_early_cred(struct cred *cred);
static void __init lsm_early_task(struct task_struct *task);
static int lsm_append(const char *new, char **result);
static void __init report_lsm_order(void)
{
struct lsm_info **lsm, *early;
int first = 0;
pr_info("initializing lsm=");
/* Report each enabled LSM name, comma separated. */
for (early = __start_early_lsm_info;
early < __end_early_lsm_info; early++)
if (is_enabled(early))
pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
for (lsm = ordered_lsms; *lsm; lsm++)
if (is_enabled(*lsm))
pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
pr_cont("\n");
}
static void __init ordered_lsm_init(void)
{
struct lsm_info **lsm;
if (chosen_lsm_order) {
if (chosen_major_lsm) {
pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
chosen_major_lsm, chosen_lsm_order);
chosen_major_lsm = NULL;
}
ordered_lsm_parse(chosen_lsm_order, "cmdline");
} else
ordered_lsm_parse(builtin_lsm_order, "builtin");
for (lsm = ordered_lsms; *lsm; lsm++)
prepare_lsm(*lsm);
report_lsm_order();
init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
init_debug("file blob size = %d\n", blob_sizes.lbs_file);
init_debug("ib blob size = %d\n", blob_sizes.lbs_ib);
init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
#ifdef CONFIG_KEYS
init_debug("key blob size = %d\n", blob_sizes.lbs_key);
#endif /* CONFIG_KEYS */
init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
init_debug("sock blob size = %d\n", blob_sizes.lbs_sock);
init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
init_debug("task blob size = %d\n", blob_sizes.lbs_task);
init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count);
init_debug("bdev blob size = %d\n", blob_sizes.lbs_bdev);
/*
* Create any kmem_caches needed for blobs
*/
if (blob_sizes.lbs_file)
lsm_file_cache = kmem_cache_create("lsm_file_cache",
blob_sizes.lbs_file, 0,
SLAB_PANIC, NULL);
if (blob_sizes.lbs_inode)
lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
blob_sizes.lbs_inode, 0,
SLAB_PANIC, NULL);
lsm_early_cred((struct cred *) current->cred);
lsm_early_task(current);
for (lsm = ordered_lsms; *lsm; lsm++)
initialize_lsm(*lsm);
}
int __init early_security_init(void)
{
struct lsm_info *lsm;
for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
if (!lsm->enabled)
lsm->enabled = &lsm_enabled_true;
prepare_lsm(lsm);
initialize_lsm(lsm);
}
return 0;
}
/**
* security_init - initializes the security framework
*
* This should be called early in the kernel initialization sequence.
*/
int __init security_init(void)
{
struct lsm_info *lsm;
init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
/*
* Append the names of the early LSM modules now that kmalloc() is
* available
*/
for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
init_debug(" early started: %s (%s)\n", lsm->name,
is_enabled(lsm) ? "enabled" : "disabled");
if (lsm->enabled)
lsm_append(lsm->name, &lsm_names);
}
/* Load LSMs in specified order. */
ordered_lsm_init();
return 0;
}
/* Save user chosen LSM */
static int __init choose_major_lsm(char *str)
{
chosen_major_lsm = str;
return 1;
}
__setup("security=", choose_major_lsm);
/* Explicitly choose LSM initialization order. */
static int __init choose_lsm_order(char *str)
{
chosen_lsm_order = str;
return 1;
}
__setup("lsm=", choose_lsm_order);
/* Enable LSM order debugging. */
static int __init enable_debug(char *str)
{
debug = true;
return 1;
}
__setup("lsm.debug", enable_debug);
static bool match_last_lsm(const char *list, const char *lsm)
{
const char *last;
if (WARN_ON(!list || !lsm))
return false;
last = strrchr(list, ',');
if (last)
/* Pass the comma, strcmp() will check for '\0' */
last++;
else
last = list;
return !strcmp(last, lsm);
}
static int lsm_append(const char *new, char **result)
{
char *cp;
if (*result == NULL) {
*result = kstrdup(new, GFP_KERNEL);
if (*result == NULL)
return -ENOMEM;
} else {
/* Check if it is the last registered name */
if (match_last_lsm(*result, new))
return 0;
cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
if (cp == NULL)
return -ENOMEM;
kfree(*result);
*result = cp;
}
return 0;
}
/**
* security_add_hooks - Add a modules hooks to the hook lists.
* @hooks: the hooks to add
* @count: the number of hooks to add
* @lsmid: the identification information for the security module
*
* Each LSM has to register its hooks with the infrastructure.
*/
void __init security_add_hooks(struct security_hook_list *hooks, int count,
const struct lsm_id *lsmid)
{
int i;
/*
* A security module may call security_add_hooks() more
* than once during initialization, and LSM initialization
* is serialized. Landlock is one such case.
* Look at the previous entry, if there is one, for duplication.
*/
if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
if (lsm_active_cnt >= MAX_LSM_COUNT)
panic("%s Too many LSMs registered.\n", __func__);
lsm_idlist[lsm_active_cnt++] = lsmid;
}
for (i = 0; i < count; i++) {
hooks[i].lsmid = lsmid;
lsm_static_call_init(&hooks[i]);
}
/*
* Don't try to append during early_security_init(), we'll come back
* and fix this up afterwards.
*/
if (slab_is_available()) {
if (lsm_append(lsmid->name, &lsm_names) < 0)
panic("%s - Cannot get early memory.\n", __func__);
}
}
int call_blocking_lsm_notifier(enum lsm_event event, void *data)
{
return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
event, data);
}
EXPORT_SYMBOL(call_blocking_lsm_notifier);
int register_blocking_lsm_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
nb);
}
EXPORT_SYMBOL(register_blocking_lsm_notifier);
int unregister_blocking_lsm_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
nb);
}
EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
/**
* lsm_blob_alloc - allocate a composite blob
* @dest: the destination for the blob
* @size: the size of the blob
* @gfp: allocation type
*
* Allocate a blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
{
if (size == 0) {
*dest = NULL;
return 0;
}
*dest = kzalloc(size, gfp);
if (*dest == NULL)
return -ENOMEM;
return 0;
}
/**
* lsm_cred_alloc - allocate a composite cred blob
* @cred: the cred that needs a blob
* @gfp: allocation type
*
* Allocate the cred blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
{
return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
}
/**
* lsm_early_cred - during initialization allocate a composite cred blob
* @cred: the cred that needs a blob
*
* Allocate the cred blob for all the modules
*/
static void __init lsm_early_cred(struct cred *cred)
{
int rc = lsm_cred_alloc(cred, GFP_KERNEL);
if (rc)
panic("%s: Early cred alloc failed.\n", __func__);
}
/**
* lsm_file_alloc - allocate a composite file blob
* @file: the file that needs a blob
*
* Allocate the file blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_file_alloc(struct file *file)
{
if (!lsm_file_cache) {
file->f_security = NULL;
return 0;
}
file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
if (file->f_security == NULL)
return -ENOMEM;
return 0;
}
/**
* lsm_inode_alloc - allocate a composite inode blob
* @inode: the inode that needs a blob
*
* Allocate the inode blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_inode_alloc(struct inode *inode)
{
if (!lsm_inode_cache) {
inode->i_security = NULL;
return 0;
}
inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
if (inode->i_security == NULL)
return -ENOMEM;
return 0;
}
/**
* lsm_task_alloc - allocate a composite task blob
* @task: the task that needs a blob
*
* Allocate the task blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_task_alloc(struct task_struct *task)
{
return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
}
/**
* lsm_ipc_alloc - allocate a composite ipc blob
* @kip: the ipc that needs a blob
*
* Allocate the ipc blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
{
return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
}
#ifdef CONFIG_KEYS
/**
* lsm_key_alloc - allocate a composite key blob
* @key: the key that needs a blob
*
* Allocate the key blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_key_alloc(struct key *key)
{
return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
}
#endif /* CONFIG_KEYS */
/**
* lsm_msg_msg_alloc - allocate a composite msg_msg blob
* @mp: the msg_msg that needs a blob
*
* Allocate the ipc blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_msg_msg_alloc(struct msg_msg *mp)
{
return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
GFP_KERNEL);
}
/**
* lsm_bdev_alloc - allocate a composite block_device blob
* @bdev: the block_device that needs a blob
*
* Allocate the block_device blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_bdev_alloc(struct block_device *bdev)
{
if (blob_sizes.lbs_bdev == 0) {
bdev->bd_security = NULL;
return 0;
}
bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
if (!bdev->bd_security)
return -ENOMEM;
return 0;
}
/**
* lsm_early_task - during initialization allocate a composite task blob
* @task: the task that needs a blob
*
* Allocate the task blob for all the modules
*/
static void __init lsm_early_task(struct task_struct *task)
{
int rc = lsm_task_alloc(task);
if (rc)
panic("%s: Early task alloc failed.\n", __func__);
}
/**
* lsm_superblock_alloc - allocate a composite superblock blob
* @sb: the superblock that needs a blob
*
* Allocate the superblock blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_superblock_alloc(struct super_block *sb)
{
return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
GFP_KERNEL);
}
/**
* lsm_fill_user_ctx - Fill a user space lsm_ctx structure
* @uctx: a userspace LSM context to be filled
* @uctx_len: available uctx size (input), used uctx size (output)
* @val: the new LSM context value
* @val_len: the size of the new LSM context value
* @id: LSM id
* @flags: LSM defined flags
*
* Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL
* simply calculate the required size to output via @utc_len and return
* success.
*
* Returns 0 on success, -E2BIG if userspace buffer is not large enough,
* -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
*/
int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
void *val, size_t val_len,
u64 id, u64 flags)
{
struct lsm_ctx *nctx = NULL;
size_t nctx_len;
int rc = 0;
nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
if (nctx_len > *uctx_len) {
rc = -E2BIG;
goto out;
}
/* no buffer - return success/0 and set @uctx_len to the req size */
if (!uctx)
goto out;
nctx = kzalloc(nctx_len, GFP_KERNEL);
if (nctx == NULL) {
rc = -ENOMEM;
goto out;
}
nctx->id = id;
nctx->flags = flags;
nctx->len = nctx_len;
nctx->ctx_len = val_len;
memcpy(nctx->ctx, val, val_len);
if (copy_to_user(uctx, nctx, nctx_len))
rc = -EFAULT;
out:
kfree(nctx);
*uctx_len = nctx_len;
return rc;
}
/*
* The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
* can be accessed with:
*
* LSM_RET_DEFAULT(<hook_name>)
*
* The macros below define static constants for the default value of each
* LSM hook.
*/
#define LSM_RET_DEFAULT(NAME) (NAME##_default)
#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
#include <linux/lsm_hook_defs.h>
#undef LSM_HOOK
/*
* Hook list operation macros.
*
* call_void_hook:
* This is a hook that does not return a value.
*
* call_int_hook:
* This is a hook that returns a value.
*/
#define __CALL_STATIC_VOID(NUM, HOOK, ...) \
do { \
if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
} \
} while (0);
#define call_void_hook(HOOK, ...) \
do { \
LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
} while (0)
#define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...) \
do { \
if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
if (R != LSM_RET_DEFAULT(HOOK)) \
goto LABEL; \
} \
} while (0);
#define call_int_hook(HOOK, ...) \
({ \
__label__ OUT; \
int RC = LSM_RET_DEFAULT(HOOK); \
\
LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__); \
OUT: \
RC; \
})
#define lsm_for_each_hook(scall, NAME) \
for (scall = static_calls_table.NAME; \
scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++) \
if (static_key_enabled(&scall->active->key))
/* Security operations */
/**
* security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
* @mgr: task credentials of current binder process
*
* Check whether @mgr is allowed to be the binder context manager.
*
* Return: Return 0 if permission is granted.
*/
int security_binder_set_context_mgr(const struct cred *mgr)
{
return call_int_hook(binder_set_context_mgr, mgr);
}
/**
* security_binder_transaction() - Check if a binder transaction is allowed
* @from: sending process
* @to: receiving process
*
* Check whether @from is allowed to invoke a binder transaction call to @to.
*
* Return: Returns 0 if permission is granted.
*/
int security_binder_transaction(const struct cred *from,
const struct cred *to)
{
return call_int_hook(binder_transaction, from, to);
}
/**
* security_binder_transfer_binder() - Check if a binder transfer is allowed
* @from: sending process
* @to: receiving process
*
* Check whether @from is allowed to transfer a binder reference to @to.
*
* Return: Returns 0 if permission is granted.
*/
int security_binder_transfer_binder(const struct cred *from,
const struct cred *to)
{
return call_int_hook(binder_transfer_binder, from, to);
}
/**
* security_binder_transfer_file() - Check if a binder file xfer is allowed
* @from: sending process
* @to: receiving process
* @file: file being transferred
*
* Check whether @from is allowed to transfer @file to @to.
*
* Return: Returns 0 if permission is granted.
*/
int security_binder_transfer_file(const struct cred *from,
const struct cred *to, const struct file *file)
{
return call_int_hook(binder_transfer_file, from, to, file);
}
/**
* security_ptrace_access_check() - Check if tracing is allowed
* @child: target process
* @mode: PTRACE_MODE flags
*
* Check permission before allowing the current process to trace the @child
* process. Security modules may also want to perform a process tracing check
* during an execve in the set_security or apply_creds hooks of tracing check
* during an execve in the bprm_set_creds hook of binprm_security_ops if the
* process is being traced and its security attributes would be changed by the
* execve.
*
* Return: Returns 0 if permission is granted.
*/
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
return call_int_hook(ptrace_access_check, child, mode);
}
/**
* security_ptrace_traceme() - Check if tracing is allowed
* @parent: tracing process
*
* Check that the @parent process has sufficient permission to trace the
* current process before allowing the current process to present itself to the
* @parent process for tracing.
*
* Return: Returns 0 if permission is granted.
*/
int security_ptrace_traceme(struct task_struct *parent)
{
return call_int_hook(ptrace_traceme, parent);
}
/**
* security_capget() - Get the capability sets for a process
* @target: target process
* @effective: effective capability set
* @inheritable: inheritable capability set
* @permitted: permitted capability set
*
* Get the @effective, @inheritable, and @permitted capability sets for the
* @target process. The hook may also perform permission checking to determine
* if the current process is allowed to see the capability sets of the @target
* process.
*
* Return: Returns 0 if the capability sets were successfully obtained.
*/
int security_capget(const struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return call_int_hook(capget, target, effective, inheritable, permitted);
}
/**
* security_capset() - Set the capability sets for a process
* @new: new credentials for the target process
* @old: current credentials of the target process
* @effective: effective capability set
* @inheritable: inheritable capability set
* @permitted: permitted capability set
*
* Set the @effective, @inheritable, and @permitted capability sets for the
* current process.
*
* Return: Returns 0 and update @new if permission is granted.
*/
int security_capset(struct cred *new, const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
{
return call_int_hook(capset, new, old, effective, inheritable,
permitted);
}
/**
* security_capable() - Check if a process has the necessary capability
* @cred: credentials to examine
* @ns: user namespace
* @cap: capability requested
* @opts: capability check options
*
* Check whether the @tsk process has the @cap capability in the indicated
* credentials. @cap contains the capability <include/linux/capability.h>.
* @opts contains options for the capable check <include/linux/security.h>.
*
* Return: Returns 0 if the capability is granted.
*/
int security_capable(const struct cred *cred,
struct user_namespace *ns,
int cap,
unsigned int opts)
{
return call_int_hook(capable, cred, ns, cap, opts);
}
/**
* security_quotactl() - Check if a quotactl() syscall is allowed for this fs
* @cmds: commands
* @type: type
* @id: id
* @sb: filesystem
*
* Check whether the quotactl syscall is allowed for this @sb.
*
* Return: Returns 0 if permission is granted.
*/
int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
{
return call_int_hook(quotactl, cmds, type, id, sb);
}
/**
* security_quota_on() - Check if QUOTAON is allowed for a dentry
* @dentry: dentry
*
* Check whether QUOTAON is allowed for @dentry.
*
* Return: Returns 0 if permission is granted.
*/
int security_quota_on(struct dentry *dentry)
{
return call_int_hook(quota_on, dentry);
}
/**
* security_syslog() - Check if accessing the kernel message ring is allowed
* @type: SYSLOG_ACTION_* type
*
* Check permission before accessing the kernel message ring or changing
* logging to the console. See the syslog(2) manual page for an explanation of
* the @type values.
*
* Return: Return 0 if permission is granted.
*/
int security_syslog(int type)
{
return call_int_hook(syslog, type);
}
/**
* security_settime64() - Check if changing the system time is allowed
* @ts: new time
* @tz: timezone
*
* Check permission to change the system time, struct timespec64 is defined in
* <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
*
* Return: Returns 0 if permission is granted.
*/
int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
{
return call_int_hook(settime, ts, tz);
}
/**
* security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
* @mm: mm struct
* @pages: number of pages
*
* Check permissions for allocating a new virtual mapping. If all LSMs return
* a positive value, __vm_enough_memory() will be called with cap_sys_admin
* set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
* called with cap_sys_admin cleared.
