mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 21:51:40 +00:00
62bbf50bea
Move the directory entry update hook code to xfs_dir2 so that it is mostly consolidated with the higher level directory functions. Retain the exports so that online fsck can still send notifications through the hooks. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
1449 lines
36 KiB
C
1449 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2017-2023 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <djwong@kernel.org>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_refcount_btree.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_rmap_btree.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_da_format.h"
|
|
#include "xfs_da_btree.h"
|
|
#include "xfs_dir2_priv.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_attr.h"
|
|
#include "xfs_reflink.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_exchmaps.h"
|
|
#include "xfs_rtbitmap.h"
|
|
#include "scrub/scrub.h"
|
|
#include "scrub/common.h"
|
|
#include "scrub/trace.h"
|
|
#include "scrub/repair.h"
|
|
#include "scrub/health.h"
|
|
|
|
/* Common code for the metadata scrubbers. */
|
|
|
|
/*
|
|
* Handling operational errors.
|
|
*
|
|
* The *_process_error() family of functions are used to process error return
|
|
* codes from functions called as part of a scrub operation.
|
|
*
|
|
* If there's no error, we return true to tell the caller that it's ok
|
|
* to move on to the next check in its list.
|
|
*
|
|
* For non-verifier errors (e.g. ENOMEM) we return false to tell the
|
|
* caller that something bad happened, and we preserve *error so that
|
|
* the caller can return the *error up the stack to userspace.
|
|
*
|
|
* Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
|
|
* OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words,
|
|
* we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
|
|
* not via return codes. We return false to tell the caller that
|
|
* something bad happened. Since the error has been cleared, the caller
|
|
* will (presumably) return that zero and scrubbing will move on to
|
|
* whatever's next.
|
|
*
|
|
* ftrace can be used to record the precise metadata location and the
|
|
* approximate code location of the failed operation.
|
|
*/
|
|
|
|
/* Check for operational errors. */
|
|
static bool
|
|
__xchk_process_error(
|
|
struct xfs_scrub *sc,
|
|
xfs_agnumber_t agno,
|
|
xfs_agblock_t bno,
|
|
int *error,
|
|
__u32 errflag,
|
|
void *ret_ip)
|
|
{
|
|
switch (*error) {
|
|
case 0:
|
|
return true;
|
|
case -EDEADLOCK:
|
|
case -ECHRNG:
|
|
/* Used to restart an op with deadlock avoidance. */
|
|
trace_xchk_deadlock_retry(
|
|
sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
|
|
sc->sm, *error);
|
|
break;
|
|
case -ECANCELED:
|
|
/*
|
|
* ECANCELED here means that the caller set one of the scrub
|
|
* outcome flags (corrupt, xfail, xcorrupt) and wants to exit
|
|
* quickly. Set error to zero and do not continue.
|
|
*/
|
|
trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
|
|
*error = 0;
|
|
break;
|
|
case -EFSBADCRC:
|
|
case -EFSCORRUPTED:
|
|
/* Note the badness but don't abort. */
|
|
sc->sm->sm_flags |= errflag;
|
|
*error = 0;
|
|
fallthrough;
|
|
default:
|
|
trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
xchk_process_error(
|
|
struct xfs_scrub *sc,
|
|
xfs_agnumber_t agno,
|
|
xfs_agblock_t bno,
|
|
int *error)
|
|
{
|
|
return __xchk_process_error(sc, agno, bno, error,
|
|
XFS_SCRUB_OFLAG_CORRUPT, __return_address);
|
|
}
|
|
|
|
bool
|
|
xchk_xref_process_error(
|
|
struct xfs_scrub *sc,
|
|
xfs_agnumber_t agno,
|
|
xfs_agblock_t bno,
|
|
int *error)
|
|
{
|
|
return __xchk_process_error(sc, agno, bno, error,
|
|
XFS_SCRUB_OFLAG_XFAIL, __return_address);
|
|
}
|
|
|
|
/* Check for operational errors for a file offset. */
|
|
static bool
|
|
__xchk_fblock_process_error(
|
|
struct xfs_scrub *sc,
|
|
int whichfork,
|
|
xfs_fileoff_t offset,
|
|
int *error,
|
|
__u32 errflag,
|
|
void *ret_ip)
|
|
{
|
|
switch (*error) {
|
|
case 0:
|
|
return true;
|
|
case -EDEADLOCK:
|
|
case -ECHRNG:
|
|
/* Used to restart an op with deadlock avoidance. */
|
|
trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
|
|
break;
|
|
case -ECANCELED:
|
|
/*
|
|
* ECANCELED here means that the caller set one of the scrub
|
|
* outcome flags (corrupt, xfail, xcorrupt) and wants to exit
|
|
* quickly. Set error to zero and do not continue.
