linux/drivers/mmc/host/mxs-mmc.c
Koen Beel d982dcdc4e mmc: mxs-mmc: fix clock rate setting
Fix clock rate setting in the mxs-mmc driver. Previously, if div2 was 0
then the value for TIMING_CLOCK_RATE would have been 255 instead of 0.
The limits for div1 (TIMING_CLOCK_DIVIDE) and div2 (TIMING_CLOCK_RATE+1)
were also not correctly defined.

Can easily be reproduced on mx23evk: default clock for high speed sdio
cards is 50 MHz. With a SSP_CLK of 28.8 MHz default), this resulted in
an actual clock rate of about 56 kHz.  Tested on mx23evk.

Signed-off-by: Koen Beel <koen.beel@barco.com>
Reviewed-by: Wolfram Sang <w.sang@pengutronix.de>
Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-21 10:35:08 -04:00

873 lines
22 KiB
C

/*
* Portions copyright (C) 2003 Russell King, PXA MMCI Driver
* Portions copyright (C) 2004-2005 Pierre Ossman, W83L51xD SD/MMC driver
*
* Copyright 2008 Embedded Alley Solutions, Inc.
* Copyright 2009-2011 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/highmem.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/completion.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <mach/mxs.h>
#include <mach/common.h>
#include <mach/dma.h>
#include <mach/mmc.h>
#define DRIVER_NAME "mxs-mmc"
/* card detect polling timeout */
#define MXS_MMC_DETECT_TIMEOUT (HZ/2)
#define SSP_VERSION_LATEST 4
#define ssp_is_old() (host->version < SSP_VERSION_LATEST)
/* SSP registers */
#define HW_SSP_CTRL0 0x000
#define BM_SSP_CTRL0_RUN (1 << 29)
#define BM_SSP_CTRL0_SDIO_IRQ_CHECK (1 << 28)
#define BM_SSP_CTRL0_IGNORE_CRC (1 << 26)
#define BM_SSP_CTRL0_READ (1 << 25)
#define BM_SSP_CTRL0_DATA_XFER (1 << 24)
#define BP_SSP_CTRL0_BUS_WIDTH (22)
#define BM_SSP_CTRL0_BUS_WIDTH (0x3 << 22)
#define BM_SSP_CTRL0_WAIT_FOR_IRQ (1 << 21)
#define BM_SSP_CTRL0_LONG_RESP (1 << 19)
#define BM_SSP_CTRL0_GET_RESP (1 << 17)
#define BM_SSP_CTRL0_ENABLE (1 << 16)
#define BP_SSP_CTRL0_XFER_COUNT (0)
#define BM_SSP_CTRL0_XFER_COUNT (0xffff)
#define HW_SSP_CMD0 0x010
#define BM_SSP_CMD0_DBL_DATA_RATE_EN (1 << 25)
#define BM_SSP_CMD0_SLOW_CLKING_EN (1 << 22)
#define BM_SSP_CMD0_CONT_CLKING_EN (1 << 21)
#define BM_SSP_CMD0_APPEND_8CYC (1 << 20)
#define BP_SSP_CMD0_BLOCK_SIZE (16)
#define BM_SSP_CMD0_BLOCK_SIZE (0xf << 16)
#define BP_SSP_CMD0_BLOCK_COUNT (8)
#define BM_SSP_CMD0_BLOCK_COUNT (0xff << 8)
#define BP_SSP_CMD0_CMD (0)
#define BM_SSP_CMD0_CMD (0xff)
#define HW_SSP_CMD1 0x020
#define HW_SSP_XFER_SIZE 0x030
#define HW_SSP_BLOCK_SIZE 0x040
#define BP_SSP_BLOCK_SIZE_BLOCK_COUNT (4)
#define BM_SSP_BLOCK_SIZE_BLOCK_COUNT (0xffffff << 4)
#define BP_SSP_BLOCK_SIZE_BLOCK_SIZE (0)
#define BM_SSP_BLOCK_SIZE_BLOCK_SIZE (0xf)
#define HW_SSP_TIMING (ssp_is_old() ? 0x050 : 0x070)
#define BP_SSP_TIMING_TIMEOUT (16)
#define BM_SSP_TIMING_TIMEOUT (0xffff << 16)
#define BP_SSP_TIMING_CLOCK_DIVIDE (8)
#define BM_SSP_TIMING_CLOCK_DIVIDE (0xff << 8)
#define BP_SSP_TIMING_CLOCK_RATE (0)
#define BM_SSP_TIMING_CLOCK_RATE (0xff)