*
* Return: Returns 0 if permission is granted by the LSM infrastructure to the
* caller.
*/
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
struct lsm_static_call *scall;
int cap_sys_admin = 1;
int rc;
/*
* The module will respond with 0 if it thinks the __vm_enough_memory()
* call should be made with the cap_sys_admin set. If all of the modules
* agree that it should be set it will. If any module thinks it should
* not be set it won't.
*/
lsm_for_each_hook(scall, vm_enough_memory) {
rc = scall->hl->hook.vm_enough_memory(mm, pages);
if (rc < 0) {
cap_sys_admin = 0;
break;
}
}
return __vm_enough_memory(mm, pages, cap_sys_admin);
}
/**
* security_bprm_creds_for_exec() - Prepare the credentials for exec()
* @bprm: binary program information
*
* If the setup in prepare_exec_creds did not setup @bprm->cred->security
* properly for executing @bprm->file, update the LSM's portion of
* @bprm->cred->security to be what commit_creds needs to install for the new
* program. This hook may also optionally check permissions (e.g. for
* transitions between security domains). The hook must set @bprm->secureexec
* to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm
* contains the linux_binprm structure.
*
* Return: Returns 0 if the hook is successful and permission is granted.
*/
int security_bprm_creds_for_exec(struct linux_binprm *bprm)
{
return call_int_hook(bprm_creds_for_exec, bprm);
}
/**
* security_bprm_creds_from_file() - Update linux_binprm creds based on file
* @bprm: binary program information
* @file: associated file
*
* If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
* exec, update @bprm->cred to reflect that change. This is called after
* finding the binary that will be executed without an interpreter. This
* ensures that the credentials will not be derived from a script that the
* binary will need to reopen, which when reopend may end up being a completely
* different file. This hook may also optionally check permissions (e.g. for
* transitions between security domains). The hook must set @bprm->secureexec
* to 1 if AT_SECURE should be set to request libc enable secure mode. The
* hook must add to @bprm->per_clear any personality flags that should be
* cleared from current->personality. @bprm contains the linux_binprm
* structure.
*
* Return: Returns 0 if the hook is successful and permission is granted.
*/
int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
{
return call_int_hook(bprm_creds_from_file, bprm, file);
}
/**
* security_bprm_check() - Mediate binary handler search
* @bprm: binary program information
*
* This hook mediates the point when a search for a binary handler will begin.
* It allows a check against the @bprm->cred->security value which was set in
* the preceding creds_for_exec call. The argv list and envp list are reliably
* available in @bprm. This hook may be called multiple times during a single
* execve. @bprm contains the linux_binprm structure.
*
* Return: Returns 0 if the hook is successful and permission is granted.
*/
int security_bprm_check(struct linux_binprm *bprm)
{
return call_int_hook(bprm_check_security, bprm);
}
/**
* security_bprm_committing_creds() - Install creds for a process during exec()
* @bprm: binary program information
*
* Prepare to install the new security attributes of a process being
* transformed by an execve operation, based on the old credentials pointed to
* by @current->cred and the information set in @bprm->cred by the
* bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This
* hook is a good place to perform state changes on the process such as closing
* open file descriptors to which access will no longer be granted when the
* attributes are changed. This is called immediately before commit_creds().
*/
void security_bprm_committing_creds(const struct linux_binprm *bprm)
{
call_void_hook(bprm_committing_creds, bprm);
}
/**
* security_bprm_committed_creds() - Tidy up after cred install during exec()
* @bprm: binary program information
*
* Tidy up after the installation of the new security attributes of a process
* being transformed by an execve operation. The new credentials have, by this
* point, been set to @current->cred. @bprm points to the linux_binprm
* structure. This hook is a good place to perform state changes on the
* process such as clearing out non-inheritable signal state. This is called
* immediately after commit_creds().
*/
void security_bprm_committed_creds(const struct linux_binprm *bprm)
{
call_void_hook(bprm_committed_creds, bprm);
}
/**
* security_fs_context_submount() - Initialise fc->security
* @fc: new filesystem context
* @reference: dentry reference for submount/remount
*
* Fill out the ->security field for a new fs_context.
*
* Return: Returns 0 on success or negative error code on failure.
*/
int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
{
return call_int_hook(fs_context_submount, fc, reference);
}
/**
* security_fs_context_dup() - Duplicate a fs_context LSM blob
* @fc: destination filesystem context
* @src_fc: source filesystem context
*
* Allocate and attach a security structure to sc->security. This pointer is
* initialised to NULL by the caller. @fc indicates the new filesystem context.
* @src_fc indicates the original filesystem context.
*
* Return: Returns 0 on success or a negative error code on failure.
*/
int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
{
return call_int_hook(fs_context_dup, fc, src_fc);
}
/**
* security_fs_context_parse_param() - Configure a filesystem context
* @fc: filesystem context
* @param: filesystem parameter
*
* Userspace provided a parameter to configure a superblock. The LSM can
* consume the parameter or return it to the caller for use elsewhere.
*
* Return: If the parameter is used by the LSM it should return 0, if it is
* returned to the caller -ENOPARAM is returned, otherwise a negative
* error code is returned.
*/
int security_fs_context_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct lsm_static_call *scall;
int trc;
int rc = -ENOPARAM;
lsm_for_each_hook(scall, fs_context_parse_param) {
trc = scall->hl->hook.fs_context_parse_param(fc, param);
if (trc == 0)
rc = 0;
else if (trc != -ENOPARAM)
return trc;
}
return rc;
}
/**
* security_sb_alloc() - Allocate a super_block LSM blob
* @sb: filesystem superblock
*
* Allocate and attach a security structure to the sb->s_security field. The
* s_security field is initialized to NULL when the structure is allocated.
* @sb contains the super_block structure to be modified.
*
* Return: Returns 0 if operation was successful.
*/
int security_sb_alloc(struct super_block *sb)
{
int rc = lsm_superblock_alloc(sb);
if (unlikely(rc))
return rc;
rc = call_int_hook(sb_alloc_security, sb);
if (unlikely(rc))
security_sb_free(sb);
return rc;
}
/**
* security_sb_delete() - Release super_block LSM associated objects
* @sb: filesystem superblock
*
* Release objects tied to a superblock (e.g. inodes). @sb contains the
* super_block structure being released.
*/
void security_sb_delete(struct super_block *sb)
{
call_void_hook(sb_delete, sb);
}
/**
* security_sb_free() - Free a super_block LSM blob
* @sb: filesystem superblock
*
* Deallocate and clear the sb->s_security field. @sb contains the super_block
* structure to be modified.
*/
void security_sb_free(struct super_block *sb)
{
call_void_hook(sb_free_security, sb);
kfree(sb->s_security);
sb->s_security = NULL;
}
/**
* security_free_mnt_opts() - Free memory associated with mount options
* @mnt_opts: LSM processed mount options
*
* Free memory associated with @mnt_ops.
*/
void security_free_mnt_opts(void **mnt_opts)
{
if (!*mnt_opts)
return;
call_void_hook(sb_free_mnt_opts, *mnt_opts);
*mnt_opts = NULL;
}
EXPORT_SYMBOL(security_free_mnt_opts);
/**
* security_sb_eat_lsm_opts() - Consume LSM mount options
* @options: mount options
* @mnt_opts: LSM processed mount options
*
* Eat (scan @options) and save them in @mnt_opts.
*
* Return: Returns 0 on success, negative values on failure.
*/
int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
{
return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
}
EXPORT_SYMBOL(security_sb_eat_lsm_opts);
/**
* security_sb_mnt_opts_compat() - Check if new mount options are allowed
* @sb: filesystem superblock
* @mnt_opts: new mount options
*
* Determine if the new mount options in @mnt_opts are allowed given the
* existing mounted filesystem at @sb. @sb superblock being compared.
*
* Return: Returns 0 if options are compatible.
*/
int security_sb_mnt_opts_compat(struct super_block *sb,
void *mnt_opts)
{
return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
}
EXPORT_SYMBOL(security_sb_mnt_opts_compat);
/**
* security_sb_remount() - Verify no incompatible mount changes during remount
* @sb: filesystem superblock
* @mnt_opts: (re)mount options
*
* Extracts security system specific mount options and verifies no changes are
* being made to those options.
*
* Return: Returns 0 if permission is granted.
*/
int security_sb_remount(struct super_block *sb,
void *mnt_opts)
{
return call_int_hook(sb_remount, sb, mnt_opts);
}
EXPORT_SYMBOL(security_sb_remount);
/**
* security_sb_kern_mount() - Check if a kernel mount is allowed
* @sb: filesystem superblock
*
* Mount this @sb if allowed by permissions.
*
* Return: Returns 0 if permission is granted.
*/
int security_sb_kern_mount(const struct super_block *sb)
{
return call_int_hook(sb_kern_mount, sb);
}
/**
* security_sb_show_options() - Output the mount options for a superblock
* @m: output file
* @sb: filesystem superblock
*
* Show (print on @m) mount options for this @sb.
*
* Return: Returns 0 on success, negative values on failure.
*/
int security_sb_show_options(struct seq_file *m, struct super_block *sb)
{
return call_int_hook(sb_show_options, m, sb);
}
/**
* security_sb_statfs() - Check if accessing fs stats is allowed
* @dentry: superblock handle
*
* Check permission before obtaining filesystem statistics for the @mnt
* mountpoint. @dentry is a handle on the superblock for the filesystem.
*
* Return: Returns 0 if permission is granted.
*/
int security_sb_statfs(struct dentry *dentry)
{
return call_int_hook(sb_statfs, dentry);
}
/**
* security_sb_mount() - Check permission for mounting a filesystem
* @dev_name: filesystem backing device
* @path: mount point
* @type: filesystem type
* @flags: mount flags
* @data: filesystem specific data
*
* Check permission before an object specified by @dev_name is mounted on the
* mount point named by @nd. For an ordinary mount, @dev_name identifies a
* device if the file system type requires a device. For a remount
* (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount
* (@flags & MS_BIND), @dev_name identifies the pathname of the object being
* mounted.
*
* Return: Returns 0 if permission is granted.
*/
int security_sb_mount(const char *dev_name, const struct path *path,
const char *type, unsigned long flags, void *data)
{
return call_int_hook(sb_mount, dev_name, path, type, flags, data);
}
/**
* security_sb_umount() - Check permission for unmounting a filesystem
* @mnt: mounted filesystem
* @flags: unmount flags
*
* Check permission before the @mnt file system is unmounted.
*
* Return: Returns 0 if permission is granted.
*/
int security_sb_umount(struct vfsmount *mnt, int flags)
{
return call_int_hook(sb_umount, mnt, flags);
}
/**
* security_sb_pivotroot() - Check permissions for pivoting the rootfs
* @old_path: new location for current rootfs
* @new_path: location of the new rootfs
*
* Check permission before pivoting the root filesystem.
*
* Return: Returns 0 if permission is granted.
*/
int security_sb_pivotroot(const struct path *old_path,
const struct path *new_path)
{
return call_int_hook(sb_pivotroot, old_path, new_path);
}
/**
* security_sb_set_mnt_opts() - Set the mount options for a filesystem
* @sb: filesystem superblock
* @mnt_opts: binary mount options
* @kern_flags: kernel flags (in)
* @set_kern_flags: kernel flags (out)
*
* Set the security relevant mount options used for a superblock.
*
* Return: Returns 0 on success, error on failure.
*/
int security_sb_set_mnt_opts(struct super_block *sb,
void *mnt_opts,
unsigned long kern_flags,
unsigned long *set_kern_flags)
{
struct lsm_static_call *scall;
int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
lsm_for_each_hook(scall, sb_set_mnt_opts) {
rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
set_kern_flags);
if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
break;
}
return rc;
}
EXPORT_SYMBOL(security_sb_set_mnt_opts);
/**
* security_sb_clone_mnt_opts() - Duplicate superblock mount options
* @oldsb: source superblock
* @newsb: destination superblock
* @kern_flags: kernel flags (in)
* @set_kern_flags: kernel flags (out)
*
* Copy all security options from a given superblock to another.
*
* Return: Returns 0 on success, error on failure.
*/
int security_sb_clone_mnt_opts(const struct super_block *oldsb,
struct super_block *newsb,
unsigned long kern_flags,
unsigned long *set_kern_flags)
{
return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
kern_flags, set_kern_flags);
}
EXPORT_SYMBOL(security_sb_clone_mnt_opts);
/**
* security_move_mount() - Check permissions for moving a mount
* @from_path: source mount point
* @to_path: destination mount point
*
* Check permission before a mount is moved.
*
* Return: Returns 0 if permission is granted.
*/
int security_move_mount(const struct path *from_path,
const struct path *to_path)
{
return call_int_hook(move_mount, from_path, to_path);
}
/**
* security_path_notify() - Check if setting a watch is allowed
* @path: file path
* @mask: event mask
* @obj_type: file path type
*
* Check permissions before setting a watch on events as defined by @mask, on
* an object at @path, whose type is defined by @obj_type.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_notify(const struct path *path, u64 mask,
unsigned int obj_type)
{
return call_int_hook(path_notify, path, mask, obj_type);
}
/**
* security_inode_alloc() - Allocate an inode LSM blob
* @inode: the inode
*
* Allocate and attach a security structure to @inode->i_security. The
* i_security field is initialized to NULL when the inode structure is
* allocated.
*
* Return: Return 0 if operation was successful.
*/
int security_inode_alloc(struct inode *inode)
{
int rc = lsm_inode_alloc(inode);
if (unlikely(rc))
return rc;
rc = call_int_hook(inode_alloc_security, inode);
if (unlikely(rc))
security_inode_free(inode);
return rc;
}
static void inode_free_by_rcu(struct rcu_head *head)
{
/* The rcu head is at the start of the inode blob */
call_void_hook(inode_free_security_rcu, head);
kmem_cache_free(lsm_inode_cache, head);
}
/**
* security_inode_free() - Free an inode's LSM blob
* @inode: the inode
*
* Release any LSM resources associated with @inode, although due to the
* inode's RCU protections it is possible that the resources will not be
* fully released until after the current RCU grace period has elapsed.
*
* It is important for LSMs to note that despite being present in a call to
* security_inode_free(), @inode may still be referenced in a VFS path walk
* and calls to security_inode_permission() may be made during, or after,
* a call to security_inode_free(). For this reason the inode->i_security
* field is released via a call_rcu() callback and any LSMs which need to
* retain inode state for use in security_inode_permission() should only
* release that state in the inode_free_security_rcu() LSM hook callback.
*/
void security_inode_free(struct inode *inode)
{
call_void_hook(inode_free_security, inode);
if (!inode->i_security)
return;
call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
}
/**
* security_dentry_init_security() - Perform dentry initialization
* @dentry: the dentry to initialize
* @mode: mode used to determine resource type
* @name: name of the last path component
* @xattr_name: name of the security/LSM xattr
* @ctx: pointer to the resulting LSM context
* @ctxlen: length of @ctx
*
* Compute a context for a dentry as the inode is not yet available since NFSv4
* has no label backed by an EA anyway. It is important to note that
* @xattr_name does not need to be free'd by the caller, it is a static string.
*
* Return: Returns 0 on success, negative values on failure.
*/
int security_dentry_init_security(struct dentry *dentry, int mode,
const struct qstr *name,
const char **xattr_name, void **ctx,
u32 *ctxlen)
{
return call_int_hook(dentry_init_security, dentry, mode, name,
xattr_name, ctx, ctxlen);
}
EXPORT_SYMBOL(security_dentry_init_security);
/**
* security_dentry_create_files_as() - Perform dentry initialization
* @dentry: the dentry to initialize
* @mode: mode used to determine resource type
* @name: name of the last path component
* @old: creds to use for LSM context calculations
* @new: creds to modify
*
* Compute a context for a dentry as the inode is not yet available and set
* that context in passed in creds so that new files are created using that
* context. Context is calculated using the passed in creds and not the creds
* of the caller.
*
* Return: Returns 0 on success, error on failure.
*/
int security_dentry_create_files_as(struct dentry *dentry, int mode,
struct qstr *name,
const struct cred *old, struct cred *new)
{
return call_int_hook(dentry_create_files_as, dentry, mode,
name, old, new);
}
EXPORT_SYMBOL(security_dentry_create_files_as);
/**
* security_inode_init_security() - Initialize an inode's LSM context
* @inode: the inode
* @dir: parent directory
* @qstr: last component of the pathname
* @initxattrs: callback function to write xattrs
* @fs_data: filesystem specific data
*
* Obtain the security attribute name suffix and value to set on a newly
* created inode and set up the incore security field for the new inode. This
* hook is called by the fs code as part of the inode creation transaction and
* provides for atomic labeling of the inode, unlike the post_create/mkdir/...
* hooks called by the VFS.