|
|
*/
|
|
trace_xchk_file_op_error(sc, whichfork, offset, *error,
|
|
ret_ip);
|
|
*error = 0;
|
|
break;
|
|
case -EFSBADCRC:
|
|
case -EFSCORRUPTED:
|
|
/* Note the badness but don't abort. */
|
|
sc->sm->sm_flags |= errflag;
|
|
*error = 0;
|
|
fallthrough;
|
|
default:
|
|
trace_xchk_file_op_error(sc, whichfork, offset, *error,
|
|
ret_ip);
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
xchk_fblock_process_error(
|
|
struct xfs_scrub *sc,
|
|
int whichfork,
|
|
xfs_fileoff_t offset,
|
|
int *error)
|
|
{
|
|
return __xchk_fblock_process_error(sc, whichfork, offset, error,
|
|
XFS_SCRUB_OFLAG_CORRUPT, __return_address);
|
|
}
|
|
|
|
bool
|
|
xchk_fblock_xref_process_error(
|
|
struct xfs_scrub *sc,
|
|
int whichfork,
|
|
xfs_fileoff_t offset,
|
|
int *error)
|
|
{
|
|
return __xchk_fblock_process_error(sc, whichfork, offset, error,
|
|
XFS_SCRUB_OFLAG_XFAIL, __return_address);
|
|
}
|
|
|
|
/*
|
|
* Handling scrub corruption/optimization/warning checks.
|
|
*
|
|
* The *_set_{corrupt,preen,warning}() family of functions are used to
|
|
* record the presence of metadata that is incorrect (corrupt), could be
|
|
* optimized somehow (preen), or should be flagged for administrative
|
|
* review but is not incorrect (warn).
|
|
*
|
|
* ftrace can be used to record the precise metadata location and
|
|
* approximate code location of the failed check.
|
|
*/
|
|
|
|
/* Record a block which could be optimized. */
|
|
void
|
|
xchk_block_set_preen(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *bp)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
|
|
trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
|
|
}
|
|
|
|
/*
|
|
* Record an inode which could be optimized. The trace data will
|
|
* include the block given by bp if bp is given; otherwise it will use
|
|
* the block location of the inode record itself.
|
|
*/
|
|
void
|
|
xchk_ino_set_preen(
|
|
struct xfs_scrub *sc,
|
|
xfs_ino_t ino)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
|
|
trace_xchk_ino_preen(sc, ino, __return_address);
|
|
}
|
|
|
|
/* Record something being wrong with the filesystem primary superblock. */
|
|
void
|
|
xchk_set_corrupt(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
|
|
trace_xchk_fs_error(sc, 0, __return_address);
|
|
}
|
|
|
|
/* Record a corrupt block. */
|
|
void
|
|
xchk_block_set_corrupt(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *bp)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
|
|
trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
|
|
}
|
|
|
|
#ifdef CONFIG_XFS_QUOTA
|
|
/* Record a corrupt quota counter. */
|
|
void
|
|
xchk_qcheck_set_corrupt(
|
|
struct xfs_scrub *sc,
|
|
unsigned int dqtype,
|
|
xfs_dqid_t id)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
|
|
trace_xchk_qcheck_error(sc, dqtype, id, __return_address);
|
|
}
|
|
#endif
|
|
|
|
/* Record a corruption while cross-referencing. */
|
|
void
|
|
xchk_block_xref_set_corrupt(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *bp)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
|
|
trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
|
|
}
|
|
|
|
/*
|
|
* Record a corrupt inode. The trace data will include the block given
|
|
* by bp if bp is given; otherwise it will use the block location of the
|
|
* inode record itself.
|
|
*/
|
|
void
|
|
xchk_ino_set_corrupt(
|
|
struct xfs_scrub *sc,
|
|
xfs_ino_t ino)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
|
|
trace_xchk_ino_error(sc, ino, __return_address);
|
|
}
|
|
|
|
/* Record a corruption while cross-referencing with an inode. */
|
|
void
|
|
xchk_ino_xref_set_corrupt(
|
|
struct xfs_scrub *sc,
|
|
xfs_ino_t ino)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
|
|
trace_xchk_ino_error(sc, ino, __return_address);
|
|
}
|
|
|
|
/* Record corruption in a block indexed by a file fork. */
|
|
void
|
|
xchk_fblock_set_corrupt(
|
|
struct xfs_scrub *sc,
|
|
int whichfork,
|
|
xfs_fileoff_t offset)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
|
|
trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
|
|
}
|
|
|
|
/* Record a corruption while cross-referencing a fork block. */
|
|
void
|
|
xchk_fblock_xref_set_corrupt(
|
|
struct xfs_scrub *sc,
|
|
int whichfork,
|
|
xfs_fileoff_t offset)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
|
|
trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
|
|
}
|
|
|
|
/*
|
|
* Warn about inodes that need administrative review but is not
|
|
* incorrect.
