mirror of
https://github.com/torvalds/linux.git
synced 2025-01-01 07:42:07 +00:00
a7d53dbbc7
Increasing the virtual timeout time to account for scenarios that may require more time, like DisplayPort Multi-Stream Transport (DP MST), where the disconnect time can be extended longer than usual. The recommended timeout range is 5-10 seconds, of which we will take the lower bound. Signed-off-by: Casey Bowman <casey.g.bowman@intel.com> Acked-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> Link: https://lore.kernel.org/r/20210210192041.17022-1-casey.g.bowman@intel.com Signed-off-by: Hans de Goede <hdegoede@redhat.com>
713 lines
19 KiB
C
713 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Driver for the Intel SCU IPC mechanism
|
|
*
|
|
* (C) Copyright 2008-2010,2015 Intel Corporation
|
|
* Author: Sreedhara DS (sreedhara.ds@intel.com)
|
|
*
|
|
* SCU running in ARC processor communicates with other entity running in IA
|
|
* core through IPC mechanism which in turn messaging between IA core ad SCU.
|
|
* SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
|
|
* SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
|
|
* IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
|
|
* along with other APIs.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/intel_scu_ipc.h>
|
|
|
|
/* IPC defines the following message types */
|
|
#define IPCMSG_PCNTRL 0xff /* Power controller unit read/write */
|
|
|
|
/* Command id associated with message IPCMSG_PCNTRL */
|
|
#define IPC_CMD_PCNTRL_W 0 /* Register write */
|
|
#define IPC_CMD_PCNTRL_R 1 /* Register read */
|
|
#define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
|
|
|
|
/*
|
|
* IPC register summary
|
|
*
|
|
* IPC register blocks are memory mapped at fixed address of PCI BAR 0.
|
|
* To read or write information to the SCU, driver writes to IPC-1 memory
|
|
* mapped registers. The following is the IPC mechanism
|
|
*
|
|
* 1. IA core cDMI interface claims this transaction and converts it to a
|
|
* Transaction Layer Packet (TLP) message which is sent across the cDMI.
|
|
*
|
|
* 2. South Complex cDMI block receives this message and writes it to
|
|
* the IPC-1 register block, causing an interrupt to the SCU
|
|
*
|
|
* 3. SCU firmware decodes this interrupt and IPC message and the appropriate
|
|
* message handler is called within firmware.
|
|
*/
|
|
|
|
#define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
|
|
#define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
|
|
#define IPC_IOC 0x100 /* IPC command register IOC bit */
|
|
|
|
struct intel_scu_ipc_dev {
|
|
struct device dev;
|
|
struct resource mem;
|
|
struct module *owner;
|
|
int irq;
|
|
void __iomem *ipc_base;
|
|
struct completion cmd_complete;
|
|
};
|
|
|
|
#define IPC_STATUS 0x04
|
|
#define IPC_STATUS_IRQ BIT(2)
|
|
#define IPC_STATUS_ERR BIT(1)
|
|
#define IPC_STATUS_BUSY BIT(0)
|
|
|
|
/*
|
|
* IPC Write/Read Buffers:
|
|
* 16 byte buffer for sending and receiving data to and from SCU.
|
|
*/
|
|
#define IPC_WRITE_BUFFER 0x80
|
|
#define IPC_READ_BUFFER 0x90
|
|
|
|
/* Timeout in jiffies */
|
|
#define IPC_TIMEOUT (5 * HZ)
|
|
|
|
static struct intel_scu_ipc_dev *ipcdev; /* Only one for now */
|
|
static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
|
|
|
|
static struct class intel_scu_ipc_class = {
|
|
.name = "intel_scu_ipc",
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
/**
|
|
* intel_scu_ipc_dev_get() - Get SCU IPC instance
|
|
*
|
|
* The recommended new API takes SCU IPC instance as parameter and this
|
|
* function can be called by driver to get the instance. This also makes
|
|
* sure the driver providing the IPC functionality cannot be unloaded
|
|
* while the caller has the instance.
|
|
*
|
|
* Call intel_scu_ipc_dev_put() to release the instance.
|
|
*
|
|
* Returns %NULL if SCU IPC is not currently available.
|
|
*/
|
|
struct intel_scu_ipc_dev *intel_scu_ipc_dev_get(void)
|
|
{
|
|
struct intel_scu_ipc_dev *scu = NULL;
|
|
|
|
mutex_lock(&ipclock);
|
|
if (ipcdev) {
|
|
get_device(&ipcdev->dev);
|
|
/*
|
|
* Prevent the IPC provider from being unloaded while it
|
|
* is being used.