#define HW_SSP_CTRL1 (ssp_is_old() ? 0x060 : 0x080)
#define BM_SSP_CTRL1_SDIO_IRQ (1 << 31)
#define BM_SSP_CTRL1_SDIO_IRQ_EN (1 << 30)
#define BM_SSP_CTRL1_RESP_ERR_IRQ (1 << 29)
#define BM_SSP_CTRL1_RESP_ERR_IRQ_EN (1 << 28)
#define BM_SSP_CTRL1_RESP_TIMEOUT_IRQ (1 << 27)
#define BM_SSP_CTRL1_RESP_TIMEOUT_IRQ_EN (1 << 26)
#define BM_SSP_CTRL1_DATA_TIMEOUT_IRQ (1 << 25)
#define BM_SSP_CTRL1_DATA_TIMEOUT_IRQ_EN (1 << 24)
#define BM_SSP_CTRL1_DATA_CRC_IRQ (1 << 23)
#define BM_SSP_CTRL1_DATA_CRC_IRQ_EN (1 << 22)
#define BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ (1 << 21)
#define BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ_EN (1 << 20)
#define BM_SSP_CTRL1_RECV_TIMEOUT_IRQ (1 << 17)
#define BM_SSP_CTRL1_RECV_TIMEOUT_IRQ_EN (1 << 16)
#define BM_SSP_CTRL1_FIFO_OVERRUN_IRQ (1 << 15)
#define BM_SSP_CTRL1_FIFO_OVERRUN_IRQ_EN (1 << 14)
#define BM_SSP_CTRL1_DMA_ENABLE (1 << 13)
#define BM_SSP_CTRL1_POLARITY (1 << 9)
#define BP_SSP_CTRL1_WORD_LENGTH (4)
#define BM_SSP_CTRL1_WORD_LENGTH (0xf << 4)
#define BP_SSP_CTRL1_SSP_MODE (0)
#define BM_SSP_CTRL1_SSP_MODE (0xf)
#define HW_SSP_SDRESP0 (ssp_is_old() ? 0x080 : 0x0a0)
#define HW_SSP_SDRESP1 (ssp_is_old() ? 0x090 : 0x0b0)
#define HW_SSP_SDRESP2 (ssp_is_old() ? 0x0a0 : 0x0c0)
#define HW_SSP_SDRESP3 (ssp_is_old() ? 0x0b0 : 0x0d0)
#define HW_SSP_STATUS (ssp_is_old() ? 0x0c0 : 0x100)
#define BM_SSP_STATUS_CARD_DETECT (1 << 28)
#define BM_SSP_STATUS_SDIO_IRQ (1 << 17)
#define HW_SSP_VERSION (cpu_is_mx23() ? 0x110 : 0x130)
#define BP_SSP_VERSION_MAJOR (24)
#define BF_SSP(value, field) (((value) << BP_SSP_##field) & BM_SSP_##field)
#define MXS_MMC_IRQ_BITS (BM_SSP_CTRL1_SDIO_IRQ | \
BM_SSP_CTRL1_RESP_ERR_IRQ | \
BM_SSP_CTRL1_RESP_TIMEOUT_IRQ | \
BM_SSP_CTRL1_DATA_TIMEOUT_IRQ | \
BM_SSP_CTRL1_DATA_CRC_IRQ | \
BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ | \
BM_SSP_CTRL1_RECV_TIMEOUT_IRQ | \
BM_SSP_CTRL1_FIFO_OVERRUN_IRQ)
#define SSP_PIO_NUM 3
struct mxs_mmc_host {
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
void __iomem *base;
int irq;
struct resource *res;
struct resource *dma_res;
struct clk *clk;
unsigned int clk_rate;
struct dma_chan *dmach;
struct mxs_dma_data dma_data;
unsigned int dma_dir;
u32 ssp_pio_words[SSP_PIO_NUM];
unsigned int version;
unsigned char bus_width;
spinlock_t lock;
int sdio_irq_en;
};
static int mxs_mmc_get_ro(struct mmc_host *mmc)
{
struct mxs_mmc_host *host = mmc_priv(mmc);
struct mxs_mmc_platform_data *pdata =
mmc_dev(host->mmc)->platform_data;
if (!pdata)
return -EFAULT;
if (!gpio_is_valid(pdata->wp_gpio))
return -EINVAL;
return gpio_get_value(pdata->wp_gpio);
}
static int mxs_mmc_get_cd(struct mmc_host *mmc)
{
struct mxs_mmc_host *host = mmc_priv(mmc);
return !(readl(host->base + HW_SSP_STATUS) &
BM_SSP_STATUS_CARD_DETECT);
}
static void mxs_mmc_reset(struct mxs_mmc_host *host)
{
u32 ctrl0, ctrl1;
mxs_reset_block(host->base);
ctrl0 = BM_SSP_CTRL0_IGNORE_CRC;
