linux/drivers/firewire/core-iso.c
Kees Cook 6da2ec5605 treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

        kmalloc(a * b, gfp)

with:
        kmalloc_array(a * b, gfp)

as well as handling cases of:

        kmalloc(a * b * c, gfp)

with:

        kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

404 lines
10 KiB
C

/*
* Isochronous I/O functionality:
* - Isochronous DMA context management
* - Isochronous bus resource management (channels, bandwidth), client side
*
* Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <asm/byteorder.h>
#include "core.h"
/*
* Isochronous DMA context management
*/
int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
{
int i;
buffer->page_count = 0;
buffer->page_count_mapped = 0;
buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
GFP_KERNEL);
if (buffer->pages == NULL)
return -ENOMEM;
for (i = 0; i < page_count; i++) {
buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
if (buffer->pages[i] == NULL)
break;
}
buffer->page_count = i;
if (i < page_count) {
fw_iso_buffer_destroy(buffer, NULL);
return -ENOMEM;
}
return 0;
}
int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
enum dma_data_direction direction)
{
dma_addr_t address;
int i;
buffer->direction = direction;
for (i = 0; i < buffer->page_count; i++) {
address = dma_map_page(card->device, buffer->pages[i],
0, PAGE_SIZE, direction);
if (dma_mapping_error(card->device, address))
break;
set_page_private(buffer->pages[i], address);
}
buffer->page_count_mapped = i;
if (i < buffer->page_count)
return -ENOMEM;
return 0;
}
int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
int page_count, enum dma_data_direction direction)
{
int ret;
ret = fw_iso_buffer_alloc(buffer, page_count);
if (ret < 0)
return ret;
ret = fw_iso_buffer_map_dma(buffer, card, direction);
if (ret < 0)
fw_iso_buffer_destroy(buffer, card);
return ret;
}
EXPORT_SYMBOL(fw_iso_buffer_init);
int fw_iso_buffer_map_vma(struct fw_iso_buffer *buffer,
struct vm_area_struct *vma)
{
unsigned long uaddr;
int i, err;
uaddr = vma->vm_start;
for (i = 0; i < buffer->page_count; i++) {
err = vm_insert_page(vma, uaddr, buffer->pages[i]);
if (err)
return err;
uaddr += PAGE_SIZE;
}
return 0;
}
void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
struct fw_card *card)
{
int i;
dma_addr_t address;
for (i = 0; i < buffer->page_count_mapped; i++) {
address = page_private(buffer->pages[i]);
dma_unmap_page(card->device, address,
PAGE_SIZE, buffer->direction);
}
for (i = 0; i < buffer->page_count; i++)
__free_page(buffer->pages[i]);
kfree(buffer->pages);
buffer->pages = NULL;
buffer->page_count = 0;
buffer->page_count_mapped = 0;
}
EXPORT_SYMBOL(fw_iso_buffer_destroy);
/* Convert DMA address to offset into virtually contiguous buffer. */
size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
{
size_t i;
dma_addr_t address;
ssize_t offset;
for (i = 0; i < buffer->page_count; i++) {
address = page_private(buffer->pages[i]);
offset = (ssize_t)completed - (ssize_t)address;
if (offset > 0 && offset <= PAGE_SIZE)
return (i << PAGE_SHIFT) + offset;
}
return 0;
}
struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
int type, int channel, int speed, size_t header_size,
fw_iso_callback_t callback, void *callback_data)
{
struct fw_iso_context *ctx;
ctx = card->driver->allocate_iso_context(card,
type, channel, header_size);
if (IS_ERR(ctx))
return ctx;
ctx->card = card;
ctx->type = type;
ctx->channel = channel;
ctx->speed = speed;
ctx->header_size = header_size;
ctx->callback.sc = callback;
ctx->callback_data = callback_data;
return ctx;
}
EXPORT_SYMBOL(fw_iso_context_create);
void fw_iso_context_destroy(struct fw_iso_context *ctx)
{
ctx->card->driver->free_iso_context(ctx);
}
EXPORT_SYMBOL(fw_iso_context_destroy);
int fw_iso_context_start(struct fw_iso_context *ctx,
int cycle, int sync, int tags)
{
return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
}
EXPORT_SYMBOL(fw_iso_context_start);
int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
{
return ctx->card->driver->set_iso_channels(ctx, channels);
}
int fw_iso_context_queue(struct fw_iso_context *ctx,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload)
{
return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
}
EXPORT_SYMBOL(fw_iso_context_queue);
void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
{
ctx->card->driver->flush_queue_iso(ctx);
}
EXPORT_SYMBOL(fw_iso_context_queue_flush);
int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