*
* The hook function is expected to populate the xattrs array, by calling
* lsm_get_xattr_slot() to retrieve the slots reserved by the security module
* with the lbs_xattr_count field of the lsm_blob_sizes structure. For each
* slot, the hook function should set ->name to the attribute name suffix
* (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
* to the attribute value, to set ->value_len to the length of the value. If
* the security module does not use security attributes or does not wish to put
* a security attribute on this particular inode, then it should return
* -EOPNOTSUPP to skip this processing.
*
* Return: Returns 0 if the LSM successfully initialized all of the inode
* security attributes that are required, negative values otherwise.
*/
int security_inode_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr,
const initxattrs initxattrs, void *fs_data)
{
struct lsm_static_call *scall;
struct xattr *new_xattrs = NULL;
int ret = -EOPNOTSUPP, xattr_count = 0;
if (unlikely(IS_PRIVATE(inode)))
return 0;
if (!blob_sizes.lbs_xattr_count)
return 0;
if (initxattrs) {
/* Allocate +1 as terminator. */
new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
sizeof(*new_xattrs), GFP_NOFS);
if (!new_xattrs)
return -ENOMEM;
}
lsm_for_each_hook(scall, inode_init_security) {
ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
&xattr_count);
if (ret && ret != -EOPNOTSUPP)
goto out;
/*
* As documented in lsm_hooks.h, -EOPNOTSUPP in this context
* means that the LSM is not willing to provide an xattr, not
* that it wants to signal an error. Thus, continue to invoke
* the remaining LSMs.
*/
}
/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
if (!xattr_count)
goto out;
ret = initxattrs(inode, new_xattrs, fs_data);
out:
for (; xattr_count > 0; xattr_count--)
kfree(new_xattrs[xattr_count - 1].value);
kfree(new_xattrs);
return (ret == -EOPNOTSUPP) ? 0 : ret;
}
EXPORT_SYMBOL(security_inode_init_security);
/**
* security_inode_init_security_anon() - Initialize an anonymous inode
* @inode: the inode
* @name: the anonymous inode class
* @context_inode: an optional related inode
*
* Set up the incore security field for the new anonymous inode and return
* whether the inode creation is permitted by the security module or not.
*
* Return: Returns 0 on success, -EACCES if the security module denies the
* creation of this inode, or another -errno upon other errors.
*/
int security_inode_init_security_anon(struct inode *inode,
const struct qstr *name,
const struct inode *context_inode)
{
return call_int_hook(inode_init_security_anon, inode, name,
context_inode);
}
#ifdef CONFIG_SECURITY_PATH
/**
* security_path_mknod() - Check if creating a special file is allowed
* @dir: parent directory
* @dentry: new file
* @mode: new file mode
* @dev: device number
*
* Check permissions when creating a file. Note that this hook is called even
* if mknod operation is being done for a regular file.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_mknod(const struct path *dir, struct dentry *dentry,
umode_t mode, unsigned int dev)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_mknod, dir, dentry, mode, dev);
}
EXPORT_SYMBOL(security_path_mknod);
/**
* security_path_post_mknod() - Update inode security after reg file creation
* @idmap: idmap of the mount
* @dentry: new file
*
* Update inode security field after a regular file has been created.
*/
void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return;
call_void_hook(path_post_mknod, idmap, dentry);
}
/**
* security_path_mkdir() - Check if creating a new directory is allowed
* @dir: parent directory
* @dentry: new directory
* @mode: new directory mode
*
* Check permissions to create a new directory in the existing directory.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_mkdir(const struct path *dir, struct dentry *dentry,
umode_t mode)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_mkdir, dir, dentry, mode);
}
EXPORT_SYMBOL(security_path_mkdir);
/**
* security_path_rmdir() - Check if removing a directory is allowed
* @dir: parent directory
* @dentry: directory to remove
*
* Check the permission to remove a directory.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_rmdir(const struct path *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_rmdir, dir, dentry);
}
/**
* security_path_unlink() - Check if removing a hard link is allowed
* @dir: parent directory
* @dentry: file
*
* Check the permission to remove a hard link to a file.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_unlink(const struct path *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_unlink, dir, dentry);
}
EXPORT_SYMBOL(security_path_unlink);
/**
* security_path_symlink() - Check if creating a symbolic link is allowed
* @dir: parent directory
* @dentry: symbolic link
* @old_name: file pathname
*
* Check the permission to create a symbolic link to a file.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_symlink(const struct path *dir, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_symlink, dir, dentry, old_name);
}
/**
* security_path_link - Check if creating a hard link is allowed
* @old_dentry: existing file
* @new_dir: new parent directory
* @new_dentry: new link
*
* Check permission before creating a new hard link to a file.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
return 0;
return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
}
/**
* security_path_rename() - Check if renaming a file is allowed
* @old_dir: parent directory of the old file
* @old_dentry: the old file
* @new_dir: parent directory of the new file
* @new_dentry: the new file
* @flags: flags
*
* Check for permission to rename a file or directory.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
const struct path *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
(d_is_positive(new_dentry) &&
IS_PRIVATE(d_backing_inode(new_dentry)))))
return 0;
return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
new_dentry, flags);
}
EXPORT_SYMBOL(security_path_rename);
/**
* security_path_truncate() - Check if truncating a file is allowed
* @path: file
*
* Check permission before truncating the file indicated by path. Note that
* truncation permissions may also be checked based on already opened files,
* using the security_file_truncate() hook.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_truncate(const struct path *path)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(path_truncate, path);
}
/**
* security_path_chmod() - Check if changing the file's mode is allowed
* @path: file
* @mode: new mode
*
* Check for permission to change a mode of the file @path. The new mode is
* specified in @mode which is a bitmask of constants from
* <include/uapi/linux/stat.h>.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_chmod(const struct path *path, umode_t mode)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(path_chmod, path, mode);
}
/**
* security_path_chown() - Check if changing the file's owner/group is allowed
* @path: file
* @uid: file owner
* @gid: file group
*
* Check for permission to change owner/group of a file or directory.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(path_chown, path, uid, gid);
}
/**
* security_path_chroot() - Check if changing the root directory is allowed
* @path: directory
*
* Check for permission to change root directory.
*
* Return: Returns 0 if permission is granted.
*/
int security_path_chroot(const struct path *path)
{
return call_int_hook(path_chroot, path);
}
#endif /* CONFIG_SECURITY_PATH */
/**
* security_inode_create() - Check if creating a file is allowed
* @dir: the parent directory
* @dentry: the file being created
* @mode: requested file mode
*
* Check permission to create a regular file.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_create(struct inode *dir, struct dentry *dentry,
umode_t mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_create, dir, dentry, mode);
}
EXPORT_SYMBOL_GPL(security_inode_create);
/**
* security_inode_post_create_tmpfile() - Update inode security of new tmpfile
* @idmap: idmap of the mount
* @inode: inode of the new tmpfile
*
* Update inode security data after a tmpfile has been created.
*/
void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
struct inode *inode)
{
if (unlikely(IS_PRIVATE(inode)))
return;
call_void_hook(inode_post_create_tmpfile, idmap, inode);
}
/**
* security_inode_link() - Check if creating a hard link is allowed
* @old_dentry: existing file
* @dir: new parent directory
* @new_dentry: new link
*
* Check permission before creating a new hard link to a file.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
return 0;
return call_int_hook(inode_link, old_dentry, dir, new_dentry);
}
/**
* security_inode_unlink() - Check if removing a hard link is allowed
* @dir: parent directory
* @dentry: file
*
* Check the permission to remove a hard link to a file.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_unlink(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_unlink, dir, dentry);
}
/**
* security_inode_symlink() - Check if creating a symbolic link is allowed
* @dir: parent directory
* @dentry: symbolic link
* @old_name: existing filename
*
* Check the permission to create a symbolic link to a file.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_symlink, dir, dentry, old_name);
}
/**
* security_inode_mkdir() - Check if creation a new director is allowed
* @dir: parent directory
* @dentry: new directory
* @mode: new directory mode
*
* Check permissions to create a new directory in the existing directory
* associated with inode structure @dir.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_mkdir, dir, dentry, mode);
}
EXPORT_SYMBOL_GPL(security_inode_mkdir);
/**
* security_inode_rmdir() - Check if removing a directory is allowed
* @dir: parent directory
* @dentry: directory to be removed
*
* Check the permission to remove a directory.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_rmdir, dir, dentry);
}
/**
* security_inode_mknod() - Check if creating a special file is allowed
* @dir: parent directory
* @dentry: new file
* @mode: new file mode
* @dev: device number
*
* Check permissions when creating a special file (or a socket or a fifo file
* created via the mknod system call). Note that if mknod operation is being
* done for a regular file, then the create hook will be called and not this
* hook.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_mknod(struct inode *dir, struct dentry *dentry,
umode_t mode, dev_t dev)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_mknod, dir, dentry, mode, dev);
}
/**
* security_inode_rename() - Check if renaming a file is allowed
* @old_dir: parent directory of the old file
* @old_dentry: the old file
* @new_dir: parent directory of the new file
* @new_dentry: the new file
* @flags: flags
*
* Check for permission to rename a file or directory.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
(d_is_positive(new_dentry) &&
IS_PRIVATE(d_backing_inode(new_dentry)))))
return 0;
if (flags & RENAME_EXCHANGE) {
int err = call_int_hook(inode_rename, new_dir, new_dentry,
old_dir, old_dentry);
if (err)
return err;
}
return call_int_hook(inode_rename, old_dir, old_dentry,
new_dir, new_dentry);
}
/**
* security_inode_readlink() - Check if reading a symbolic link is allowed
* @dentry: link
*
* Check the permission to read the symbolic link.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_readlink(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_readlink, dentry);
}
/**
* security_inode_follow_link() - Check if following a symbolic link is allowed
* @dentry: link dentry
* @inode: link inode
* @rcu: true if in RCU-walk mode
*
* Check permission to follow a symbolic link when looking up a pathname. If
* @rcu is true, @inode is not stable.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
bool rcu)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return call_int_hook(inode_follow_link, dentry, inode, rcu);
}
/**
* security_inode_permission() - Check if accessing an inode is allowed
* @inode: inode
* @mask: access mask
*
* Check permission before accessing an inode. This hook is called by the
* existing Linux permission function, so a security module can use it to
* provide additional checking for existing Linux permission checks. Notice
* that this hook is called when a file is opened (as well as many other
* operations), whereas the file_security_ops permission hook is called when
* the actual read/write operations are performed.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_permission(struct inode *inode, int mask)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return call_int_hook(inode_permission, inode, mask);
}
/**
* security_inode_setattr() - Check if setting file attributes is allowed
* @idmap: idmap of the mount
* @dentry: file
* @attr: new attributes
*
* Check permission before setting file attributes. Note that the kernel call
* to notify_change is performed from several locations, whenever file
* attributes change (such as when a file is truncated, chown/chmod operations,
* transferring disk quotas, etc).
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *attr)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_setattr, idmap, dentry, attr);
}
EXPORT_SYMBOL_GPL(security_inode_setattr);
/**
* security_inode_post_setattr() - Update the inode after a setattr operation
* @idmap: idmap of the mount
* @dentry: file
* @ia_valid: file attributes set
*
* Update inode security field after successful setting file attributes.
*/
void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
int ia_valid)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return;
call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
}
/**
* security_inode_getattr() - Check if getting file attributes is allowed
* @path: file
*
* Check permission before obtaining file attributes.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_getattr(const struct path *path)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(inode_getattr, path);
}
/**
* security_inode_setxattr() - Check if setting file xattrs is allowed
* @idmap: idmap of the mount
* @dentry: file
* @name: xattr name
* @value: xattr value
* @size: size of xattr value
* @flags: flags
*
* This hook performs the desired permission checks before setting the extended
* attributes (xattrs) on @dentry. It is important to note that we have some
* additional logic before the main LSM implementation calls to detect if we
* need to perform an additional capability check at the LSM layer.
*
* Normally we enforce a capability check prior to executing the various LSM
* hook implementations, but if a LSM wants to avoid this capability check,
* it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
* xattrs that it wants to avoid the capability check, leaving the LSM fully
* responsible for enforcing the access control for the specific xattr. If all
* of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
* or return a 0 (the default return value), the capability check is still
* performed. If no 'inode_xattr_skipcap' hooks are registered the capability
* check is performed.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_setxattr(struct mnt_idmap *idmap,
struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
int rc;
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
/* enforce the capability checks at the lsm layer, if needed */
if (!call_int_hook(inode_xattr_skipcap, name)) {
rc = cap_inode_setxattr(dentry, name, value, size, flags);
if (rc)
return rc;
}
return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
flags);
}
/**
* security_inode_set_acl() - Check if setting posix acls is allowed
* @idmap: idmap of the mount
* @dentry: file
* @acl_name: acl name
* @kacl: acl struct
*
* Check permission before setting posix acls, the posix acls in @kacl are
* identified by @acl_name.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_set_acl(struct mnt_idmap *idmap,
struct dentry *dentry, const char *acl_name,
struct posix_acl *kacl)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
}
/**
* security_inode_post_set_acl() - Update inode security from posix acls set
* @dentry: file
* @acl_name: acl name
* @kacl: acl struct
*
* Update inode security data after successfully setting posix acls on @dentry.
* The posix acls in @kacl are identified by @acl_name.
*/
void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
struct posix_acl *kacl)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return;
call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
}
/**
* security_inode_get_acl() - Check if reading posix acls is allowed
* @idmap: idmap of the mount
* @dentry: file
* @acl_name: acl name
*
* Check permission before getting osix acls, the posix acls are identified by
* @acl_name.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_get_acl(struct mnt_idmap *idmap,
struct dentry *dentry, const char *acl_name)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
}
/**
* security_inode_remove_acl() - Check if removing a posix acl is allowed
* @idmap: idmap of the mount
* @dentry: file
* @acl_name: acl name
*
* Check permission before removing posix acls, the posix acls are identified
* by @acl_name.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_remove_acl(struct mnt_idmap *idmap,
struct dentry *dentry, const char *acl_name)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
}
/**
* security_inode_post_remove_acl() - Update inode security after rm posix acls
* @idmap: idmap of the mount
* @dentry: file
* @acl_name: acl name
*
* Update inode security data after successfully removing posix acls on
* @dentry in @idmap. The posix acls are identified by @acl_name.
*/
void security_inode_post_remove_acl(struct mnt_idmap *idmap,
struct dentry *dentry, const char *acl_name)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return;
call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
}
/**
* security_inode_post_setxattr() - Update the inode after a setxattr operation
* @dentry: file
* @name: xattr name
* @value: xattr value
* @size: xattr value size
* @flags: flags
*
* Update inode security field after successful setxattr operation.
*/
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return;
call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
}
/**
* security_inode_getxattr() - Check if xattr access is allowed
* @dentry: file
* @name: xattr name
*
* Check permission before obtaining the extended attributes identified by
* @name for @dentry.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_getxattr(struct dentry *dentry, const char *name)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_getxattr, dentry, name);
}
/**
* security_inode_listxattr() - Check if listing xattrs is allowed
* @dentry: file
*
* Check permission before obtaining the list of extended attribute names for
* @dentry.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_listxattr(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_listxattr, dentry);
}
/**
* security_inode_removexattr() - Check if removing an xattr is allowed
* @idmap: idmap of the mount
* @dentry: file
* @name: xattr name
*
* This hook performs the desired permission checks before setting the extended
* attributes (xattrs) on @dentry. It is important to note that we have some
* additional logic before the main LSM implementation calls to detect if we
* need to perform an additional capability check at the LSM layer.
*
* Normally we enforce a capability check prior to executing the various LSM
* hook implementations, but if a LSM wants to avoid this capability check,
* it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
* xattrs that it wants to avoid the capability check, leaving the LSM fully
* responsible for enforcing the access control for the specific xattr. If all
* of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
* or return a 0 (the default return value), the capability check is still
* performed. If no 'inode_xattr_skipcap' hooks are registered the capability
* check is performed.
*
* Return: Returns 0 if permission is granted.
*/
int security_inode_removexattr(struct mnt_idmap *idmap,
struct dentry *dentry, const char *name)
{
int rc;
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
/* enforce the capability checks at the lsm layer, if needed */
if (!call_int_hook(inode_xattr_skipcap, name)) {
rc = cap_inode_removexattr(idmap, dentry, name);
if (rc)
return rc;
}
return call_int_hook(inode_removexattr, idmap, dentry, name);
}
/**
* security_inode_post_removexattr() - Update the inode after a removexattr op
* @dentry: file
* @name: xattr name
*
* Update the inode after a successful removexattr operation.
*/
void security_inode_post_removexattr(struct dentry *dentry, const char *name)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return;
call_void_hook(inode_post_removexattr, dentry, name);
}
/**
* security_inode_need_killpriv() - Check if security_inode_killpriv() required
* @dentry: associated dentry
*
* Called when an inode has been changed to determine if
* security_inode_killpriv() should be called.