|
|
*/
|
|
if (!try_module_get(ipcdev->owner))
|
|
put_device(&ipcdev->dev);
|
|
else
|
|
scu = ipcdev;
|
|
}
|
|
|
|
mutex_unlock(&ipclock);
|
|
return scu;
|
|
}
|
|
EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_get);
|
|
|
|
/**
|
|
* intel_scu_ipc_dev_put() - Put SCU IPC instance
|
|
* @scu: SCU IPC instance
|
|
*
|
|
* This function releases the SCU IPC instance retrieved from
|
|
* intel_scu_ipc_dev_get() and allows the driver providing IPC to be
|
|
* unloaded.
|
|
*/
|
|
void intel_scu_ipc_dev_put(struct intel_scu_ipc_dev *scu)
|
|
{
|
|
if (scu) {
|
|
module_put(scu->owner);
|
|
put_device(&scu->dev);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_put);
|
|
|
|
struct intel_scu_ipc_devres {
|
|
struct intel_scu_ipc_dev *scu;
|
|
};
|
|
|
|
static void devm_intel_scu_ipc_dev_release(struct device *dev, void *res)
|
|
{
|
|
struct intel_scu_ipc_devres *dr = res;
|
|
struct intel_scu_ipc_dev *scu = dr->scu;
|
|
|
|
intel_scu_ipc_dev_put(scu);
|
|
}
|
|
|
|
/**
|
|
* devm_intel_scu_ipc_dev_get() - Allocate managed SCU IPC device
|
|
* @dev: Device requesting the SCU IPC device
|
|
*
|
|
* The recommended new API takes SCU IPC instance as parameter and this
|
|
* function can be called by driver to get the instance. This also makes
|
|
* sure the driver providing the IPC functionality cannot be unloaded
|
|
* while the caller has the instance.
|
|
*
|
|
* Returns %NULL if SCU IPC is not currently available.
|
|
*/
|
|
struct intel_scu_ipc_dev *devm_intel_scu_ipc_dev_get(struct device *dev)
|
|
{
|
|
struct intel_scu_ipc_devres *dr;
|
|
struct intel_scu_ipc_dev *scu;
|
|
|
|
dr = devres_alloc(devm_intel_scu_ipc_dev_release, sizeof(*dr), GFP_KERNEL);
|
|
if (!dr)
|
|
return NULL;
|
|
|
|
scu = intel_scu_ipc_dev_get();
|
|
if (!scu) {
|
|
devres_free(dr);
|
|
return NULL;
|
|
}
|
|
|
|
dr->scu = scu;
|
|
devres_add(dev, dr);
|
|
|
|
return scu;
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_intel_scu_ipc_dev_get);
|
|
|
|
/*
|
|
* Send ipc command
|
|
* Command Register (Write Only):
|
|
* A write to this register results in an interrupt to the SCU core processor
|
|
* Format:
|
|
* |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
|
|
*/
|
|
static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
|
|
{
|
|
reinit_completion(&scu->cmd_complete);
|
|
writel(cmd | IPC_IOC, scu->ipc_base);
|
|
}
|
|
|
|
/*
|
|
* Write ipc data
|
|
* IPC Write Buffer (Write Only):
|
|
* 16-byte buffer for sending data associated with IPC command to
|
|
* SCU. Size of the data is specified in the IPC_COMMAND_REG register
|
|
*/
|
|
static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
|
|
{
|
|
writel(data, scu->ipc_base + IPC_WRITE_BUFFER + offset);
|
|
}
|
|
|
|
/*
|
|
* Status Register (Read Only):
|
|
* Driver will read this register to get the ready/busy status of the IPC
|
|
* block and error status of the IPC command that was just processed by SCU
|
|
* Format:
|
|
* |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
|
|
*/
|
|
static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
|
|
{
|
|
return __raw_readl(scu->ipc_base + IPC_STATUS);
|
|
}
|
|
|
|
/* Read ipc byte data */
|
|
static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
|
|
{
|
|
return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
|
|
}
|
|
|
|
/* Read ipc u32 data */
|
|
static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
|
|
{
|
|
return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
|
|
}
|
|
|
|
/* Wait till scu status is busy */
|
|
static inline int busy_loop(struct intel_scu_ipc_dev *scu)
|
|
{
|
|
unsigned long end = jiffies + msecs_to_jiffies(IPC_TIMEOUT);
|
|
|
|
do {
|
|
u32 status;
|
|
|
|
status = ipc_read_status(scu);
|
|
if (!(status & IPC_STATUS_BUSY))