{
return ctx->card->driver->flush_iso_completions(ctx);
}
EXPORT_SYMBOL(fw_iso_context_flush_completions);
int fw_iso_context_stop(struct fw_iso_context *ctx)
{
return ctx->card->driver->stop_iso(ctx);
}
EXPORT_SYMBOL(fw_iso_context_stop);
/*
* Isochronous bus resource management (channels, bandwidth), client side
*/
static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
int bandwidth, bool allocate)
{
int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
__be32 data[2];
/*
* On a 1394a IRM with low contention, try < 1 is enough.
* On a 1394-1995 IRM, we need at least try < 2.
* Let's just do try < 5.
*/
for (try = 0; try < 5; try++) {
new = allocate ? old - bandwidth : old + bandwidth;
if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
return -EBUSY;
data[0] = cpu_to_be32(old);
data[1] = cpu_to_be32(new);
switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
irm_id, generation, SCODE_100,
CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
data, 8)) {
case RCODE_GENERATION:
/* A generation change frees all bandwidth. */
return allocate ? -EAGAIN : bandwidth;
case RCODE_COMPLETE:
if (be32_to_cpup(data) == old)
return bandwidth;
old = be32_to_cpup(data);
/* Fall through. */
}
}
return -EIO;
}
static int manage_channel(struct fw_card *card, int irm_id, int generation,
u32 channels_mask, u64 offset, bool allocate)
{
__be32 bit, all, old;
__be32 data[2];
int channel, ret = -EIO, retry = 5;
old = all = allocate ? cpu_to_be32(~0) : 0;
for (channel = 0; channel < 32; channel++) {
if (!(channels_mask & 1 << channel))
continue;
ret = -EBUSY;
bit = cpu_to_be32(1 << (31 - channel));
if ((old & bit) != (all & bit))
continue;
data[0] = old;
data[1] = old ^ bit;
switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
irm_id, generation, SCODE_100,
offset, data, 8)) {
case RCODE_GENERATION:
/* A generation change frees all channels. */
return allocate ? -EAGAIN : channel;
case RCODE_COMPLETE:
if (data[0] == old)
return channel;
old = data[0];
/* Is the IRM 1394a-2000 compliant? */
if ((data[0] & bit) == (data[1] & bit))
continue;
/* 1394-1995 IRM, fall through to retry. */
default:
if (retry) {
retry--;
channel--;
} else {
ret = -EIO;
}
}
}
return ret;
}
static void deallocate_channel(struct fw_card *card, int irm_id,
int generation, int channel)
{
u32 mask;
u64 offset;
mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
manage_channel(card, irm_id, generation, mask, offset, false);
}
/**
* fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
*
* In parameters: card, generation, channels_mask, bandwidth, allocate
* Out parameters: channel, bandwidth
* This function blocks (sleeps) during communication with the IRM.
*
* Allocates or deallocates at most one channel out of channels_mask.
* channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
* (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
* channel 0 and LSB for channel 63.)
* Allocates or deallocates as many bandwidth allocation units as specified.
*
* Returns channel < 0 if no channel was allocated or deallocated.
* Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
*
* If generation is stale, deallocations succeed but allocations fail with
* channel = -EAGAIN.
*
* If channel allocation fails, no bandwidth will be allocated either.
* If bandwidth allocation fails, no channel will be allocated either.
* But deallocations of channel and bandwidth are tried independently
* of each other's success.
*/
void fw_iso_resource_manage(struct fw_card *card, int generation,
u64 channels_mask, int *channel, int *bandwidth,
bool allocate)
{
u32 channels_hi = channels_mask; /* channels 31...0 */
u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
int irm_id, ret, c = -EINVAL;
spin_lock_irq(&card->lock);
irm_id = card->irm_node->node_id;
spin_unlock_irq(&card->lock);
if (channels_hi)
c = manage_channel(card, irm_id, generation, channels_hi,
CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
allocate);
if (channels_lo && c < 0) {
c = manage_channel(card, irm_id, generation, channels_lo,
CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
allocate);
if (c >= 0)
c += 32;
}
*channel = c;
if (allocate && channels_mask != 0 && c < 0)
*bandwidth = 0;
if (*bandwidth == 0)
return;
ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
if (ret < 0)
*bandwidth = 0;
if (allocate && ret < 0) {
if (c >= 0)
deallocate_channel(card, irm_id, generation, c);
*channel = ret;
}
}
EXPORT_SYMBOL(fw_iso_resource_manage);