*
* Return: Return <0 on error to abort the inode change operation, return 0 if
* security_inode_killpriv() does not need to be called, return >0 if
* security_inode_killpriv() does need to be called.
*/
int security_inode_need_killpriv(struct dentry *dentry)
{
return call_int_hook(inode_need_killpriv, dentry);
}
/**
* security_inode_killpriv() - The setuid bit is removed, update LSM state
* @idmap: idmap of the mount
* @dentry: associated dentry
*
* The @dentry's setuid bit is being removed. Remove similar security labels.
* Called with the dentry->d_inode->i_mutex held.
*
* Return: Return 0 on success. If error is returned, then the operation
* causing setuid bit removal is failed.
*/
int security_inode_killpriv(struct mnt_idmap *idmap,
struct dentry *dentry)
{
return call_int_hook(inode_killpriv, idmap, dentry);
}
/**
* security_inode_getsecurity() - Get the xattr security label of an inode
* @idmap: idmap of the mount
* @inode: inode
* @name: xattr name
* @buffer: security label buffer
* @alloc: allocation flag
*
* Retrieve a copy of the extended attribute representation of the security
* label associated with @name for @inode via @buffer. Note that @name is the
* remainder of the attribute name after the security prefix has been removed.
* @alloc is used to specify if the call should return a value via the buffer
* or just the value length.
*
* Return: Returns size of buffer on success.
*/
int security_inode_getsecurity(struct mnt_idmap *idmap,
struct inode *inode, const char *name,
void **buffer, bool alloc)
{
if (unlikely(IS_PRIVATE(inode)))
return LSM_RET_DEFAULT(inode_getsecurity);
return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
alloc);
}
/**
* security_inode_setsecurity() - Set the xattr security label of an inode
* @inode: inode
* @name: xattr name
* @value: security label
* @size: length of security label
* @flags: flags
*
* Set the security label associated with @name for @inode from the extended
* attribute value @value. @size indicates the size of the @value in bytes.
* @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
* remainder of the attribute name after the security. prefix has been removed.
*
* Return: Returns 0 on success.
*/
int security_inode_setsecurity(struct inode *inode, const char *name,
const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(inode)))
return LSM_RET_DEFAULT(inode_setsecurity);
return call_int_hook(inode_setsecurity, inode, name, value, size,
flags);
}
/**
* security_inode_listsecurity() - List the xattr security label names
* @inode: inode
* @buffer: buffer
* @buffer_size: size of buffer
*
* Copy the extended attribute names for the security labels associated with
* @inode into @buffer. The maximum size of @buffer is specified by
* @buffer_size. @buffer may be NULL to request the size of the buffer
* required.
*
* Return: Returns number of bytes used/required on success.
*/
int security_inode_listsecurity(struct inode *inode,
char *buffer, size_t buffer_size)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
}
EXPORT_SYMBOL(security_inode_listsecurity);
/**
* security_inode_getsecid() - Get an inode's secid
* @inode: inode
* @secid: secid to return
*
* Get the secid associated with the node. In case of failure, @secid will be
* set to zero.
*/
void security_inode_getsecid(struct inode *inode, u32 *secid)
{
call_void_hook(inode_getsecid, inode, secid);
}
/**
* security_inode_copy_up() - Create new creds for an overlayfs copy-up op
* @src: union dentry of copy-up file
* @new: newly created creds
*
* A file is about to be copied up from lower layer to upper layer of overlay
* filesystem. Security module can prepare a set of new creds and modify as
* need be and return new creds. Caller will switch to new creds temporarily to
* create new file and release newly allocated creds.
*
* Return: Returns 0 on success or a negative error code on error.
*/
int security_inode_copy_up(struct dentry *src, struct cred **new)
{
return call_int_hook(inode_copy_up, src, new);
}
EXPORT_SYMBOL(security_inode_copy_up);
/**
* security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
* @src: union dentry of copy-up file
* @name: xattr name
*
* Filter the xattrs being copied up when a unioned file is copied up from a
* lower layer to the union/overlay layer. The caller is responsible for
* reading and writing the xattrs, this hook is merely a filter.
*
* Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
* -EOPNOTSUPP if the security module does not know about attribute,
* or a negative error code to abort the copy up.
*/
int security_inode_copy_up_xattr(struct dentry *src, const char *name)
{
int rc;
rc = call_int_hook(inode_copy_up_xattr, src, name);
if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
return rc;
return LSM_RET_DEFAULT(inode_copy_up_xattr);
}
EXPORT_SYMBOL(security_inode_copy_up_xattr);
/**
* security_inode_setintegrity() - Set the inode's integrity data
* @inode: inode
* @type: type of integrity, e.g. hash digest, signature, etc
* @value: the integrity value
* @size: size of the integrity value
*
* Register a verified integrity measurement of a inode with LSMs.
* LSMs should free the previously saved data if @value is NULL.
*
* Return: Returns 0 on success, negative values on failure.
*/
int security_inode_setintegrity(const struct inode *inode,
enum lsm_integrity_type type, const void *value,
size_t size)
{
return call_int_hook(inode_setintegrity, inode, type, value, size);
}
EXPORT_SYMBOL(security_inode_setintegrity);
/**
* security_kernfs_init_security() - Init LSM context for a kernfs node
* @kn_dir: parent kernfs node
* @kn: the kernfs node to initialize
*
* Initialize the security context of a newly created kernfs node based on its
* own and its parent's attributes.
*
* Return: Returns 0 if permission is granted.
*/
int security_kernfs_init_security(struct kernfs_node *kn_dir,
struct kernfs_node *kn)
{
return call_int_hook(kernfs_init_security, kn_dir, kn);
}
/**
* security_file_permission() - Check file permissions
* @file: file
* @mask: requested permissions
*
* Check file permissions before accessing an open file. This hook is called
* by various operations that read or write files. A security module can use
* this hook to perform additional checking on these operations, e.g. to
* revalidate permissions on use to support privilege bracketing or policy
* changes. Notice that this hook is used when the actual read/write
* operations are performed, whereas the inode_security_ops hook is called when
* a file is opened (as well as many other operations). Although this hook can
* be used to revalidate permissions for various system call operations that
* read or write files, it does not address the revalidation of permissions for
* memory-mapped files. Security modules must handle this separately if they
* need such revalidation.
*
* Return: Returns 0 if permission is granted.
*/
int security_file_permission(struct file *file, int mask)
{
return call_int_hook(file_permission, file, mask);
}
/**
* security_file_alloc() - Allocate and init a file's LSM blob
* @file: the file
*
* Allocate and attach a security structure to the file->f_security field. The
* security field is initialized to NULL when the structure is first created.
*
* Return: Return 0 if the hook is successful and permission is granted.
*/
int security_file_alloc(struct file *file)
{
int rc = lsm_file_alloc(file);
if (rc)
return rc;
rc = call_int_hook(file_alloc_security, file);
if (unlikely(rc))
security_file_free(file);
return rc;
}
/**
* security_file_release() - Perform actions before releasing the file ref
* @file: the file
*
* Perform actions before releasing the last reference to a file.
*/
void security_file_release(struct file *file)
{
call_void_hook(file_release, file);
}
/**
* security_file_free() - Free a file's LSM blob
* @file: the file
*
* Deallocate and free any security structures stored in file->f_security.
*/
void security_file_free(struct file *file)
{
void *blob;
call_void_hook(file_free_security, file);
blob = file->f_security;
if (blob) {
file->f_security = NULL;
kmem_cache_free(lsm_file_cache, blob);
}
}
/**
* security_file_ioctl() - Check if an ioctl is allowed
* @file: associated file
* @cmd: ioctl cmd
* @arg: ioctl arguments
*
* Check permission for an ioctl operation on @file. Note that @arg sometimes
* represents a user space pointer; in other cases, it may be a simple integer
* value. When @arg represents a user space pointer, it should never be used
* by the security module.
*
* Return: Returns 0 if permission is granted.
*/
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return call_int_hook(file_ioctl, file, cmd, arg);
}
EXPORT_SYMBOL_GPL(security_file_ioctl);
/**
* security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
* @file: associated file
* @cmd: ioctl cmd
* @arg: ioctl arguments
*
* Compat version of security_file_ioctl() that correctly handles 32-bit
* processes running on 64-bit kernels.
*
* Return: Returns 0 if permission is granted.
*/
int security_file_ioctl_compat(struct file *file, unsigned int cmd,
unsigned long arg)
{
return call_int_hook(file_ioctl_compat, file, cmd, arg);
}
EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
{
/*
* Does we have PROT_READ and does the application expect
* it to imply PROT_EXEC? If not, nothing to talk about...
*/
if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
return prot;
if (!(current->personality & READ_IMPLIES_EXEC))
return prot;
/*
* if that's an anonymous mapping, let it.
*/
if (!file)
return prot | PROT_EXEC;
/*
* ditto if it's not on noexec mount, except that on !MMU we need
* NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
*/
if (!path_noexec(&file->f_path)) {
#ifndef CONFIG_MMU
if (file->f_op->mmap_capabilities) {
unsigned caps = file->f_op->mmap_capabilities(file);
if (!(caps & NOMMU_MAP_EXEC))
return prot;
}
#endif
return prot | PROT_EXEC;
}
/* anything on noexec mount won't get PROT_EXEC */
return prot;
}
/**
* security_mmap_file() - Check if mmap'ing a file is allowed
* @file: file
* @prot: protection applied by the kernel
* @flags: flags
*
* Check permissions for a mmap operation. The @file may be NULL, e.g. if
* mapping anonymous memory.
*
* Return: Returns 0 if permission is granted.
*/
int security_mmap_file(struct file *file, unsigned long prot,
unsigned long flags)
{
return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
flags);
}
/**
* security_mmap_addr() - Check if mmap'ing an address is allowed
* @addr: address
*
* Check permissions for a mmap operation at @addr.
*
* Return: Returns 0 if permission is granted.
*/
int security_mmap_addr(unsigned long addr)
{
return call_int_hook(mmap_addr, addr);
}
/**
* security_file_mprotect() - Check if changing memory protections is allowed
* @vma: memory region
* @reqprot: application requested protection
* @prot: protection applied by the kernel
*
* Check permissions before changing memory access permissions.
*
* Return: Returns 0 if permission is granted.
*/
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
unsigned long prot)
{
return call_int_hook(file_mprotect, vma, reqprot, prot);
}
/**
* security_file_lock() - Check if a file lock is allowed
* @file: file
* @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
*
* Check permission before performing file locking operations. Note the hook
* mediates both flock and fcntl style locks.
*
* Return: Returns 0 if permission is granted.
*/
int security_file_lock(struct file *file, unsigned int cmd)
{
return call_int_hook(file_lock, file, cmd);
}
/**
* security_file_fcntl() - Check if fcntl() op is allowed
* @file: file
* @cmd: fcntl command
* @arg: command argument
*
* Check permission before allowing the file operation specified by @cmd from
* being performed on the file @file. Note that @arg sometimes represents a
* user space pointer; in other cases, it may be a simple integer value. When
* @arg represents a user space pointer, it should never be used by the
* security module.
*
* Return: Returns 0 if permission is granted.
*/
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
{
return call_int_hook(file_fcntl, file, cmd, arg);
}
/**
* security_file_set_fowner() - Set the file owner info in the LSM blob
* @file: the file
*
* Save owner security information (typically from current->security) in
* file->f_security for later use by the send_sigiotask hook.
*
* This hook is called with file->f_owner.lock held.
*
* Return: Returns 0 on success.
*/
void security_file_set_fowner(struct file *file)
{
call_void_hook(file_set_fowner, file);
}
/**
* security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
* @tsk: target task
* @fown: signal sender
* @sig: signal to be sent, SIGIO is sent if 0
*
* Check permission for the file owner @fown to send SIGIO or SIGURG to the
* process @tsk. Note that this hook is sometimes called from interrupt. Note
* that the fown_struct, @fown, is never outside the context of a struct file,
* so the file structure (and associated security information) can always be
* obtained: container_of(fown, struct file, f_owner).
*
* Return: Returns 0 if permission is granted.
*/
int security_file_send_sigiotask(struct task_struct *tsk,
struct fown_struct *fown, int sig)
{
return call_int_hook(file_send_sigiotask, tsk, fown, sig);
}
/**
* security_file_receive() - Check if receiving a file via IPC is allowed
* @file: file being received
*
* This hook allows security modules to control the ability of a process to
* receive an open file descriptor via socket IPC.
*
* Return: Returns 0 if permission is granted.
*/
int security_file_receive(struct file *file)
{
return call_int_hook(file_receive, file);
}
/**
* security_file_open() - Save open() time state for late use by the LSM
* @file:
*
* Save open-time permission checking state for later use upon file_permission,
* and recheck access if anything has changed since inode_permission.
*
* Return: Returns 0 if permission is granted.
*/
int security_file_open(struct file *file)
{
int ret;
ret = call_int_hook(file_open, file);
if (ret)
return ret;
return fsnotify_open_perm(file);
}
/**
* security_file_post_open() - Evaluate a file after it has been opened
* @file: the file
* @mask: access mask
*
* Evaluate an opened file and the access mask requested with open(). The hook
* is useful for LSMs that require the file content to be available in order to
* make decisions.
*
* Return: Returns 0 if permission is granted.
*/
int security_file_post_open(struct file *file, int mask)
{
return call_int_hook(file_post_open, file, mask);
}
EXPORT_SYMBOL_GPL(security_file_post_open);
/**
* security_file_truncate() - Check if truncating a file is allowed
* @file: file
*
* Check permission before truncating a file, i.e. using ftruncate. Note that
* truncation permission may also be checked based on the path, using the
* @path_truncate hook.
*
* Return: Returns 0 if permission is granted.
*/
int security_file_truncate(struct file *file)
{
return call_int_hook(file_truncate, file);
}
/**
* security_task_alloc() - Allocate a task's LSM blob
* @task: the task
* @clone_flags: flags indicating what is being shared
*
* Handle allocation of task-related resources.
*
* Return: Returns a zero on success, negative values on failure.
*/
int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
{
int rc = lsm_task_alloc(task);
if (rc)
return rc;
rc = call_int_hook(task_alloc, task, clone_flags);
if (unlikely(rc))
security_task_free(task);
return rc;
}
/**
* security_task_free() - Free a task's LSM blob and related resources
* @task: task
*
* Handle release of task-related resources. Note that this can be called from
* interrupt context.
*/
void security_task_free(struct task_struct *task)
{
call_void_hook(task_free, task);
kfree(task->security);
task->security = NULL;
}
/**
* security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
* @cred: credentials
* @gfp: gfp flags
*
* Only allocate sufficient memory and attach to @cred such that
* cred_transfer() will not get ENOMEM.
*
* Return: Returns 0 on success, negative values on failure.
*/
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
{
int rc = lsm_cred_alloc(cred, gfp);
if (rc)
return rc;
rc = call_int_hook(cred_alloc_blank, cred, gfp);
if (unlikely(rc))
security_cred_free(cred);
return rc;
}
/**
* security_cred_free() - Free the cred's LSM blob and associated resources
* @cred: credentials
*
* Deallocate and clear the cred->security field in a set of credentials.
*/
void security_cred_free(struct cred *cred)
{
/*
* There is a failure case in prepare_creds() that
* may result in a call here with ->security being NULL.
*/
if (unlikely(cred->security == NULL))
return;
call_void_hook(cred_free, cred);
kfree(cred->security);
cred->security = NULL;
}
/**
* security_prepare_creds() - Prepare a new set of credentials
* @new: new credentials
* @old: original credentials
* @gfp: gfp flags
*
* Prepare a new set of credentials by copying the data from the old set.
*
* Return: Returns 0 on success, negative values on failure.
*/
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
{
int rc = lsm_cred_alloc(new, gfp);
if (rc)
return rc;
rc = call_int_hook(cred_prepare, new, old, gfp);
if (unlikely(rc))
security_cred_free(new);
return rc;
}
/**
* security_transfer_creds() - Transfer creds
* @new: target credentials
* @old: original credentials
*
* Transfer data from original creds to new creds.
*/
void security_transfer_creds(struct cred *new, const struct cred *old)
{
call_void_hook(cred_transfer, new, old);
}
/**
* security_cred_getsecid() - Get the secid from a set of credentials
* @c: credentials
* @secid: secid value
*
* Retrieve the security identifier of the cred structure @c. In case of
* failure, @secid will be set to zero.
*/
void security_cred_getsecid(const struct cred *c, u32 *secid)
{
*secid = 0;
call_void_hook(cred_getsecid, c, secid);
}
EXPORT_SYMBOL(security_cred_getsecid);
/**
* security_kernel_act_as() - Set the kernel credentials to act as secid
* @new: credentials
* @secid: secid
*
* Set the credentials for a kernel service to act as (subjective context).
* The current task must be the one that nominated @secid.
*
* Return: Returns 0 if successful.