ctrl1 = BF_SSP(0x3, CTRL1_SSP_MODE) |
BF_SSP(0x7, CTRL1_WORD_LENGTH) |
BM_SSP_CTRL1_DMA_ENABLE |
BM_SSP_CTRL1_POLARITY |
BM_SSP_CTRL1_RECV_TIMEOUT_IRQ_EN |
BM_SSP_CTRL1_DATA_CRC_IRQ_EN |
BM_SSP_CTRL1_DATA_TIMEOUT_IRQ_EN |
BM_SSP_CTRL1_RESP_TIMEOUT_IRQ_EN |
BM_SSP_CTRL1_RESP_ERR_IRQ_EN;
writel(BF_SSP(0xffff, TIMING_TIMEOUT) |
BF_SSP(2, TIMING_CLOCK_DIVIDE) |
BF_SSP(0, TIMING_CLOCK_RATE),
host->base + HW_SSP_TIMING);
if (host->sdio_irq_en) {
ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
ctrl1 |= BM_SSP_CTRL1_SDIO_IRQ_EN;
}
writel(ctrl0, host->base + HW_SSP_CTRL0);
writel(ctrl1, host->base + HW_SSP_CTRL1);
}
static void mxs_mmc_start_cmd(struct mxs_mmc_host *host,
struct mmc_command *cmd);
static void mxs_mmc_request_done(struct mxs_mmc_host *host)
{
struct mmc_command *cmd = host->cmd;
struct mmc_data *data = host->data;
struct mmc_request *mrq = host->mrq;
if (mmc_resp_type(cmd) & MMC_RSP_PRESENT) {
if (mmc_resp_type(cmd) & MMC_RSP_136) {
cmd->resp[3] = readl(host->base + HW_SSP_SDRESP0);
cmd->resp[2] = readl(host->base + HW_SSP_SDRESP1);
cmd->resp[1] = readl(host->base + HW_SSP_SDRESP2);
cmd->resp[0] = readl(host->base + HW_SSP_SDRESP3);
} else {
cmd->resp[0] = readl(host->base + HW_SSP_SDRESP0);
}
}
if (data) {
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, host->dma_dir);
/*
* If there was an error on any block, we mark all
* data blocks as being in error.
*/
if (!data->error)
data->bytes_xfered = data->blocks * data->blksz;
else
data->bytes_xfered = 0;
host->data = NULL;
if (mrq->stop) {
mxs_mmc_start_cmd(host, mrq->stop);
return;
}
}
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
static void mxs_mmc_dma_irq_callback(void *param)
{
struct mxs_mmc_host *host = param;
mxs_mmc_request_done(host);
}
static irqreturn_t mxs_mmc_irq_handler(int irq, void *dev_id)
{
struct mxs_mmc_host *host = dev_id;
struct mmc_command *cmd = host->cmd;
struct mmc_data *data = host->data;
u32 stat;
spin_lock(&host->lock);
stat = readl(host->base + HW_SSP_CTRL1);
writel(stat & MXS_MMC_IRQ_BITS,
host->base + HW_SSP_CTRL1 + MXS_CLR_ADDR);
if ((stat & BM_SSP_CTRL1_SDIO_IRQ) && (stat & BM_SSP_CTRL1_SDIO_IRQ_EN))
mmc_signal_sdio_irq(host->mmc);
spin_unlock(&host->lock);
if (stat & BM_SSP_CTRL1_RESP_TIMEOUT_IRQ)
cmd->error = -ETIMEDOUT;
else if (stat & BM_SSP_CTRL1_RESP_ERR_IRQ)
cmd->error = -EIO;
if (data) {
if (stat & (BM_SSP_CTRL1_DATA_TIMEOUT_IRQ |
BM_SSP_CTRL1_RECV_TIMEOUT_IRQ))
data->error = -ETIMEDOUT;
else if (stat & BM_SSP_CTRL1_DATA_CRC_IRQ)
data->error = -EILSEQ;
else if (stat & (BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ |
BM_SSP_CTRL1_FIFO_OVERRUN_IRQ))
data->error = -EIO;
}
return IRQ_HANDLED;
}
static struct dma_async_tx_descriptor *mxs_mmc_prep_dma(
struct mxs_mmc_host *host, unsigned int append)
{
struct dma_async_tx_descriptor *desc;
struct mmc_data *data = host->data;
struct scatterlist * sgl;
unsigned int sg_len;
if (data) {
/* data */
dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, host->dma_dir);
sgl = data->sg;
sg_len = data->sg_len;
} else {
/* pio */
sgl = (struct scatterlist *) host->ssp_pio_words;
sg_len = SSP_PIO_NUM;
}
desc = host->dmach->device->device_prep_slave_sg(host->dmach,
sgl, sg_len, host->dma_dir, append);
if (desc) {
desc->callback = mxs_mmc_dma_irq_callback;
desc->callback_param = host;
} else {
if (data)
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, host->dma_dir);
}
return desc;
}
static void mxs_mmc_bc(struct mxs_mmc_host *host)
{
struct mmc_command *cmd = host->cmd;
struct dma_async_tx_descriptor *desc;
u32 ctrl0, cmd0, cmd1;
ctrl0 = BM_SSP_CTRL0_ENABLE | BM_SSP_CTRL0_IGNORE_CRC;
cmd0 = BF_SSP(cmd->opcode, CMD0_CMD) | BM_SSP_CMD0_APPEND_8CYC;
cmd1 = cmd->arg;
if (host->sdio_irq_en) {
ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN;
}
host->ssp_pio_words[0] = ctrl0;
host->ssp_pio_words[1] = cmd0;
host->ssp_pio_words[2] = cmd1;
host->dma_dir = DMA_NONE;
desc = mxs_mmc_prep_dma(host, 0);
if (!desc)
goto out;
dmaengine_submit(desc);
return;
out:
dev_warn(mmc_dev(host->mmc),
"%s: failed to prep dma\n", __func__);
}
static void mxs_mmc_ac(struct mxs_mmc_host *host)
{
struct mmc_command *cmd = host->cmd;
struct dma_async_tx_descriptor *desc;
u32 ignore_crc, get_resp, long_resp;
u32 ctrl0, cmd0, cmd1;
ignore_crc = (mmc_resp_type(cmd) & MMC_RSP_CRC) ?
0 : BM_SSP_CTRL0_IGNORE_CRC;
get_resp = (mmc_resp_type(cmd) & MMC_RSP_PRESENT) ?
BM_SSP_CTRL0_GET_RESP : 0;
long_resp = (mmc_resp_type(cmd) & MMC_RSP_136) ?
BM_SSP_CTRL0_LONG_RESP : 0;
ctrl0 = BM_SSP_CTRL0_ENABLE | ignore_crc | get_resp | long_resp;
cmd0 = BF_SSP(cmd->opcode, CMD0_CMD);
cmd1 = cmd->arg;
if (host->sdio_irq_en) {
ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN;
}
host->ssp_pio_words[0] = ctrl0;
host->ssp_pio_words[1] = cmd0;
host->ssp_pio_words[2] = cmd1;
host->dma_dir = DMA_NONE;
desc = mxs_mmc_prep_dma(host, 0);
if (!desc)
goto out;
dmaengine_submit(desc);
return;
out:
dev_warn(mmc_dev(host->mmc),
"%s: failed to prep dma\n", __func__);
}
static unsigned short mxs_ns_to_ssp_ticks(unsigned clock_rate, unsigned ns)
{
const unsigned int ssp_timeout_mul = 4096;
/*
* Calculate ticks in ms since ns are large numbers
* and might overflow
*/
const unsigned int clock_per_ms = clock_rate / 1000;
const unsigned int ms = ns / 1000;
const unsigned int ticks = ms * clock_per_ms;
const unsigned int ssp_ticks = ticks / ssp_timeout_mul;
WARN_ON(ssp_ticks == 0);
return ssp_ticks;
}
static void mxs_mmc_adtc(struct mxs_mmc_host *host)
{
struct mmc_command *cmd = host->cmd;
struct mmc_data *data = cmd->data;
struct dma_async_tx_descriptor *desc;
struct scatterlist *sgl = data->sg, *sg;
unsigned int sg_len = data->sg_len;
int i;
unsigned short dma_data_dir, timeout;
unsigned int data_size = 0, log2_blksz;
unsigned int blocks = data->blocks;
u32 ignore_crc, get_resp, long_resp, read;
u32 ctrl0, cmd0, cmd1, val;
ignore_crc = (mmc_resp_type(cmd) & MMC_RSP_CRC) ?