|
|
return (status & IPC_STATUS_ERR) ? -EIO : 0;
|
|
|
|
usleep_range(50, 100);
|
|
} while (time_before(jiffies, end));
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
|
|
static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
|
|
{
|
|
int status;
|
|
|
|
if (!wait_for_completion_timeout(&scu->cmd_complete, IPC_TIMEOUT))
|
|
return -ETIMEDOUT;
|
|
|
|
status = ipc_read_status(scu);
|
|
if (status & IPC_STATUS_ERR)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
|
|
{
|
|
return scu->irq > 0 ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
|
|
}
|
|
|
|
/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
|
|
static int pwr_reg_rdwr(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
|
|
u32 count, u32 op, u32 id)
|
|
{
|
|
int nc;
|
|
u32 offset = 0;
|
|
int err;
|
|
u8 cbuf[IPC_WWBUF_SIZE];
|
|
u32 *wbuf = (u32 *)&cbuf;
|
|
|
|
memset(cbuf, 0, sizeof(cbuf));
|
|
|
|
mutex_lock(&ipclock);
|
|
if (!scu)
|
|
scu = ipcdev;
|
|
if (!scu) {
|
|
mutex_unlock(&ipclock);
|
|
return -ENODEV;
|
|
}
|
|
|
|
for (nc = 0; nc < count; nc++, offset += 2) {
|
|
cbuf[offset] = addr[nc];
|
|
cbuf[offset + 1] = addr[nc] >> 8;
|
|
}
|
|
|
|
if (id == IPC_CMD_PCNTRL_R) {
|
|
for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
|
|
ipc_data_writel(scu, wbuf[nc], offset);
|
|
ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
|
|
} else if (id == IPC_CMD_PCNTRL_W) {
|
|
for (nc = 0; nc < count; nc++, offset += 1)
|
|
cbuf[offset] = data[nc];
|
|
for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
|
|
ipc_data_writel(scu, wbuf[nc], offset);
|
|
ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
|
|
} else if (id == IPC_CMD_PCNTRL_M) {
|
|
cbuf[offset] = data[0];
|
|
cbuf[offset + 1] = data[1];
|
|
ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
|
|
ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
|
|
}
|
|
|
|
err = intel_scu_ipc_check_status(scu);
|
|
if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
|
|
/* Workaround: values are read as 0 without memcpy_fromio */
|
|
memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
|
|
for (nc = 0; nc < count; nc++)
|
|
data[nc] = ipc_data_readb(scu, nc);
|
|
}
|
|
mutex_unlock(&ipclock);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* intel_scu_ipc_dev_ioread8() - Read a byte via the SCU
|
|
* @scu: Optional SCU IPC instance
|
|
* @addr: Register on SCU
|
|
* @data: Return pointer for read byte
|
|
*
|
|
* Read a single register. Returns %0 on success or an error code. All
|
|
* locking between SCU accesses is handled for the caller.
|
|
*
|
|
* This function may sleep.
|
|
*/
|
|
int intel_scu_ipc_dev_ioread8(struct intel_scu_ipc_dev *scu, u16 addr, u8 *data)
|
|
{
|
|
return pwr_reg_rdwr(scu, &addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
|
|
}
|
|
EXPORT_SYMBOL(intel_scu_ipc_dev_ioread8);
|
|
|
|
/**
|
|
* intel_scu_ipc_dev_iowrite8() - Write a byte via the SCU
|
|
* @scu: Optional SCU IPC instance
|
|
* @addr: Register on SCU
|
|
* @data: Byte to write
|
|
*
|
|
* Write a single register. Returns %0 on success or an error code. All
|
|
* locking between SCU accesses is handled for the caller.
|
|
*
|
|
* This function may sleep.
|
|
*/
|
|
int intel_scu_ipc_dev_iowrite8(struct intel_scu_ipc_dev *scu, u16 addr, u8 data)
|
|
{
|
|
return pwr_reg_rdwr(scu, &addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
|
|
}
|
|
EXPORT_SYMBOL(intel_scu_ipc_dev_iowrite8);
|
|
|
|
/**
|
|
* intel_scu_ipc_dev_readv() - Read a set of registers
|
|
* @scu: Optional SCU IPC instance
|
|
* @addr: Register list
|
|
* @data: Bytes to return
|
|
* @len: Length of array
|
|
*
|
|
* Read registers. Returns %0 on success or an error code. All locking
|
|
* between SCU accesses is handled for the caller.