*/
int security_kernel_act_as(struct cred *new, u32 secid)
{
return call_int_hook(kernel_act_as, new, secid);
}
/**
* security_kernel_create_files_as() - Set file creation context using an inode
* @new: target credentials
* @inode: reference inode
*
* Set the file creation context in a set of credentials to be the same as the
* objective context of the specified inode. The current task must be the one
* that nominated @inode.
*
* Return: Returns 0 if successful.
*/
int security_kernel_create_files_as(struct cred *new, struct inode *inode)
{
return call_int_hook(kernel_create_files_as, new, inode);
}
/**
* security_kernel_module_request() - Check if loading a module is allowed
* @kmod_name: module name
*
* Ability to trigger the kernel to automatically upcall to userspace for
* userspace to load a kernel module with the given name.
*
* Return: Returns 0 if successful.
*/
int security_kernel_module_request(char *kmod_name)
{
return call_int_hook(kernel_module_request, kmod_name);
}
/**
* security_kernel_read_file() - Read a file specified by userspace
* @file: file
* @id: file identifier
* @contents: trust if security_kernel_post_read_file() will be called
*
* Read a file specified by userspace.
*
* Return: Returns 0 if permission is granted.
*/
int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
bool contents)
{
return call_int_hook(kernel_read_file, file, id, contents);
}
EXPORT_SYMBOL_GPL(security_kernel_read_file);
/**
* security_kernel_post_read_file() - Read a file specified by userspace
* @file: file
* @buf: file contents
* @size: size of file contents
* @id: file identifier
*
* Read a file specified by userspace. This must be paired with a prior call
* to security_kernel_read_file() call that indicated this hook would also be
* called, see security_kernel_read_file() for more information.
*
* Return: Returns 0 if permission is granted.
*/
int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
enum kernel_read_file_id id)
{
return call_int_hook(kernel_post_read_file, file, buf, size, id);
}
EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
/**
* security_kernel_load_data() - Load data provided by userspace
* @id: data identifier
* @contents: true if security_kernel_post_load_data() will be called
*
* Load data provided by userspace.
*
* Return: Returns 0 if permission is granted.
*/
int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
{
return call_int_hook(kernel_load_data, id, contents);
}
EXPORT_SYMBOL_GPL(security_kernel_load_data);
/**
* security_kernel_post_load_data() - Load userspace data from a non-file source
* @buf: data
* @size: size of data
* @id: data identifier
* @description: text description of data, specific to the id value
*
* Load data provided by a non-file source (usually userspace buffer). This
* must be paired with a prior security_kernel_load_data() call that indicated
* this hook would also be called, see security_kernel_load_data() for more
* information.
*
* Return: Returns 0 if permission is granted.
*/
int security_kernel_post_load_data(char *buf, loff_t size,
enum kernel_load_data_id id,
char *description)
{
return call_int_hook(kernel_post_load_data, buf, size, id, description);
}
EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
/**
* security_task_fix_setuid() - Update LSM with new user id attributes
* @new: updated credentials
* @old: credentials being replaced
* @flags: LSM_SETID_* flag values
*
* Update the module's state after setting one or more of the user identity
* attributes of the current process. The @flags parameter indicates which of
* the set*uid system calls invoked this hook. If @new is the set of
* credentials that will be installed. Modifications should be made to this
* rather than to @current->cred.
*
* Return: Returns 0 on success.
*/
int security_task_fix_setuid(struct cred *new, const struct cred *old,
int flags)
{
return call_int_hook(task_fix_setuid, new, old, flags);
}
/**
* security_task_fix_setgid() - Update LSM with new group id attributes
* @new: updated credentials
* @old: credentials being replaced
* @flags: LSM_SETID_* flag value
*
* Update the module's state after setting one or more of the group identity
* attributes of the current process. The @flags parameter indicates which of
* the set*gid system calls invoked this hook. @new is the set of credentials
* that will be installed. Modifications should be made to this rather than to
* @current->cred.
*
* Return: Returns 0 on success.
*/
int security_task_fix_setgid(struct cred *new, const struct cred *old,
int flags)
{
return call_int_hook(task_fix_setgid, new, old, flags);
}
/**
* security_task_fix_setgroups() - Update LSM with new supplementary groups
* @new: updated credentials
* @old: credentials being replaced
*
* Update the module's state after setting the supplementary group identity
* attributes of the current process. @new is the set of credentials that will
* be installed. Modifications should be made to this rather than to
* @current->cred.
*
* Return: Returns 0 on success.
*/
int security_task_fix_setgroups(struct cred *new, const struct cred *old)
{
return call_int_hook(task_fix_setgroups, new, old);
}
/**
* security_task_setpgid() - Check if setting the pgid is allowed
* @p: task being modified
* @pgid: new pgid
*
* Check permission before setting the process group identifier of the process
* @p to @pgid.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_setpgid(struct task_struct *p, pid_t pgid)
{
return call_int_hook(task_setpgid, p, pgid);
}
/**
* security_task_getpgid() - Check if getting the pgid is allowed
* @p: task
*
* Check permission before getting the process group identifier of the process
* @p.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_getpgid(struct task_struct *p)
{
return call_int_hook(task_getpgid, p);
}
/**
* security_task_getsid() - Check if getting the session id is allowed
* @p: task
*
* Check permission before getting the session identifier of the process @p.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_getsid(struct task_struct *p)
{
return call_int_hook(task_getsid, p);
}
/**
* security_current_getsecid_subj() - Get the current task's subjective secid
* @secid: secid value
*
* Retrieve the subjective security identifier of the current task and return
* it in @secid. In case of failure, @secid will be set to zero.
*/
void security_current_getsecid_subj(u32 *secid)
{
*secid = 0;
call_void_hook(current_getsecid_subj, secid);
}
EXPORT_SYMBOL(security_current_getsecid_subj);
/**
* security_task_getsecid_obj() - Get a task's objective secid
* @p: target task
* @secid: secid value
*
* Retrieve the objective security identifier of the task_struct in @p and
* return it in @secid. In case of failure, @secid will be set to zero.
*/
void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
{
*secid = 0;
call_void_hook(task_getsecid_obj, p, secid);
}
EXPORT_SYMBOL(security_task_getsecid_obj);
/**
* security_task_setnice() - Check if setting a task's nice value is allowed
* @p: target task
* @nice: nice value
*
* Check permission before setting the nice value of @p to @nice.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_setnice(struct task_struct *p, int nice)
{
return call_int_hook(task_setnice, p, nice);
}
/**
* security_task_setioprio() - Check if setting a task's ioprio is allowed
* @p: target task
* @ioprio: ioprio value
*
* Check permission before setting the ioprio value of @p to @ioprio.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_setioprio(struct task_struct *p, int ioprio)
{
return call_int_hook(task_setioprio, p, ioprio);
}
/**
* security_task_getioprio() - Check if getting a task's ioprio is allowed
* @p: task
*
* Check permission before getting the ioprio value of @p.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_getioprio(struct task_struct *p)
{
return call_int_hook(task_getioprio, p);
}
/**
* security_task_prlimit() - Check if get/setting resources limits is allowed
* @cred: current task credentials
* @tcred: target task credentials
* @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
*
* Check permission before getting and/or setting the resource limits of
* another task.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
unsigned int flags)
{
return call_int_hook(task_prlimit, cred, tcred, flags);
}
/**
* security_task_setrlimit() - Check if setting a new rlimit value is allowed
* @p: target task's group leader
* @resource: resource whose limit is being set
* @new_rlim: new resource limit
*
* Check permission before setting the resource limits of process @p for
* @resource to @new_rlim. The old resource limit values can be examined by
* dereferencing (p->signal->rlim + resource).
*
* Return: Returns 0 if permission is granted.
*/
int security_task_setrlimit(struct task_struct *p, unsigned int resource,
struct rlimit *new_rlim)
{
return call_int_hook(task_setrlimit, p, resource, new_rlim);
}
/**
* security_task_setscheduler() - Check if setting sched policy/param is allowed
* @p: target task
*
* Check permission before setting scheduling policy and/or parameters of
* process @p.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_setscheduler(struct task_struct *p)
{
return call_int_hook(task_setscheduler, p);
}
/**
* security_task_getscheduler() - Check if getting scheduling info is allowed
* @p: target task
*
* Check permission before obtaining scheduling information for process @p.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_getscheduler(struct task_struct *p)
{
return call_int_hook(task_getscheduler, p);
}
/**
* security_task_movememory() - Check if moving memory is allowed
* @p: task
*
* Check permission before moving memory owned by process @p.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_movememory(struct task_struct *p)
{
return call_int_hook(task_movememory, p);
}
/**
* security_task_kill() - Check if sending a signal is allowed
* @p: target process
* @info: signal information
* @sig: signal value
* @cred: credentials of the signal sender, NULL if @current
*
* Check permission before sending signal @sig to @p. @info can be NULL, the
* constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or
* SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
* the kernel and should typically be permitted. SIGIO signals are handled
* separately by the send_sigiotask hook in file_security_ops.
*
* Return: Returns 0 if permission is granted.
*/
int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
int sig, const struct cred *cred)
{
return call_int_hook(task_kill, p, info, sig, cred);
}
/**
* security_task_prctl() - Check if a prctl op is allowed
* @option: operation
* @arg2: argument
* @arg3: argument
* @arg4: argument
* @arg5: argument
*
* Check permission before performing a process control operation on the
* current process.
*
* Return: Return -ENOSYS if no-one wanted to handle this op, any other value
* to cause prctl() to return immediately with that value.
*/
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
{
int thisrc;
int rc = LSM_RET_DEFAULT(task_prctl);
struct lsm_static_call *scall;
lsm_for_each_hook(scall, task_prctl) {
thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
rc = thisrc;
if (thisrc != 0)
break;
}
}
return rc;
}
/**
* security_task_to_inode() - Set the security attributes of a task's inode
* @p: task
* @inode: inode
*
* Set the security attributes for an inode based on an associated task's
* security attributes, e.g. for /proc/pid inodes.
*/
void security_task_to_inode(struct task_struct *p, struct inode *inode)
{
call_void_hook(task_to_inode, p, inode);
}
/**
* security_create_user_ns() - Check if creating a new userns is allowed
* @cred: prepared creds
*
* Check permission prior to creating a new user namespace.
*
* Return: Returns 0 if successful, otherwise < 0 error code.
*/
int security_create_user_ns(const struct cred *cred)
{
return call_int_hook(userns_create, cred);
}
/**
* security_ipc_permission() - Check if sysv ipc access is allowed
* @ipcp: ipc permission structure
* @flag: requested permissions
*
* Check permissions for access to IPC.
*
* Return: Returns 0 if permission is granted.
*/
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
{
return call_int_hook(ipc_permission, ipcp, flag);
}
/**
* security_ipc_getsecid() - Get the sysv ipc object's secid
* @ipcp: ipc permission structure
* @secid: secid pointer
*
* Get the secid associated with the ipc object. In case of failure, @secid
* will be set to zero.
*/
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
{
*secid = 0;
call_void_hook(ipc_getsecid, ipcp, secid);
}
/**
* security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
* @msg: message structure
*
* Allocate and attach a security structure to the msg->security field. The
* security field is initialized to NULL when the structure is first created.
*
* Return: Return 0 if operation was successful and permission is granted.
*/
int security_msg_msg_alloc(struct msg_msg *msg)
{
int rc = lsm_msg_msg_alloc(msg);
if (unlikely(rc))
return rc;
rc = call_int_hook(msg_msg_alloc_security, msg);
if (unlikely(rc))
security_msg_msg_free(msg);
return rc;
}
/**
* security_msg_msg_free() - Free a sysv ipc message LSM blob
* @msg: message structure
*
* Deallocate the security structure for this message.
*/
void security_msg_msg_free(struct msg_msg *msg)
{
call_void_hook(msg_msg_free_security, msg);
kfree(msg->security);
msg->security = NULL;
}
/**
* security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
* @msq: sysv ipc permission structure
*
* Allocate and attach a security structure to @msg. The security field is
* initialized to NULL when the structure is first created.
*
* Return: Returns 0 if operation was successful and permission is granted.
*/
int security_msg_queue_alloc(struct kern_ipc_perm *msq)
{
int rc = lsm_ipc_alloc(msq);
if (unlikely(rc))
return rc;
rc = call_int_hook(msg_queue_alloc_security, msq);
if (unlikely(rc))
security_msg_queue_free(msq);
return rc;
}
/**
* security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
* @msq: sysv ipc permission structure
*
* Deallocate security field @perm->security for the message queue.
*/
void security_msg_queue_free(struct kern_ipc_perm *msq)
{
call_void_hook(msg_queue_free_security, msq);
kfree(msq->security);
msq->security = NULL;
}
/**
* security_msg_queue_associate() - Check if a msg queue operation is allowed
* @msq: sysv ipc permission structure
* @msqflg: operation flags
*
* Check permission when a message queue is requested through the msgget system
* call. This hook is only called when returning the message queue identifier
* for an existing message queue, not when a new message queue is created.
*
* Return: Return 0 if permission is granted.
*/
int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
{
return call_int_hook(msg_queue_associate, msq, msqflg);
}
/**
* security_msg_queue_msgctl() - Check if a msg queue operation is allowed
* @msq: sysv ipc permission structure
* @cmd: operation
*
* Check permission when a message control operation specified by @cmd is to be
* performed on the message queue with permissions.
*
* Return: Returns 0 if permission is granted.
*/
int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
{
return call_int_hook(msg_queue_msgctl, msq, cmd);
}
/**
* security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
* @msq: sysv ipc permission structure
* @msg: message
* @msqflg: operation flags
*
* Check permission before a message, @msg, is enqueued on the message queue
* with permissions specified in @msq.
*
* Return: Returns 0 if permission is granted.
*/
int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
struct msg_msg *msg, int msqflg)
{
return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
}
/**
* security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
* @msq: sysv ipc permission structure
* @msg: message
* @target: target task
* @type: type of message requested
* @mode: operation flags
*
* Check permission before a message, @msg, is removed from the message queue.
* The @target task structure contains a pointer to the process that will be
* receiving the message (not equal to the current process when inline receives
* are being performed).
*
* Return: Returns 0 if permission is granted.
*/
int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
struct task_struct *target, long type, int mode)
{
return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
}
/**
* security_shm_alloc() - Allocate a sysv shm LSM blob
* @shp: sysv ipc permission structure
*
* Allocate and attach a security structure to the @shp security field. The
* security field is initialized to NULL when the structure is first created.
*
* Return: Returns 0 if operation was successful and permission is granted.
*/
int security_shm_alloc(struct kern_ipc_perm *shp)
{
int rc = lsm_ipc_alloc(shp);
if (unlikely(rc))
return rc;
rc = call_int_hook(shm_alloc_security, shp);
if (unlikely(rc))
security_shm_free(shp);
return rc;
}
/**
* security_shm_free() - Free a sysv shm LSM blob
* @shp: sysv ipc permission structure
*
* Deallocate the security structure @perm->security for the memory segment.
*/
void security_shm_free(struct kern_ipc_perm *shp)
{
call_void_hook(shm_free_security, shp);
kfree(shp->security);
shp->security = NULL;
}
/**
* security_shm_associate() - Check if a sysv shm operation is allowed
* @shp: sysv ipc permission structure
* @shmflg: operation flags
*
* Check permission when a shared memory region is requested through the shmget
* system call. This hook is only called when returning the shared memory
* region identifier for an existing region, not when a new shared memory
* region is created.
*
* Return: Returns 0 if permission is granted.
*/
int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
{
return call_int_hook(shm_associate, shp, shmflg);
}
/**
* security_shm_shmctl() - Check if a sysv shm operation is allowed
* @shp: sysv ipc permission structure
* @cmd: operation
*
* Check permission when a shared memory control operation specified by @cmd is
* to be performed on the shared memory region with permissions in @shp.
*
* Return: Return 0 if permission is granted.
*/
int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
{
return call_int_hook(shm_shmctl, shp, cmd);
}
/**
* security_shm_shmat() - Check if a sysv shm attach operation is allowed
* @shp: sysv ipc permission structure
* @shmaddr: address of memory region to attach
* @shmflg: operation flags
*
* Check permissions prior to allowing the shmat system call to attach the
* shared memory segment with permissions @shp to the data segment of the
* calling process. The attaching address is specified by @shmaddr.
*
* Return: Returns 0 if permission is granted.
*/
int security_shm_shmat(struct kern_ipc_perm *shp,
char __user *shmaddr, int shmflg)
{
return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
}
/**
* security_sem_alloc() - Allocate a sysv semaphore LSM blob
* @sma: sysv ipc permission structure
*
* Allocate and attach a security structure to the @sma security field. The
* security field is initialized to NULL when the structure is first created.
*
* Return: Returns 0 if operation was successful and permission is granted.
*/
int security_sem_alloc(struct kern_ipc_perm *sma)
{
int rc = lsm_ipc_alloc(sma);
if (unlikely(rc))
return rc;
rc = call_int_hook(sem_alloc_security, sma);
if (unlikely(rc))
security_sem_free(sma);
return rc;
}
/**
* security_sem_free() - Free a sysv semaphore LSM blob
* @sma: sysv ipc permission structure
*
* Deallocate security structure @sma->security for the semaphore.