0 : BM_SSP_CTRL0_IGNORE_CRC;
get_resp = (mmc_resp_type(cmd) & MMC_RSP_PRESENT) ?
BM_SSP_CTRL0_GET_RESP : 0;
long_resp = (mmc_resp_type(cmd) & MMC_RSP_136) ?
BM_SSP_CTRL0_LONG_RESP : 0;
if (data->flags & MMC_DATA_WRITE) {
dma_data_dir = DMA_TO_DEVICE;
read = 0;
} else {
dma_data_dir = DMA_FROM_DEVICE;
read = BM_SSP_CTRL0_READ;
}
ctrl0 = BF_SSP(host->bus_width, CTRL0_BUS_WIDTH) |
ignore_crc | get_resp | long_resp |
BM_SSP_CTRL0_DATA_XFER | read |
BM_SSP_CTRL0_WAIT_FOR_IRQ |
BM_SSP_CTRL0_ENABLE;
cmd0 = BF_SSP(cmd->opcode, CMD0_CMD);
/* get logarithm to base 2 of block size for setting register */
log2_blksz = ilog2(data->blksz);
/*
* take special care of the case that data size from data->sg
* is not equal to blocks x blksz
*/
for_each_sg(sgl, sg, sg_len, i)
data_size += sg->length;
if (data_size != data->blocks * data->blksz)
blocks = 1;
/* xfer count, block size and count need to be set differently */
if (ssp_is_old()) {
ctrl0 |= BF_SSP(data_size, CTRL0_XFER_COUNT);
cmd0 |= BF_SSP(log2_blksz, CMD0_BLOCK_SIZE) |
BF_SSP(blocks - 1, CMD0_BLOCK_COUNT);
} else {
writel(data_size, host->base + HW_SSP_XFER_SIZE);
writel(BF_SSP(log2_blksz, BLOCK_SIZE_BLOCK_SIZE) |
BF_SSP(blocks - 1, BLOCK_SIZE_BLOCK_COUNT),
host->base + HW_SSP_BLOCK_SIZE);
}
if ((cmd->opcode == MMC_STOP_TRANSMISSION) ||
(cmd->opcode == SD_IO_RW_EXTENDED))
cmd0 |= BM_SSP_CMD0_APPEND_8CYC;
cmd1 = cmd->arg;
if (host->sdio_irq_en) {
ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN;
}
/* set the timeout count */
timeout = mxs_ns_to_ssp_ticks(host->clk_rate, data->timeout_ns);
val = readl(host->base + HW_SSP_TIMING);
val &= ~(BM_SSP_TIMING_TIMEOUT);
val |= BF_SSP(timeout, TIMING_TIMEOUT);
writel(val, host->base + HW_SSP_TIMING);
/* pio */
host->ssp_pio_words[0] = ctrl0;
host->ssp_pio_words[1] = cmd0;
host->ssp_pio_words[2] = cmd1;
host->dma_dir = DMA_NONE;
desc = mxs_mmc_prep_dma(host, 0);
if (!desc)
goto out;
/* append data sg */
WARN_ON(host->data != NULL);
host->data = data;
host->dma_dir = dma_data_dir;
desc = mxs_mmc_prep_dma(host, 1);
if (!desc)
goto out;
dmaengine_submit(desc);
return;
out:
dev_warn(mmc_dev(host->mmc),
"%s: failed to prep dma\n", __func__);
}
static void mxs_mmc_start_cmd(struct mxs_mmc_host *host,
struct mmc_command *cmd)
{
host->cmd = cmd;
switch (mmc_cmd_type(cmd)) {
case MMC_CMD_BC:
mxs_mmc_bc(host);
break;
case MMC_CMD_BCR:
mxs_mmc_ac(host);
break;
case MMC_CMD_AC:
mxs_mmc_ac(host);
break;
case MMC_CMD_ADTC:
mxs_mmc_adtc(host);
break;
default:
dev_warn(mmc_dev(host->mmc),
"%s: unknown MMC command\n", __func__);
break;
}
}
static void mxs_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mxs_mmc_host *host = mmc_priv(mmc);
WARN_ON(host->mrq != NULL);
host->mrq = mrq;
mxs_mmc_start_cmd(host, mrq->cmd);
}
static void mxs_mmc_set_clk_rate(struct mxs_mmc_host *host, unsigned int rate)
{
unsigned int ssp_clk, ssp_sck;
u32 clock_divide, clock_rate;
u32 val;
ssp_clk = clk_get_rate(host->clk);
for (clock_divide = 2; clock_divide <= 254; clock_divide += 2) {
clock_rate = DIV_ROUND_UP(ssp_clk, rate * clock_divide);
clock_rate = (clock_rate > 0) ? clock_rate - 1 : 0;
if (clock_rate <= 255)