|
|
*
|
|
* The largest array length permitted by the hardware is 5 items.
|
|
*
|
|
* This function may sleep.
|
|
*/
|
|
int intel_scu_ipc_dev_readv(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
|
|
size_t len)
|
|
{
|
|
return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
|
|
}
|
|
EXPORT_SYMBOL(intel_scu_ipc_dev_readv);
|
|
|
|
/**
|
|
* intel_scu_ipc_dev_writev() - Write a set of registers
|
|
* @scu: Optional SCU IPC instance
|
|
* @addr: Register list
|
|
* @data: Bytes to write
|
|
* @len: Length of array
|
|
*
|
|
* Write registers. Returns %0 on success or an error code. All locking
|
|
* between SCU accesses is handled for the caller.
|
|
*
|
|
* The largest array length permitted by the hardware is 5 items.
|
|
*
|
|
* This function may sleep.
|
|
*/
|
|
int intel_scu_ipc_dev_writev(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
|
|
size_t len)
|
|
{
|
|
return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
|
|
}
|
|
EXPORT_SYMBOL(intel_scu_ipc_dev_writev);
|
|
|
|
/**
|
|
* intel_scu_ipc_dev_update() - Update a register
|
|
* @scu: Optional SCU IPC instance
|
|
* @addr: Register address
|
|
* @data: Bits to update
|
|
* @mask: Mask of bits to update
|
|
*
|
|
* Read-modify-write power control unit register. The first data argument
|
|
* must be register value and second is mask value mask is a bitmap that
|
|
* indicates which bits to update. %0 = masked. Don't modify this bit, %1 =
|
|
* modify this bit. returns %0 on success or an error code.
|
|
*
|
|
* This function may sleep. Locking between SCU accesses is handled
|
|
* for the caller.
|
|
*/
|
|
int intel_scu_ipc_dev_update(struct intel_scu_ipc_dev *scu, u16 addr, u8 data,
|
|
u8 mask)
|
|
{
|
|
u8 tmp[2] = { data, mask };
|
|
return pwr_reg_rdwr(scu, &addr, tmp, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
|
|
}
|
|
EXPORT_SYMBOL(intel_scu_ipc_dev_update);
|
|
|
|
/**
|
|
* intel_scu_ipc_dev_simple_command() - Send a simple command
|
|
* @scu: Optional SCU IPC instance
|
|
* @cmd: Command
|
|
* @sub: Sub type
|
|
*
|
|
* Issue a simple command to the SCU. Do not use this interface if you must
|
|
* then access data as any data values may be overwritten by another SCU
|
|
* access by the time this function returns.
|
|
*
|
|
* This function may sleep. Locking for SCU accesses is handled for the
|
|
* caller.
|
|
*/
|
|
int intel_scu_ipc_dev_simple_command(struct intel_scu_ipc_dev *scu, int cmd,
|
|
int sub)
|
|
{
|
|
u32 cmdval;
|
|
int err;
|
|
|
|
mutex_lock(&ipclock);
|
|
if (!scu)
|
|
scu = ipcdev;
|
|
if (!scu) {
|
|
mutex_unlock(&ipclock);
|
|
return -ENODEV;
|
|
}
|
|
scu = ipcdev;
|
|
cmdval = sub << 12 | cmd;
|
|
ipc_command(scu, cmdval);
|
|
err = intel_scu_ipc_check_status(scu);
|
|
mutex_unlock(&ipclock);
|
|
if (err)
|
|
dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(intel_scu_ipc_dev_simple_command);
|
|
|
|
/**
|
|
* intel_scu_ipc_command_with_size() - Command with data
|
|
* @scu: Optional SCU IPC instance
|
|
* @cmd: Command
|
|
* @sub: Sub type
|
|
* @in: Input data
|
|
* @inlen: Input length in bytes
|
|
* @size: Input size written to the IPC command register in whatever
|
|
* units (dword, byte) the particular firmware requires. Normally
|
|
* should be the same as @inlen.
|
|
* @out: Output data
|
|
* @outlen: Output length in bytes
|
|
*
|
|
* Issue a command to the SCU which involves data transfers. Do the
|
|
* data copies under the lock but leave it for the caller to interpret.