*/
void security_sem_free(struct kern_ipc_perm *sma)
{
call_void_hook(sem_free_security, sma);
kfree(sma->security);
sma->security = NULL;
}
/**
* security_sem_associate() - Check if a sysv semaphore operation is allowed
* @sma: sysv ipc permission structure
* @semflg: operation flags
*
* Check permission when a semaphore is requested through the semget system
* call. This hook is only called when returning the semaphore identifier for
* an existing semaphore, not when a new one must be created.
*
* Return: Returns 0 if permission is granted.
*/
int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
{
return call_int_hook(sem_associate, sma, semflg);
}
/**
* security_sem_semctl() - Check if a sysv semaphore operation is allowed
* @sma: sysv ipc permission structure
* @cmd: operation
*
* Check permission when a semaphore operation specified by @cmd is to be
* performed on the semaphore.
*
* Return: Returns 0 if permission is granted.
*/
int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
{
return call_int_hook(sem_semctl, sma, cmd);
}
/**
* security_sem_semop() - Check if a sysv semaphore operation is allowed
* @sma: sysv ipc permission structure
* @sops: operations to perform
* @nsops: number of operations
* @alter: flag indicating changes will be made
*
* Check permissions before performing operations on members of the semaphore
* set. If the @alter flag is nonzero, the semaphore set may be modified.
*
* Return: Returns 0 if permission is granted.
*/
int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
unsigned nsops, int alter)
{
return call_int_hook(sem_semop, sma, sops, nsops, alter);
}
/**
* security_d_instantiate() - Populate an inode's LSM state based on a dentry
* @dentry: dentry
* @inode: inode
*
* Fill in @inode security information for a @dentry if allowed.
*/
void security_d_instantiate(struct dentry *dentry, struct inode *inode)
{
if (unlikely(inode && IS_PRIVATE(inode)))
return;
call_void_hook(d_instantiate, dentry, inode);
}
EXPORT_SYMBOL(security_d_instantiate);
/*
* Please keep this in sync with it's counterpart in security/lsm_syscalls.c
*/
/**
* security_getselfattr - Read an LSM attribute of the current process.
* @attr: which attribute to return
* @uctx: the user-space destination for the information, or NULL
* @size: pointer to the size of space available to receive the data
* @flags: special handling options. LSM_FLAG_SINGLE indicates that only
* attributes associated with the LSM identified in the passed @ctx be
* reported.
*
* A NULL value for @uctx can be used to get both the number of attributes
* and the size of the data.
*
* Returns the number of attributes found on success, negative value
* on error. @size is reset to the total size of the data.
* If @size is insufficient to contain the data -E2BIG is returned.
*/
int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
u32 __user *size, u32 flags)
{
struct lsm_static_call *scall;
struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
u8 __user *base = (u8 __user *)uctx;
u32 entrysize;
u32 total = 0;
u32 left;
bool toobig = false;
bool single = false;
int count = 0;
int rc;
if (attr == LSM_ATTR_UNDEF)
return -EINVAL;
if (size == NULL)
return -EINVAL;
if (get_user(left, size))
return -EFAULT;
if (flags) {
/*
* Only flag supported is LSM_FLAG_SINGLE
*/
if (flags != LSM_FLAG_SINGLE || !uctx)
return -EINVAL;
if (copy_from_user(&lctx, uctx, sizeof(lctx)))
return -EFAULT;
/*
* If the LSM ID isn't specified it is an error.
*/
if (lctx.id == LSM_ID_UNDEF)
return -EINVAL;
single = true;
}
/*
* In the usual case gather all the data from the LSMs.
* In the single case only get the data from the LSM specified.
*/
lsm_for_each_hook(scall, getselfattr) {
if (single && lctx.id != scall->hl->lsmid->id)
continue;
entrysize = left;
if (base)
uctx = (struct lsm_ctx __user *)(base + total);
rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
if (rc == -EOPNOTSUPP) {
rc = 0;
continue;
}
if (rc == -E2BIG) {
rc = 0;
left = 0;
toobig = true;
} else if (rc < 0)
return rc;
else
left -= entrysize;
total += entrysize;
count += rc;
if (single)
break;
}
if (put_user(total, size))
return -EFAULT;
if (toobig)
return -E2BIG;
if (count == 0)
return LSM_RET_DEFAULT(getselfattr);
return count;
}
/*
* Please keep this in sync with it's counterpart in security/lsm_syscalls.c
*/
/**
* security_setselfattr - Set an LSM attribute on the current process.
* @attr: which attribute to set
* @uctx: the user-space source for the information
* @size: the size of the data
* @flags: reserved for future use, must be 0
*
* Set an LSM attribute for the current process. The LSM, attribute
* and new value are included in @uctx.
*
* Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
* if the user buffer is inaccessible, E2BIG if size is too big, or an
* LSM specific failure.
*/
int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
u32 size, u32 flags)
{
struct lsm_static_call *scall;
struct lsm_ctx *lctx;
int rc = LSM_RET_DEFAULT(setselfattr);
u64 required_len;
if (flags)
return -EINVAL;
if (size < sizeof(*lctx))
return -EINVAL;
if (size > PAGE_SIZE)
return -E2BIG;
lctx = memdup_user(uctx, size);
if (IS_ERR(lctx))
return PTR_ERR(lctx);
if (size < lctx->len ||
check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
lctx->len < required_len) {
rc = -EINVAL;
goto free_out;
}
lsm_for_each_hook(scall, setselfattr)
if ((scall->hl->lsmid->id) == lctx->id) {
rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
break;
}
free_out:
kfree(lctx);
return rc;
}
/**
* security_getprocattr() - Read an attribute for a task
* @p: the task
* @lsmid: LSM identification
* @name: attribute name
* @value: attribute value
*
* Read attribute @name for task @p and store it into @value if allowed.
*
* Return: Returns the length of @value on success, a negative value otherwise.
*/
int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
char **value)
{
struct lsm_static_call *scall;
lsm_for_each_hook(scall, getprocattr) {
if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
continue;
return scall->hl->hook.getprocattr(p, name, value);
}
return LSM_RET_DEFAULT(getprocattr);
}
/**
* security_setprocattr() - Set an attribute for a task
* @lsmid: LSM identification
* @name: attribute name
* @value: attribute value
* @size: attribute value size
*
* Write (set) the current task's attribute @name to @value, size @size if
* allowed.
*
* Return: Returns bytes written on success, a negative value otherwise.
*/
int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
{
struct lsm_static_call *scall;
lsm_for_each_hook(scall, setprocattr) {
if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
continue;
return scall->hl->hook.setprocattr(name, value, size);
}
return LSM_RET_DEFAULT(setprocattr);
}
/**
* security_netlink_send() - Save info and check if netlink sending is allowed
* @sk: sending socket
* @skb: netlink message
*
* Save security information for a netlink message so that permission checking
* can be performed when the message is processed. The security information
* can be saved using the eff_cap field of the netlink_skb_parms structure.
* Also may be used to provide fine grained control over message transmission.
*
* Return: Returns 0 if the information was successfully saved and message is
* allowed to be transmitted.
*/
int security_netlink_send(struct sock *sk, struct sk_buff *skb)
{
return call_int_hook(netlink_send, sk, skb);
}
/**
* security_ismaclabel() - Check if the named attribute is a MAC label
* @name: full extended attribute name
*
* Check if the extended attribute specified by @name represents a MAC label.
*
* Return: Returns 1 if name is a MAC attribute otherwise returns 0.
*/
int security_ismaclabel(const char *name)
{
return call_int_hook(ismaclabel, name);
}
EXPORT_SYMBOL(security_ismaclabel);
/**
* security_secid_to_secctx() - Convert a secid to a secctx
* @secid: secid
* @secdata: secctx
* @seclen: secctx length
*
* Convert secid to security context. If @secdata is NULL the length of the
* result will be returned in @seclen, but no @secdata will be returned. This
* does mean that the length could change between calls to check the length and
* the next call which actually allocates and returns the @secdata.
*
* Return: Return 0 on success, error on failure.
*/
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return call_int_hook(secid_to_secctx, secid, secdata, seclen);
}
EXPORT_SYMBOL(security_secid_to_secctx);
/**
* security_secctx_to_secid() - Convert a secctx to a secid
* @secdata: secctx
* @seclen: length of secctx
* @secid: secid
*
* Convert security context to secid.
*
* Return: Returns 0 on success, error on failure.
*/
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
{
*secid = 0;
return call_int_hook(secctx_to_secid, secdata, seclen, secid);
}
EXPORT_SYMBOL(security_secctx_to_secid);
/**
* security_release_secctx() - Free a secctx buffer
* @secdata: secctx
* @seclen: length of secctx
*
* Release the security context.
*/
void security_release_secctx(char *secdata, u32 seclen)
{
call_void_hook(release_secctx, secdata, seclen);
}
EXPORT_SYMBOL(security_release_secctx);
/**
* security_inode_invalidate_secctx() - Invalidate an inode's security label
* @inode: inode
*
* Notify the security module that it must revalidate the security context of
* an inode.
*/
void security_inode_invalidate_secctx(struct inode *inode)
{
call_void_hook(inode_invalidate_secctx, inode);
}
EXPORT_SYMBOL(security_inode_invalidate_secctx);
/**
* security_inode_notifysecctx() - Notify the LSM of an inode's security label
* @inode: inode
* @ctx: secctx
* @ctxlen: length of secctx
*
* Notify the security module of what the security context of an inode should
* be. Initializes the incore security context managed by the security module
* for this inode. Example usage: NFS client invokes this hook to initialize
* the security context in its incore inode to the value provided by the server
* for the file when the server returned the file's attributes to the client.
* Must be called with inode->i_mutex locked.
*
* Return: Returns 0 on success, error on failure.
*/
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
{
return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_notifysecctx);
/**
* security_inode_setsecctx() - Change the security label of an inode
* @dentry: inode
* @ctx: secctx
* @ctxlen: length of secctx
*
* Change the security context of an inode. Updates the incore security
* context managed by the security module and invokes the fs code as needed
* (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
* context. Example usage: NFS server invokes this hook to change the security
* context in its incore inode and on the backing filesystem to a value
* provided by the client on a SETATTR operation. Must be called with
* inode->i_mutex locked.
*
* Return: Returns 0 on success, error on failure.
*/
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
{
return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_setsecctx);
/**
* security_inode_getsecctx() - Get the security label of an inode
* @inode: inode
* @ctx: secctx
* @ctxlen: length of secctx
*
* On success, returns 0 and fills out @ctx and @ctxlen with the security
* context for the given @inode.
*
* Return: Returns 0 on success, error on failure.
*/
int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
{
return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_getsecctx);
#ifdef CONFIG_WATCH_QUEUE
/**
* security_post_notification() - Check if a watch notification can be posted
* @w_cred: credentials of the task that set the watch
* @cred: credentials of the task which triggered the watch
* @n: the notification
*
* Check to see if a watch notification can be posted to a particular queue.
*
* Return: Returns 0 if permission is granted.
*/
int security_post_notification(const struct cred *w_cred,
const struct cred *cred,
struct watch_notification *n)
{
return call_int_hook(post_notification, w_cred, cred, n);
}
#endif /* CONFIG_WATCH_QUEUE */
#ifdef CONFIG_KEY_NOTIFICATIONS
/**
* security_watch_key() - Check if a task is allowed to watch for key events
* @key: the key to watch
*
* Check to see if a process is allowed to watch for event notifications from
* a key or keyring.
*
* Return: Returns 0 if permission is granted.
*/
int security_watch_key(struct key *key)
{
return call_int_hook(watch_key, key);
}
#endif /* CONFIG_KEY_NOTIFICATIONS */
#ifdef CONFIG_SECURITY_NETWORK
/**
* security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
* @sock: originating sock
* @other: peer sock
* @newsk: new sock
*
* Check permissions before establishing a Unix domain stream connection
* between @sock and @other.
*
* The @unix_stream_connect and @unix_may_send hooks were necessary because
* Linux provides an alternative to the conventional file name space for Unix
* domain sockets. Whereas binding and connecting to sockets in the file name
* space is mediated by the typical file permissions (and caught by the mknod
* and permission hooks in inode_security_ops), binding and connecting to
* sockets in the abstract name space is completely unmediated. Sufficient
* control of Unix domain sockets in the abstract name space isn't possible
* using only the socket layer hooks, since we need to know the actual target
* socket, which is not looked up until we are inside the af_unix code.
*
* Return: Returns 0 if permission is granted.
*/
int security_unix_stream_connect(struct sock *sock, struct sock *other,
struct sock *newsk)
{
return call_int_hook(unix_stream_connect, sock, other, newsk);
}
EXPORT_SYMBOL(security_unix_stream_connect);
/**
* security_unix_may_send() - Check if AF_UNIX socket can send datagrams
* @sock: originating sock
* @other: peer sock
*
* Check permissions before connecting or sending datagrams from @sock to
* @other.
*
* The @unix_stream_connect and @unix_may_send hooks were necessary because
* Linux provides an alternative to the conventional file name space for Unix
* domain sockets. Whereas binding and connecting to sockets in the file name
* space is mediated by the typical file permissions (and caught by the mknod
* and permission hooks in inode_security_ops), binding and connecting to
* sockets in the abstract name space is completely unmediated. Sufficient
* control of Unix domain sockets in the abstract name space isn't possible
* using only the socket layer hooks, since we need to know the actual target
* socket, which is not looked up until we are inside the af_unix code.
*
* Return: Returns 0 if permission is granted.
*/
int security_unix_may_send(struct socket *sock, struct socket *other)
{
return call_int_hook(unix_may_send, sock, other);
}
EXPORT_SYMBOL(security_unix_may_send);
/**
* security_socket_create() - Check if creating a new socket is allowed
* @family: protocol family
* @type: communications type
* @protocol: requested protocol
* @kern: set to 1 if a kernel socket is requested
*
* Check permissions prior to creating a new socket.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_create(int family, int type, int protocol, int kern)
{
return call_int_hook(socket_create, family, type, protocol, kern);
}
/**
* security_socket_post_create() - Initialize a newly created socket
* @sock: socket
* @family: protocol family
* @type: communications type
* @protocol: requested protocol
* @kern: set to 1 if a kernel socket is requested
*
* This hook allows a module to update or allocate a per-socket security
* structure. Note that the security field was not added directly to the socket
* structure, but rather, the socket security information is stored in the
* associated inode. Typically, the inode alloc_security hook will allocate
* and attach security information to SOCK_INODE(sock)->i_security. This hook
* may be used to update the SOCK_INODE(sock)->i_security field with additional
* information that wasn't available when the inode was allocated.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_post_create(struct socket *sock, int family,
int type, int protocol, int kern)
{
return call_int_hook(socket_post_create, sock, family, type,
protocol, kern);
}
/**
* security_socket_socketpair() - Check if creating a socketpair is allowed
* @socka: first socket
* @sockb: second socket
*
* Check permissions before creating a fresh pair of sockets.
*
* Return: Returns 0 if permission is granted and the connection was
* established.