break;
}
if (clock_divide > 254) {
dev_err(mmc_dev(host->mmc),
"%s: cannot set clock to %d\n", __func__, rate);
return;
}
ssp_sck = ssp_clk / clock_divide / (1 + clock_rate);
val = readl(host->base + HW_SSP_TIMING);
val &= ~(BM_SSP_TIMING_CLOCK_DIVIDE | BM_SSP_TIMING_CLOCK_RATE);
val |= BF_SSP(clock_divide, TIMING_CLOCK_DIVIDE);
val |= BF_SSP(clock_rate, TIMING_CLOCK_RATE);
writel(val, host->base + HW_SSP_TIMING);
host->clk_rate = ssp_sck;
dev_dbg(mmc_dev(host->mmc),
"%s: clock_divide %d, clock_rate %d, ssp_clk %d, rate_actual %d, rate_requested %d\n",
__func__, clock_divide, clock_rate, ssp_clk, ssp_sck, rate);
}
static void mxs_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mxs_mmc_host *host = mmc_priv(mmc);
if (ios->bus_width == MMC_BUS_WIDTH_8)
host->bus_width = 2;
else if (ios->bus_width == MMC_BUS_WIDTH_4)
host->bus_width = 1;
else
host->bus_width = 0;
if (ios->clock)
mxs_mmc_set_clk_rate(host, ios->clock);
}
static void mxs_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct mxs_mmc_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->sdio_irq_en = enable;
if (enable) {
writel(BM_SSP_CTRL0_SDIO_IRQ_CHECK,
host->base + HW_SSP_CTRL0 + MXS_SET_ADDR);
writel(BM_SSP_CTRL1_SDIO_IRQ_EN,
host->base + HW_SSP_CTRL1 + MXS_SET_ADDR);
if (readl(host->base + HW_SSP_STATUS) & BM_SSP_STATUS_SDIO_IRQ)
mmc_signal_sdio_irq(host->mmc);
} else {
writel(BM_SSP_CTRL0_SDIO_IRQ_CHECK,
host->base + HW_SSP_CTRL0 + MXS_CLR_ADDR);
writel(BM_SSP_CTRL1_SDIO_IRQ_EN,
host->base + HW_SSP_CTRL1 + MXS_CLR_ADDR);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static const struct mmc_host_ops mxs_mmc_ops = {
.request = mxs_mmc_request,
.get_ro = mxs_mmc_get_ro,
.get_cd = mxs_mmc_get_cd,
.set_ios = mxs_mmc_set_ios,
.enable_sdio_irq = mxs_mmc_enable_sdio_irq,
};
static bool mxs_mmc_dma_filter(struct dma_chan *chan, void *param)
{
struct mxs_mmc_host *host = param;
if (!mxs_dma_is_apbh(chan))
return false;
if (chan->chan_id != host->dma_res->start)
return false;
chan->private = &host->dma_data;
return true;
}
static int mxs_mmc_probe(struct platform_device *pdev)
{
struct mxs_mmc_host *host;
struct mmc_host *mmc;
struct resource *iores, *dmares, *r;
struct mxs_mmc_platform_data *pdata;
int ret = 0, irq_err, irq_dma;
dma_cap_mask_t mask;
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dmares = platform_get_resource(pdev, IORESOURCE_DMA, 0);
irq_err = platform_get_irq(pdev, 0);
irq_dma = platform_get_irq(pdev, 1);
if (!iores || !dmares || irq_err < 0 || irq_dma < 0)
return -EINVAL;
r = request_mem_region(iores->start, resource_size(iores), pdev->name);
if (!r)
return -EBUSY;
mmc = mmc_alloc_host(sizeof(struct mxs_mmc_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto out_release_mem;
}
host = mmc_priv(mmc);
host->base = ioremap(r->start, resource_size(r));
if (!host->base) {
ret = -ENOMEM;
goto out_mmc_free;
}
/* only major verion does matter */
host->version = readl(host->base + HW_SSP_VERSION) >>
BP_SSP_VERSION_MAJOR;
host->mmc = mmc;
host->res = r;
host->dma_res = dmares;
host->irq = irq_err;
host->sdio_irq_en = 0;
host->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