|
|
*/
|
|
int intel_scu_ipc_dev_command_with_size(struct intel_scu_ipc_dev *scu, int cmd,
|
|
int sub, const void *in, size_t inlen,
|
|
size_t size, void *out, size_t outlen)
|
|
{
|
|
size_t outbuflen = DIV_ROUND_UP(outlen, sizeof(u32));
|
|
size_t inbuflen = DIV_ROUND_UP(inlen, sizeof(u32));
|
|
u32 cmdval, inbuf[4] = {};
|
|
int i, err;
|
|
|
|
if (inbuflen > 4 || outbuflen > 4)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&ipclock);
|
|
if (!scu)
|
|
scu = ipcdev;
|
|
if (!scu) {
|
|
mutex_unlock(&ipclock);
|
|
return -ENODEV;
|
|
}
|
|
|
|
memcpy(inbuf, in, inlen);
|
|
for (i = 0; i < inbuflen; i++)
|
|
ipc_data_writel(scu, inbuf[i], 4 * i);
|
|
|
|
cmdval = (size << 16) | (sub << 12) | cmd;
|
|
ipc_command(scu, cmdval);
|
|
err = intel_scu_ipc_check_status(scu);
|
|
|
|
if (!err) {
|
|
u32 outbuf[4] = {};
|
|
|
|
for (i = 0; i < outbuflen; i++)
|
|
outbuf[i] = ipc_data_readl(scu, 4 * i);
|
|
|
|
memcpy(out, outbuf, outlen);
|
|
}
|
|
|
|
mutex_unlock(&ipclock);
|
|
if (err)
|
|
dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(intel_scu_ipc_dev_command_with_size);
|
|
|
|
/*
|
|
* Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
|
|
* When ioc bit is set to 1, caller api must wait for interrupt handler called
|
|
* which in turn unlocks the caller api. Currently this is not used
|
|
*
|
|
* This is edge triggered so we need take no action to clear anything
|
|
*/
|
|
static irqreturn_t ioc(int irq, void *dev_id)
|
|
{
|
|
struct intel_scu_ipc_dev *scu = dev_id;
|
|
int status = ipc_read_status(scu);
|
|
|
|
writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS);
|
|
complete(&scu->cmd_complete);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void intel_scu_ipc_release(struct device *dev)
|
|
{
|
|
struct intel_scu_ipc_dev *scu;
|
|
|
|
scu = container_of(dev, struct intel_scu_ipc_dev, dev);
|
|
if (scu->irq > 0)
|
|
free_irq(scu->irq, scu);
|
|
iounmap(scu->ipc_base);
|
|
release_mem_region(scu->mem.start, resource_size(&scu->mem));
|
|
kfree(scu);
|
|
}
|
|
|
|
/**
|
|
* __intel_scu_ipc_register() - Register SCU IPC device
|
|
* @parent: Parent device
|
|
* @scu_data: Data used to configure SCU IPC
|
|
* @owner: Module registering the SCU IPC device
|
|
*
|
|
* Call this function to register SCU IPC mechanism under @parent.
|
|
* Returns pointer to the new SCU IPC device or ERR_PTR() in case of
|
|
* failure. The caller may use the returned instance if it needs to do
|
|
* SCU IPC calls itself.
|
|
*/
|
|
struct intel_scu_ipc_dev *
|
|
__intel_scu_ipc_register(struct device *parent,
|
|
const struct intel_scu_ipc_data *scu_data,
|
|
struct module *owner)
|
|
{
|
|
int err;
|
|
struct intel_scu_ipc_dev *scu;
|
|
void __iomem *ipc_base;
|
|
|
|
mutex_lock(&ipclock);
|
|
/* We support only one IPC */
|
|
if (ipcdev) {
|
|
err = -EBUSY;
|
|
goto err_unlock;
|
|
}
|
|
|
|
scu = kzalloc(sizeof(*scu), GFP_KERNEL);
|
|
if (!scu) {
|
|
err = -ENOMEM;
|
|
goto err_unlock;
|
|
}
|
|
|
|
scu->owner = owner;
|
|
scu->dev.parent = parent;
|
|
scu->dev.class = &intel_scu_ipc_class;
|
|
scu->dev.release = intel_scu_ipc_release;
|
|
dev_set_name(&scu->dev, "intel_scu_ipc");
|
|
|
|
if (!request_mem_region(scu_data->mem.start, resource_size(&scu_data->mem),
|
|
"intel_scu_ipc")) {
|
|
err = -EBUSY;
|
|
goto err_free;
|
|
}
|
|
|
|
ipc_base = ioremap(scu_data->mem.start, resource_size(&scu_data->mem));
|
|
if (!ipc_base) {
|
|
err = -ENOMEM;
|
|
goto err_release;
|
|
}
|
|
|
|
scu->ipc_base = ipc_base;
|
|
scu->mem = scu_data->mem;
|
|
scu->irq = scu_data->irq;
|
|
init_completion(&scu->cmd_complete);
|
|
|
|
if (scu->irq > 0) {
|
|
err = request_irq(scu->irq, ioc, 0, "intel_scu_ipc", scu);
|
|
if (err)
|
|
goto err_unmap;
|
|
}
|
|
|
|
/*
|
|
* After this point intel_scu_ipc_release() takes care of
|
|
* releasing the SCU IPC resources once refcount drops to zero.