*/
int security_socket_socketpair(struct socket *socka, struct socket *sockb)
{
return call_int_hook(socket_socketpair, socka, sockb);
}
EXPORT_SYMBOL(security_socket_socketpair);
/**
* security_socket_bind() - Check if a socket bind operation is allowed
* @sock: socket
* @address: requested bind address
* @addrlen: length of address
*
* Check permission before socket protocol layer bind operation is performed
* and the socket @sock is bound to the address specified in the @address
* parameter.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_bind(struct socket *sock,
struct sockaddr *address, int addrlen)
{
return call_int_hook(socket_bind, sock, address, addrlen);
}
/**
* security_socket_connect() - Check if a socket connect operation is allowed
* @sock: socket
* @address: address of remote connection point
* @addrlen: length of address
*
* Check permission before socket protocol layer connect operation attempts to
* connect socket @sock to a remote address, @address.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_connect(struct socket *sock,
struct sockaddr *address, int addrlen)
{
return call_int_hook(socket_connect, sock, address, addrlen);
}
/**
* security_socket_listen() - Check if a socket is allowed to listen
* @sock: socket
* @backlog: connection queue size
*
* Check permission before socket protocol layer listen operation.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_listen(struct socket *sock, int backlog)
{
return call_int_hook(socket_listen, sock, backlog);
}
/**
* security_socket_accept() - Check if a socket is allowed to accept connections
* @sock: listening socket
* @newsock: newly creation connection socket
*
* Check permission before accepting a new connection. Note that the new
* socket, @newsock, has been created and some information copied to it, but
* the accept operation has not actually been performed.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_accept(struct socket *sock, struct socket *newsock)
{
return call_int_hook(socket_accept, sock, newsock);
}
/**
* security_socket_sendmsg() - Check if sending a message is allowed
* @sock: sending socket
* @msg: message to send
* @size: size of message
*
* Check permission before transmitting a message to another socket.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
{
return call_int_hook(socket_sendmsg, sock, msg, size);
}
/**
* security_socket_recvmsg() - Check if receiving a message is allowed
* @sock: receiving socket
* @msg: message to receive
* @size: size of message
* @flags: operational flags
*
* Check permission before receiving a message from a socket.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
int size, int flags)
{
return call_int_hook(socket_recvmsg, sock, msg, size, flags);
}
/**
* security_socket_getsockname() - Check if reading the socket addr is allowed
* @sock: socket
*
* Check permission before reading the local address (name) of the socket
* object.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_getsockname(struct socket *sock)
{
return call_int_hook(socket_getsockname, sock);
}
/**
* security_socket_getpeername() - Check if reading the peer's addr is allowed
* @sock: socket
*
* Check permission before the remote address (name) of a socket object.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_getpeername(struct socket *sock)
{
return call_int_hook(socket_getpeername, sock);
}
/**
* security_socket_getsockopt() - Check if reading a socket option is allowed
* @sock: socket
* @level: option's protocol level
* @optname: option name
*
* Check permissions before retrieving the options associated with socket
* @sock.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_getsockopt(struct socket *sock, int level, int optname)
{
return call_int_hook(socket_getsockopt, sock, level, optname);
}
/**
* security_socket_setsockopt() - Check if setting a socket option is allowed
* @sock: socket
* @level: option's protocol level
* @optname: option name
*
* Check permissions before setting the options associated with socket @sock.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_setsockopt(struct socket *sock, int level, int optname)
{
return call_int_hook(socket_setsockopt, sock, level, optname);
}
/**
* security_socket_shutdown() - Checks if shutting down the socket is allowed
* @sock: socket
* @how: flag indicating how sends and receives are handled
*
* Checks permission before all or part of a connection on the socket @sock is
* shut down.
*
* Return: Returns 0 if permission is granted.
*/
int security_socket_shutdown(struct socket *sock, int how)
{
return call_int_hook(socket_shutdown, sock, how);
}
/**
* security_sock_rcv_skb() - Check if an incoming network packet is allowed
* @sk: destination sock
* @skb: incoming packet
*
* Check permissions on incoming network packets. This hook is distinct from
* Netfilter's IP input hooks since it is the first time that the incoming
* sk_buff @skb has been associated with a particular socket, @sk. Must not
* sleep inside this hook because some callers hold spinlocks.
*
* Return: Returns 0 if permission is granted.
*/
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
return call_int_hook(socket_sock_rcv_skb, sk, skb);
}
EXPORT_SYMBOL(security_sock_rcv_skb);
/**
* security_socket_getpeersec_stream() - Get the remote peer label
* @sock: socket
* @optval: destination buffer
* @optlen: size of peer label copied into the buffer
* @len: maximum size of the destination buffer
*
* This hook allows the security module to provide peer socket security state
* for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
* For tcp sockets this can be meaningful if the socket is associated with an
* ipsec SA.
*
* Return: Returns 0 if all is well, otherwise, typical getsockopt return
* values.
*/
int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
sockptr_t optlen, unsigned int len)
{
return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
len);
}
/**
* security_socket_getpeersec_dgram() - Get the remote peer label
* @sock: socket
* @skb: datagram packet
* @secid: remote peer label secid
*
* This hook allows the security module to provide peer socket security state
* for udp sockets on a per-packet basis to userspace via getsockopt
* SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
* option via getsockopt. It can then retrieve the security state returned by
* this hook for a packet via the SCM_SECURITY ancillary message type.
*
* Return: Returns 0 on success, error on failure.
*/
int security_socket_getpeersec_dgram(struct socket *sock,
struct sk_buff *skb, u32 *secid)
{
return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
}
EXPORT_SYMBOL(security_socket_getpeersec_dgram);
/**
* lsm_sock_alloc - allocate a composite sock blob
* @sock: the sock that needs a blob
* @gfp: allocation mode
*
* Allocate the sock blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
{
return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
}
/**
* security_sk_alloc() - Allocate and initialize a sock's LSM blob
* @sk: sock
* @family: protocol family
* @priority: gfp flags
*
* Allocate and attach a security structure to the sk->sk_security field, which
* is used to copy security attributes between local stream sockets.
*
* Return: Returns 0 on success, error on failure.
*/
int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
int rc = lsm_sock_alloc(sk, priority);
if (unlikely(rc))
return rc;
rc = call_int_hook(sk_alloc_security, sk, family, priority);
if (unlikely(rc))
security_sk_free(sk);
return rc;
}
/**
* security_sk_free() - Free the sock's LSM blob
* @sk: sock
*
* Deallocate security structure.
*/
void security_sk_free(struct sock *sk)
{
call_void_hook(sk_free_security, sk);
kfree(sk->sk_security);
sk->sk_security = NULL;
}
/**
* security_sk_clone() - Clone a sock's LSM state
* @sk: original sock
* @newsk: target sock
*
* Clone/copy security structure.
*/
void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
call_void_hook(sk_clone_security, sk, newsk);
}
EXPORT_SYMBOL(security_sk_clone);
/**
* security_sk_classify_flow() - Set a flow's secid based on socket
* @sk: original socket
* @flic: target flow
*
* Set the target flow's secid to socket's secid.
*/
void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
{
call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
}
EXPORT_SYMBOL(security_sk_classify_flow);
/**
* security_req_classify_flow() - Set a flow's secid based on request_sock
* @req: request_sock
* @flic: target flow
*
* Sets @flic's secid to @req's secid.
*/
void security_req_classify_flow(const struct request_sock *req,
struct flowi_common *flic)
{
call_void_hook(req_classify_flow, req, flic);
}
EXPORT_SYMBOL(security_req_classify_flow);
/**
* security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
* @sk: sock being grafted
* @parent: target parent socket
*
* Sets @parent's inode secid to @sk's secid and update @sk with any necessary
* LSM state from @parent.
*/
void security_sock_graft(struct sock *sk, struct socket *parent)
{
call_void_hook(sock_graft, sk, parent);
}
EXPORT_SYMBOL(security_sock_graft);
/**
* security_inet_conn_request() - Set request_sock state using incoming connect
* @sk: parent listening sock
* @skb: incoming connection
* @req: new request_sock
*
* Initialize the @req LSM state based on @sk and the incoming connect in @skb.
*
* Return: Returns 0 if permission is granted.
*/
int security_inet_conn_request(const struct sock *sk,
struct sk_buff *skb, struct request_sock *req)
{
return call_int_hook(inet_conn_request, sk, skb, req);
}
EXPORT_SYMBOL(security_inet_conn_request);
/**
* security_inet_csk_clone() - Set new sock LSM state based on request_sock
* @newsk: new sock
* @req: connection request_sock
*
* Set that LSM state of @sock using the LSM state from @req.
*/
void security_inet_csk_clone(struct sock *newsk,
const struct request_sock *req)
{
call_void_hook(inet_csk_clone, newsk, req);
}
/**
* security_inet_conn_established() - Update sock's LSM state with connection
* @sk: sock
* @skb: connection packet
*
* Update @sock's LSM state to represent a new connection from @skb.
*/
void security_inet_conn_established(struct sock *sk,
struct sk_buff *skb)
{
call_void_hook(inet_conn_established, sk, skb);
}
EXPORT_SYMBOL(security_inet_conn_established);
/**
* security_secmark_relabel_packet() - Check if setting a secmark is allowed
* @secid: new secmark value
*
* Check if the process should be allowed to relabel packets to @secid.
*
* Return: Returns 0 if permission is granted.
*/
int security_secmark_relabel_packet(u32 secid)
{
return call_int_hook(secmark_relabel_packet, secid);
}
EXPORT_SYMBOL(security_secmark_relabel_packet);
/**
* security_secmark_refcount_inc() - Increment the secmark labeling rule count
*
* Tells the LSM to increment the number of secmark labeling rules loaded.
*/
void security_secmark_refcount_inc(void)
{
call_void_hook(secmark_refcount_inc);
}
EXPORT_SYMBOL(security_secmark_refcount_inc);
/**
* security_secmark_refcount_dec() - Decrement the secmark labeling rule count
*
* Tells the LSM to decrement the number of secmark labeling rules loaded.
*/
void security_secmark_refcount_dec(void)
{
call_void_hook(secmark_refcount_dec);
}
EXPORT_SYMBOL(security_secmark_refcount_dec);
/**
* security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
* @security: pointer to the LSM blob
*
* This hook allows a module to allocate a security structure for a TUN device,
* returning the pointer in @security.
*
* Return: Returns a zero on success, negative values on failure.
*/
int security_tun_dev_alloc_security(void **security)
{
int rc;
rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
if (rc)
return rc;
rc = call_int_hook(tun_dev_alloc_security, *security);
if (rc) {
kfree(*security);
*security = NULL;
}
return rc;
}
EXPORT_SYMBOL(security_tun_dev_alloc_security);
/**
* security_tun_dev_free_security() - Free a TUN device LSM blob
* @security: LSM blob
*
* This hook allows a module to free the security structure for a TUN device.
*/
void security_tun_dev_free_security(void *security)
{
kfree(security);
}
EXPORT_SYMBOL(security_tun_dev_free_security);
/**
* security_tun_dev_create() - Check if creating a TUN device is allowed
*
* Check permissions prior to creating a new TUN device.
*
* Return: Returns 0 if permission is granted.
*/
int security_tun_dev_create(void)
{
return call_int_hook(tun_dev_create);
}
EXPORT_SYMBOL(security_tun_dev_create);
/**
* security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
* @security: TUN device LSM blob
*
* Check permissions prior to attaching to a TUN device queue.
*
* Return: Returns 0 if permission is granted.
*/
int security_tun_dev_attach_queue(void *security)
{
return call_int_hook(tun_dev_attach_queue, security);
}
EXPORT_SYMBOL(security_tun_dev_attach_queue);
/**
* security_tun_dev_attach() - Update TUN device LSM state on attach
* @sk: associated sock
* @security: TUN device LSM blob
*
* This hook can be used by the module to update any security state associated
* with the TUN device's sock structure.
*
* Return: Returns 0 if permission is granted.
*/
int security_tun_dev_attach(struct sock *sk, void *security)
{
return call_int_hook(tun_dev_attach, sk, security);
}
EXPORT_SYMBOL(security_tun_dev_attach);
/**
* security_tun_dev_open() - Update TUN device LSM state on open
* @security: TUN device LSM blob
*
* This hook can be used by the module to update any security state associated
* with the TUN device's security structure.
*
* Return: Returns 0 if permission is granted.
*/
int security_tun_dev_open(void *security)
{
return call_int_hook(tun_dev_open, security);
}
EXPORT_SYMBOL(security_tun_dev_open);
/**
* security_sctp_assoc_request() - Update the LSM on a SCTP association req
* @asoc: SCTP association
* @skb: packet requesting the association
*
* Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
*
* Return: Returns 0 on success, error on failure.
*/
int security_sctp_assoc_request(struct sctp_association *asoc,
struct sk_buff *skb)
{
return call_int_hook(sctp_assoc_request, asoc, skb);
}
EXPORT_SYMBOL(security_sctp_assoc_request);
/**
* security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
* @sk: socket
* @optname: SCTP option to validate
* @address: list of IP addresses to validate
* @addrlen: length of the address list
*
* Validiate permissions required for each address associated with sock @sk.
* Depending on @optname, the addresses will be treated as either a connect or
* bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
* sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
*
* Return: Returns 0 on success, error on failure.
*/
int security_sctp_bind_connect(struct sock *sk, int optname,
struct sockaddr *address, int addrlen)
{
return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
}
EXPORT_SYMBOL(security_sctp_bind_connect);
/**
* security_sctp_sk_clone() - Clone a SCTP sock's LSM state
* @asoc: SCTP association
* @sk: original sock
* @newsk: target sock
*
* Called whenever a new socket is created by accept(2) (i.e. a TCP style
* socket) or when a socket is 'peeled off' e.g userspace calls
* sctp_peeloff(3).
*/
void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
struct sock *newsk)
{
call_void_hook(sctp_sk_clone, asoc, sk, newsk);
}
EXPORT_SYMBOL(security_sctp_sk_clone);
/**
* security_sctp_assoc_established() - Update LSM state when assoc established
* @asoc: SCTP association
* @skb: packet establishing the association
*
* Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
* security module.
*
* Return: Returns 0 if permission is granted.
*/
int security_sctp_assoc_established(struct sctp_association *asoc,
struct sk_buff *skb)
{
return call_int_hook(sctp_assoc_established, asoc, skb);
}
EXPORT_SYMBOL(security_sctp_assoc_established);
/**
* security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
* @sk: the owning MPTCP socket
* @ssk: the new subflow
*
* Update the labeling for the given MPTCP subflow, to match the one of the
* owning MPTCP socket. This hook has to be called after the socket creation and
* initialization via the security_socket_create() and
* security_socket_post_create() LSM hooks.
*
* Return: Returns 0 on success or a negative error code on failure.
*/
int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
{
return call_int_hook(mptcp_add_subflow, sk, ssk);
}
#endif /* CONFIG_SECURITY_NETWORK */
#ifdef CONFIG_SECURITY_INFINIBAND
/**
* security_ib_pkey_access() - Check if access to an IB pkey is allowed
* @sec: LSM blob
* @subnet_prefix: subnet prefix of the port
* @pkey: IB pkey
*
* Check permission to access a pkey when modifying a QP.
*
* Return: Returns 0 if permission is granted.
*/
int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
{
return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
}
EXPORT_SYMBOL(security_ib_pkey_access);
/**
* security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
* @sec: LSM blob
* @dev_name: IB device name
* @port_num: port number
*
* Check permissions to send and receive SMPs on a end port.
*
* Return: Returns 0 if permission is granted.
*/
int security_ib_endport_manage_subnet(void *sec,
const char *dev_name, u8 port_num)
{
return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
}
EXPORT_SYMBOL(security_ib_endport_manage_subnet);
/**
* security_ib_alloc_security() - Allocate an Infiniband LSM blob
* @sec: LSM blob
*
* Allocate a security structure for Infiniband objects.
*
* Return: Returns 0 on success, non-zero on failure.
*/
int security_ib_alloc_security(void **sec)
{
int rc;
rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
if (rc)
return rc;
rc = call_int_hook(ib_alloc_security, *sec);
if (rc) {
kfree(*sec);
*sec = NULL;
}
return rc;
}
EXPORT_SYMBOL(security_ib_alloc_security);
/**
* security_ib_free_security() - Free an Infiniband LSM blob
* @sec: LSM blob
*
* Deallocate an Infiniband security structure.
*/
void security_ib_free_security(void *sec)
{
kfree(sec);
}
EXPORT_SYMBOL(security_ib_free_security);
#endif /* CONFIG_SECURITY_INFINIBAND */
#ifdef CONFIG_SECURITY_NETWORK_XFRM
/**
* security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
* @ctxp: xfrm security context being added to the SPD
* @sec_ctx: security label provided by userspace
* @gfp: gfp flags
*
* Allocate a security structure to the xp->security field; the security field
* is initialized to NULL when the xfrm_policy is allocated.
*
* Return: Return 0 if operation was successful.
*/
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
struct xfrm_user_sec_ctx *sec_ctx,
gfp_t gfp)
{
return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
}
EXPORT_SYMBOL(security_xfrm_policy_alloc);
/**
* security_xfrm_policy_clone() - Clone xfrm policy LSM state
* @old_ctx: xfrm security context
* @new_ctxp: target xfrm security context
*
* Allocate a security structure in new_ctxp that contains the information from
* the old_ctx structure.
*
* Return: Return 0 if operation was successful.
*/
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
struct xfrm_sec_ctx **new_ctxp)
{
return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
}
/**
* security_xfrm_policy_free() - Free a xfrm security context
* @ctx: xfrm security context
*
* Free LSM resources associated with @ctx.
*/
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
{
call_void_hook(xfrm_policy_free_security, ctx);
}
EXPORT_SYMBOL(security_xfrm_policy_free);
/**
* security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
* @ctx: xfrm security context
*
* Authorize deletion of a SPD entry.
*
* Return: Returns 0 if permission is granted.
*/
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
{
return call_int_hook(xfrm_policy_delete_security, ctx);
}
/**
* security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
* @x: xfrm state being added to the SAD
* @sec_ctx: security label provided by userspace
*
* Allocate a security structure to the @x->security field; the security field
* is initialized to NULL when the xfrm_state is allocated. Set the context to
* correspond to @sec_ctx.
*
* Return: Return 0 if operation was successful.
*/
int security_xfrm_state_alloc(struct xfrm_state *x,
struct xfrm_user_sec_ctx *sec_ctx)
{
return call_int_hook(xfrm_state_alloc, x, sec_ctx);
}
EXPORT_SYMBOL(security_xfrm_state_alloc);
/**
* security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
* @x: xfrm state being added to the SAD
* @polsec: associated policy's security context
* @secid: secid from the flow
*
* Allocate a security structure to the x->security field; the security field
* is initialized to NULL when the xfrm_state is allocated. Set the context to
* correspond to secid.