goto out_iounmap;
}
clk_enable(host->clk);
mxs_mmc_reset(host);
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
host->dma_data.chan_irq = irq_dma;
host->dmach = dma_request_channel(mask, mxs_mmc_dma_filter, host);
if (!host->dmach) {
dev_err(mmc_dev(host->mmc),
"%s: failed to request dma\n", __func__);
goto out_clk_put;
}
/* set mmc core parameters */
mmc->ops = &mxs_mmc_ops;
mmc->caps = MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED |
MMC_CAP_SDIO_IRQ | MMC_CAP_NEEDS_POLL;
pdata = mmc_dev(host->mmc)->platform_data;
if (pdata) {
if (pdata->flags & SLOTF_8_BIT_CAPABLE)
mmc->caps |= MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA;
if (pdata->flags & SLOTF_4_BIT_CAPABLE)
mmc->caps |= MMC_CAP_4_BIT_DATA;
}
mmc->f_min = 400000;
mmc->f_max = 288000000;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->max_segs = 52;
mmc->max_blk_size = 1 << 0xf;
mmc->max_blk_count = (ssp_is_old()) ? 0xff : 0xffffff;
mmc->max_req_size = (ssp_is_old()) ? 0xffff : 0xffffffff;
mmc->max_seg_size = dma_get_max_seg_size(host->dmach->device->dev);
platform_set_drvdata(pdev, mmc);
ret = request_irq(host->irq, mxs_mmc_irq_handler, 0, DRIVER_NAME, host);
if (ret)
goto out_free_dma;
spin_lock_init(&host->lock);
ret = mmc_add_host(mmc);
if (ret)
goto out_free_irq;
dev_info(mmc_dev(host->mmc), "initialized\n");
return 0;
out_free_irq:
free_irq(host->irq, host);
out_free_dma:
if (host->dmach)
dma_release_channel(host->dmach);
out_clk_put:
clk_disable(host->clk);
clk_put(host->clk);
out_iounmap:
iounmap(host->base);
out_mmc_free:
mmc_free_host(mmc);
out_release_mem:
release_mem_region(iores->start, resource_size(iores));
return ret;
}
static int mxs_mmc_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct mxs_mmc_host *host = mmc_priv(mmc);
struct resource *res = host->res;
mmc_remove_host(mmc);
free_irq(host->irq, host);
platform_set_drvdata(pdev, NULL);
if (host->dmach)
dma_release_channel(host->dmach);
clk_disable(host->clk);
clk_put(host->clk);
iounmap(host->base);
mmc_free_host(mmc);
release_mem_region(res->start, resource_size(res));
return 0;
}
#ifdef CONFIG_PM
static int mxs_mmc_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct mxs_mmc_host *host = mmc_priv(mmc);
int ret = 0;
ret = mmc_suspend_host(mmc);
clk_disable(host->clk);
return ret;
}
static int mxs_mmc_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct mxs_mmc_host *host = mmc_priv(mmc);
int ret = 0;
clk_enable(host->clk);
ret = mmc_resume_host(mmc);
return ret;
}
static const struct dev_pm_ops mxs_mmc_pm_ops = {
.suspend = mxs_mmc_suspend,
.resume = mxs_mmc_resume,
};
#endif
static struct platform_driver mxs_mmc_driver = {
.probe = mxs_mmc_probe,
.remove = mxs_mmc_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &mxs_mmc_pm_ops,
#endif
},
};
static int __init mxs_mmc_init(void)
{
return platform_driver_register(&mxs_mmc_driver);
}
static void __exit mxs_mmc_exit(void)
{
platform_driver_unregister(&mxs_mmc_driver);
}
module_init(mxs_mmc_init);
module_exit(mxs_mmc_exit);
MODULE_DESCRIPTION("FREESCALE MXS MMC peripheral");
MODULE_AUTHOR("Freescale Semiconductor");
MODULE_LICENSE("GPL");