|
|
*/
|
|
err = device_register(&scu->dev);
|
|
if (err) {
|
|
put_device(&scu->dev);
|
|
goto err_unlock;
|
|
}
|
|
|
|
/* Assign device at last */
|
|
ipcdev = scu;
|
|
mutex_unlock(&ipclock);
|
|
|
|
return scu;
|
|
|
|
err_unmap:
|
|
iounmap(ipc_base);
|
|
err_release:
|
|
release_mem_region(scu_data->mem.start, resource_size(&scu_data->mem));
|
|
err_free:
|
|
kfree(scu);
|
|
err_unlock:
|
|
mutex_unlock(&ipclock);
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__intel_scu_ipc_register);
|
|
|
|
/**
|
|
* intel_scu_ipc_unregister() - Unregister SCU IPC
|
|
* @scu: SCU IPC handle
|
|
*
|
|
* This unregisters the SCU IPC device and releases the acquired
|
|
* resources once the refcount goes to zero.
|
|
*/
|
|
void intel_scu_ipc_unregister(struct intel_scu_ipc_dev *scu)
|
|
{
|
|
mutex_lock(&ipclock);
|
|
if (!WARN_ON(!ipcdev)) {
|
|
ipcdev = NULL;
|
|
device_unregister(&scu->dev);
|
|
}
|
|
mutex_unlock(&ipclock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(intel_scu_ipc_unregister);
|
|
|
|
static void devm_intel_scu_ipc_unregister(struct device *dev, void *res)
|
|
{
|
|
struct intel_scu_ipc_devres *dr = res;
|
|
struct intel_scu_ipc_dev *scu = dr->scu;
|
|
|
|
intel_scu_ipc_unregister(scu);
|
|
}
|
|
|
|
/**
|
|
* __devm_intel_scu_ipc_register() - Register managed SCU IPC device
|
|
* @parent: Parent device
|
|
* @scu_data: Data used to configure SCU IPC
|
|
* @owner: Module registering the SCU IPC device
|
|
*
|
|
* Call this function to register managed SCU IPC mechanism under
|
|
* @parent. Returns pointer to the new SCU IPC device or ERR_PTR() in
|
|
* case of failure. The caller may use the returned instance if it needs
|
|
* to do SCU IPC calls itself.
|
|
*/
|
|
struct intel_scu_ipc_dev *
|
|
__devm_intel_scu_ipc_register(struct device *parent,
|
|
const struct intel_scu_ipc_data *scu_data,
|
|
struct module *owner)
|
|
{
|
|
struct intel_scu_ipc_devres *dr;
|
|
struct intel_scu_ipc_dev *scu;
|
|
|
|
dr = devres_alloc(devm_intel_scu_ipc_unregister, sizeof(*dr), GFP_KERNEL);
|
|
if (!dr)
|
|
return NULL;
|
|
|
|
scu = __intel_scu_ipc_register(parent, scu_data, owner);
|
|
if (IS_ERR(scu)) {
|
|
devres_free(dr);
|
|
return scu;
|
|
}
|
|
|
|
dr->scu = scu;
|
|
devres_add(parent, dr);
|
|
|
|
return scu;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__devm_intel_scu_ipc_register);
|
|
|
|
static int __init intel_scu_ipc_init(void)
|
|
{
|
|
return class_register(&intel_scu_ipc_class);
|
|
}
|
|
subsys_initcall(intel_scu_ipc_init);
|
|
|
|
static void __exit intel_scu_ipc_exit(void)
|
|
{
|
|
class_unregister(&intel_scu_ipc_class);
|
|
}
|
|
module_exit(intel_scu_ipc_exit);
|