*
* Return: Returns 0 if operation was successful.
*/
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
struct xfrm_sec_ctx *polsec, u32 secid)
{
return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
}
/**
* security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
* @x: xfrm state
*
* Authorize deletion of x->security.
*
* Return: Returns 0 if permission is granted.
*/
int security_xfrm_state_delete(struct xfrm_state *x)
{
return call_int_hook(xfrm_state_delete_security, x);
}
EXPORT_SYMBOL(security_xfrm_state_delete);
/**
* security_xfrm_state_free() - Free a xfrm state
* @x: xfrm state
*
* Deallocate x->security.
*/
void security_xfrm_state_free(struct xfrm_state *x)
{
call_void_hook(xfrm_state_free_security, x);
}
/**
* security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
* @ctx: target xfrm security context
* @fl_secid: flow secid used to authorize access
*
* Check permission when a flow selects a xfrm_policy for processing XFRMs on a
* packet. The hook is called when selecting either a per-socket policy or a
* generic xfrm policy.
*
* Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
* other errors.
*/
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
{
return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
}
/**
* security_xfrm_state_pol_flow_match() - Check for a xfrm match
* @x: xfrm state to match
* @xp: xfrm policy to check for a match
* @flic: flow to check for a match.
*
* Check @xp and @flic for a match with @x.
*
* Return: Returns 1 if there is a match.
*/
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp,
const struct flowi_common *flic)
{
struct lsm_static_call *scall;
int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
/*
* Since this function is expected to return 0 or 1, the judgment
* becomes difficult if multiple LSMs supply this call. Fortunately,
* we can use the first LSM's judgment because currently only SELinux
* supplies this call.
*
* For speed optimization, we explicitly break the loop rather than
* using the macro
*/
lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
break;
}
return rc;
}
/**
* security_xfrm_decode_session() - Determine the xfrm secid for a packet
* @skb: xfrm packet
* @secid: secid
*
* Decode the packet in @skb and return the security label in @secid.
*
* Return: Return 0 if all xfrms used have the same secid.
*/
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
return call_int_hook(xfrm_decode_session, skb, secid, 1);
}
void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
{
int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
0);
BUG_ON(rc);
}
EXPORT_SYMBOL(security_skb_classify_flow);
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
#ifdef CONFIG_KEYS
/**
* security_key_alloc() - Allocate and initialize a kernel key LSM blob
* @key: key
* @cred: credentials
* @flags: allocation flags
*
* Permit allocation of a key and assign security data. Note that key does not
* have a serial number assigned at this point.
*
* Return: Return 0 if permission is granted, -ve error otherwise.
*/
int security_key_alloc(struct key *key, const struct cred *cred,
unsigned long flags)
{
int rc = lsm_key_alloc(key);
if (unlikely(rc))
return rc;
rc = call_int_hook(key_alloc, key, cred, flags);
if (unlikely(rc))
security_key_free(key);
return rc;
}
/**
* security_key_free() - Free a kernel key LSM blob
* @key: key
*
* Notification of destruction; free security data.
*/
void security_key_free(struct key *key)
{
kfree(key->security);
key->security = NULL;
}
/**
* security_key_permission() - Check if a kernel key operation is allowed
* @key_ref: key reference
* @cred: credentials of actor requesting access
* @need_perm: requested permissions
*
* See whether a specific operational right is granted to a process on a key.
*
* Return: Return 0 if permission is granted, -ve error otherwise.
*/
int security_key_permission(key_ref_t key_ref, const struct cred *cred,
enum key_need_perm need_perm)
{
return call_int_hook(key_permission, key_ref, cred, need_perm);
}
/**
* security_key_getsecurity() - Get the key's security label
* @key: key
* @buffer: security label buffer
*
* Get a textual representation of the security context attached to a key for
* the purposes of honouring KEYCTL_GETSECURITY. This function allocates the
* storage for the NUL-terminated string and the caller should free it.
*
* Return: Returns the length of @buffer (including terminating NUL) or -ve if
* an error occurs. May also return 0 (and a NULL buffer pointer) if
* there is no security label assigned to the key.
*/
int security_key_getsecurity(struct key *key, char **buffer)
{
*buffer = NULL;
return call_int_hook(key_getsecurity, key, buffer);
}
/**
* security_key_post_create_or_update() - Notification of key create or update
* @keyring: keyring to which the key is linked to
* @key: created or updated key
* @payload: data used to instantiate or update the key
* @payload_len: length of payload
* @flags: key flags
* @create: flag indicating whether the key was created or updated
*
* Notify the caller of a key creation or update.
*/
void security_key_post_create_or_update(struct key *keyring, struct key *key,
const void *payload, size_t payload_len,
unsigned long flags, bool create)
{
call_void_hook(key_post_create_or_update, keyring, key, payload,
payload_len, flags, create);
}
#endif /* CONFIG_KEYS */
#ifdef CONFIG_AUDIT
/**
* security_audit_rule_init() - Allocate and init an LSM audit rule struct
* @field: audit action
* @op: rule operator
* @rulestr: rule context
* @lsmrule: receive buffer for audit rule struct
* @gfp: GFP flag used for kmalloc
*
* Allocate and initialize an LSM audit rule structure.
*
* Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
* an invalid rule.
*/
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
gfp_t gfp)
{
return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
}
/**
* security_audit_rule_known() - Check if an audit rule contains LSM fields
* @krule: audit rule
*
* Specifies whether given @krule contains any fields related to the current
* LSM.
*
* Return: Returns 1 in case of relation found, 0 otherwise.
*/
int security_audit_rule_known(struct audit_krule *krule)
{
return call_int_hook(audit_rule_known, krule);
}
/**
* security_audit_rule_free() - Free an LSM audit rule struct
* @lsmrule: audit rule struct
*
* Deallocate the LSM audit rule structure previously allocated by
* audit_rule_init().
*/
void security_audit_rule_free(void *lsmrule)
{
call_void_hook(audit_rule_free, lsmrule);
}
/**
* security_audit_rule_match() - Check if a label matches an audit rule
* @secid: security label
* @field: LSM audit field
* @op: matching operator
* @lsmrule: audit rule
*
* Determine if given @secid matches a rule previously approved by
* security_audit_rule_known().
*
* Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
* failure.
*/
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
{
return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
}
#endif /* CONFIG_AUDIT */
#ifdef CONFIG_BPF_SYSCALL
/**
* security_bpf() - Check if the bpf syscall operation is allowed
* @cmd: command
* @attr: bpf attribute
* @size: size
*
* Do a initial check for all bpf syscalls after the attribute is copied into
* the kernel. The actual security module can implement their own rules to
* check the specific cmd they need.
*
* Return: Returns 0 if permission is granted.
*/
int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
{
return call_int_hook(bpf, cmd, attr, size);
}
/**
* security_bpf_map() - Check if access to a bpf map is allowed
* @map: bpf map
* @fmode: mode
*
* Do a check when the kernel generates and returns a file descriptor for eBPF
* maps.
*
* Return: Returns 0 if permission is granted.
*/
int security_bpf_map(struct bpf_map *map, fmode_t fmode)
{
return call_int_hook(bpf_map, map, fmode);
}
/**
* security_bpf_prog() - Check if access to a bpf program is allowed
* @prog: bpf program
*
* Do a check when the kernel generates and returns a file descriptor for eBPF
* programs.
*
* Return: Returns 0 if permission is granted.
*/
int security_bpf_prog(struct bpf_prog *prog)
{
return call_int_hook(bpf_prog, prog);
}
/**
* security_bpf_map_create() - Check if BPF map creation is allowed
* @map: BPF map object
* @attr: BPF syscall attributes used to create BPF map
* @token: BPF token used to grant user access
*
* Do a check when the kernel creates a new BPF map. This is also the
* point where LSM blob is allocated for LSMs that need them.
*
* Return: Returns 0 on success, error on failure.
*/
int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
struct bpf_token *token)
{
return call_int_hook(bpf_map_create, map, attr, token);
}
/**
* security_bpf_prog_load() - Check if loading of BPF program is allowed
* @prog: BPF program object
* @attr: BPF syscall attributes used to create BPF program
* @token: BPF token used to grant user access to BPF subsystem
*
* Perform an access control check when the kernel loads a BPF program and
* allocates associated BPF program object. This hook is also responsible for
* allocating any required LSM state for the BPF program.
*
* Return: Returns 0 on success, error on failure.
*/
int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
struct bpf_token *token)
{
return call_int_hook(bpf_prog_load, prog, attr, token);
}
/**
* security_bpf_token_create() - Check if creating of BPF token is allowed
* @token: BPF token object
* @attr: BPF syscall attributes used to create BPF token
* @path: path pointing to BPF FS mount point from which BPF token is created
*
* Do a check when the kernel instantiates a new BPF token object from BPF FS
* instance. This is also the point where LSM blob can be allocated for LSMs.
*
* Return: Returns 0 on success, error on failure.
*/
int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
const struct path *path)
{
return call_int_hook(bpf_token_create, token, attr, path);
}
/**
* security_bpf_token_cmd() - Check if BPF token is allowed to delegate
* requested BPF syscall command
* @token: BPF token object
* @cmd: BPF syscall command requested to be delegated by BPF token
*
* Do a check when the kernel decides whether provided BPF token should allow
* delegation of requested BPF syscall command.
*
* Return: Returns 0 on success, error on failure.
*/
int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
{
return call_int_hook(bpf_token_cmd, token, cmd);
}
/**
* security_bpf_token_capable() - Check if BPF token is allowed to delegate
* requested BPF-related capability
* @token: BPF token object
* @cap: capabilities requested to be delegated by BPF token
*
* Do a check when the kernel decides whether provided BPF token should allow
* delegation of requested BPF-related capabilities.
*
* Return: Returns 0 on success, error on failure.
*/
int security_bpf_token_capable(const struct bpf_token *token, int cap)
{
return call_int_hook(bpf_token_capable, token, cap);
}
/**
* security_bpf_map_free() - Free a bpf map's LSM blob
* @map: bpf map
*
* Clean up the security information stored inside bpf map.
*/
void security_bpf_map_free(struct bpf_map *map)
{
call_void_hook(bpf_map_free, map);
}
/**
* security_bpf_prog_free() - Free a BPF program's LSM blob
* @prog: BPF program struct
*
* Clean up the security information stored inside BPF program.
*/
void security_bpf_prog_free(struct bpf_prog *prog)
{
call_void_hook(bpf_prog_free, prog);
}
/**
* security_bpf_token_free() - Free a BPF token's LSM blob
* @token: BPF token struct
*
* Clean up the security information stored inside BPF token.
*/
void security_bpf_token_free(struct bpf_token *token)
{
call_void_hook(bpf_token_free, token);
}
#endif /* CONFIG_BPF_SYSCALL */
/**
* security_locked_down() - Check if a kernel feature is allowed
* @what: requested kernel feature
*
* Determine whether a kernel feature that potentially enables arbitrary code
* execution in kernel space should be permitted.
*
* Return: Returns 0 if permission is granted.
*/
int security_locked_down(enum lockdown_reason what)
{
return call_int_hook(locked_down, what);
}
EXPORT_SYMBOL(security_locked_down);
/**
* security_bdev_alloc() - Allocate a block device LSM blob
* @bdev: block device
*
* Allocate and attach a security structure to @bdev->bd_security. The
* security field is initialized to NULL when the bdev structure is
* allocated.
*
* Return: Return 0 if operation was successful.
*/
int security_bdev_alloc(struct block_device *bdev)
{
int rc = 0;
rc = lsm_bdev_alloc(bdev);
if (unlikely(rc))
return rc;
rc = call_int_hook(bdev_alloc_security, bdev);
if (unlikely(rc))
security_bdev_free(bdev);
return rc;
}
EXPORT_SYMBOL(security_bdev_alloc);
/**
* security_bdev_free() - Free a block device's LSM blob
* @bdev: block device
*
* Deallocate the bdev security structure and set @bdev->bd_security to NULL.
*/
void security_bdev_free(struct block_device *bdev)
{
if (!bdev->bd_security)
return;
call_void_hook(bdev_free_security, bdev);
kfree(bdev->bd_security);
bdev->bd_security = NULL;
}
EXPORT_SYMBOL(security_bdev_free);
/**
* security_bdev_setintegrity() - Set the device's integrity data
* @bdev: block device
* @type: type of integrity, e.g. hash digest, signature, etc
* @value: the integrity value
* @size: size of the integrity value
*
* Register a verified integrity measurement of a bdev with LSMs.
* LSMs should free the previously saved data if @value is NULL.
* Please note that the new hook should be invoked every time the security
* information is updated to keep these data current. For example, in dm-verity,
* if the mapping table is reloaded and configured to use a different dm-verity
* target with a new roothash and signing information, the previously stored
* data in the LSM blob will become obsolete. It is crucial to re-invoke the
* hook to refresh these data and ensure they are up to date. This necessity
* arises from the design of device-mapper, where a device-mapper device is
* first created, and then targets are subsequently loaded into it. These
* targets can be modified multiple times during the device's lifetime.
* Therefore, while the LSM blob is allocated during the creation of the block
* device, its actual contents are not initialized at this stage and can change
* substantially over time. This includes alterations from data that the LSMs
* 'trusts' to those they do not, making it essential to handle these changes
* correctly. Failure to address this dynamic aspect could potentially allow
* for bypassing LSM checks.
*
* Return: Returns 0 on success, negative values on failure.
*/
int security_bdev_setintegrity(struct block_device *bdev,
enum lsm_integrity_type type, const void *value,
size_t size)
{
return call_int_hook(bdev_setintegrity, bdev, type, value, size);
}
EXPORT_SYMBOL(security_bdev_setintegrity);
#ifdef CONFIG_PERF_EVENTS
/**
* security_perf_event_open() - Check if a perf event open is allowed
* @attr: perf event attribute
* @type: type of event
*
* Check whether the @type of perf_event_open syscall is allowed.
*
* Return: Returns 0 if permission is granted.
*/
int security_perf_event_open(struct perf_event_attr *attr, int type)
{
return call_int_hook(perf_event_open, attr, type);
}
/**
* security_perf_event_alloc() - Allocate a perf event LSM blob
* @event: perf event
*
* Allocate and save perf_event security info.
*
* Return: Returns 0 on success, error on failure.
*/
int security_perf_event_alloc(struct perf_event *event)
{
int rc;
rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
GFP_KERNEL);
if (rc)
return rc;
rc = call_int_hook(perf_event_alloc, event);
if (rc) {
kfree(event->security);
event->security = NULL;
}
return rc;
}
/**
* security_perf_event_free() - Free a perf event LSM blob
* @event: perf event
*
* Release (free) perf_event security info.
*/
void security_perf_event_free(struct perf_event *event)
{
kfree(event->security);
event->security = NULL;
}
/**
* security_perf_event_read() - Check if reading a perf event label is allowed
* @event: perf event
*
* Read perf_event security info if allowed.
*
* Return: Returns 0 if permission is granted.
*/
int security_perf_event_read(struct perf_event *event)
{
return call_int_hook(perf_event_read, event);
}
/**
* security_perf_event_write() - Check if writing a perf event label is allowed
* @event: perf event
*
* Write perf_event security info if allowed.
*
* Return: Returns 0 if permission is granted.
*/
int security_perf_event_write(struct perf_event *event)
{
return call_int_hook(perf_event_write, event);
}
#endif /* CONFIG_PERF_EVENTS */
#ifdef CONFIG_IO_URING
/**
* security_uring_override_creds() - Check if overriding creds is allowed
* @new: new credentials
*
* Check if the current task, executing an io_uring operation, is allowed to
* override it's credentials with @new.
*
* Return: Returns 0 if permission is granted.
*/
int security_uring_override_creds(const struct cred *new)
{
return call_int_hook(uring_override_creds, new);
}
/**
* security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
*
* Check whether the current task is allowed to spawn a io_uring polling thread
* (IORING_SETUP_SQPOLL).
*
* Return: Returns 0 if permission is granted.
*/
int security_uring_sqpoll(void)
{
return call_int_hook(uring_sqpoll);
}
/**
* security_uring_cmd() - Check if a io_uring passthrough command is allowed
* @ioucmd: command
*
* Check whether the file_operations uring_cmd is allowed to run.
*
* Return: Returns 0 if permission is granted.
*/
int security_uring_cmd(struct io_uring_cmd *ioucmd)
{
return call_int_hook(uring_cmd, ioucmd);
}
#endif /* CONFIG_IO_URING */
/**
* security_initramfs_populated() - Notify LSMs that initramfs has been loaded
*
* Tells the LSMs the initramfs has been unpacked into the rootfs.
*/
void security_initramfs_populated(void)
{
call_void_hook(initramfs_populated);
}