|
|
*/
|
|
void
|
|
xchk_ino_set_warning(
|
|
struct xfs_scrub *sc,
|
|
xfs_ino_t ino)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
|
|
trace_xchk_ino_warning(sc, ino, __return_address);
|
|
}
|
|
|
|
/* Warn about a block indexed by a file fork that needs review. */
|
|
void
|
|
xchk_fblock_set_warning(
|
|
struct xfs_scrub *sc,
|
|
int whichfork,
|
|
xfs_fileoff_t offset)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
|
|
trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
|
|
}
|
|
|
|
/* Signal an incomplete scrub. */
|
|
void
|
|
xchk_set_incomplete(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
|
|
trace_xchk_incomplete(sc, __return_address);
|
|
}
|
|
|
|
/*
|
|
* rmap scrubbing -- compute the number of blocks with a given owner,
|
|
* at least according to the reverse mapping data.
|
|
*/
|
|
|
|
struct xchk_rmap_ownedby_info {
|
|
const struct xfs_owner_info *oinfo;
|
|
xfs_filblks_t *blocks;
|
|
};
|
|
|
|
STATIC int
|
|
xchk_count_rmap_ownedby_irec(
|
|
struct xfs_btree_cur *cur,
|
|
const struct xfs_rmap_irec *rec,
|
|
void *priv)
|
|
{
|
|
struct xchk_rmap_ownedby_info *sroi = priv;
|
|
bool irec_attr;
|
|
bool oinfo_attr;
|
|
|
|
irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
|
|
oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
|
|
|
|
if (rec->rm_owner != sroi->oinfo->oi_owner)
|
|
return 0;
|
|
|
|
if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
|
|
(*sroi->blocks) += rec->rm_blockcount;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of blocks the rmap thinks are owned by something.
|
|
* The caller should pass us an rmapbt cursor.
|
|
*/
|
|
int
|
|
xchk_count_rmap_ownedby_ag(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_btree_cur *cur,
|
|
const struct xfs_owner_info *oinfo,
|
|
xfs_filblks_t *blocks)
|
|
{
|
|
struct xchk_rmap_ownedby_info sroi = {
|
|
.oinfo = oinfo,
|
|
.blocks = blocks,
|
|
};
|
|
|
|
*blocks = 0;
|
|
return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
|
|
&sroi);
|
|
}
|
|
|
|
/*
|
|
* AG scrubbing
|
|
*
|
|
* These helpers facilitate locking an allocation group's header
|
|
* buffers, setting up cursors for all btrees that are present, and
|
|
* cleaning everything up once we're through.
|
|
*/
|
|
|
|
/* Decide if we want to return an AG header read failure. */
|
|
static inline bool
|
|
want_ag_read_header_failure(
|
|
struct xfs_scrub *sc,
|
|
unsigned int type)
|
|
{
|
|
/* Return all AG header read failures when scanning btrees. */
|
|
if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
|
|
sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
|
|
sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
|
|
return true;
|
|
/*
|
|
* If we're scanning a given type of AG header, we only want to
|
|
* see read failures from that specific header. We'd like the
|
|
* other headers to cross-check them, but this isn't required.
|
|
*/
|
|
if (sc->sm->sm_type == type)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Grab the AG header buffers for the attached perag structure.
|
|
*
|
|
* The headers should be released by xchk_ag_free, but as a fail safe we attach
|
|
* all the buffers we grab to the scrub transaction so they'll all be freed
|
|
* when we cancel it.
|
|
*/
|
|
static inline int
|
|
xchk_perag_read_headers(
|
|
struct xfs_scrub *sc,
|
|
struct xchk_ag *sa)
|
|
{
|
|
int error;
|
|
|
|
error = xfs_ialloc_read_agi(sa->pag, sc->tp, 0, &sa->agi_bp);
|
|
if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
|
|
return error;
|
|
|
|
error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
|
|
if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Grab the AG headers for the attached perag structure and wait for pending
|
|
* intents to drain.
|
|
*/
|
|
int
|
|
xchk_perag_drain_and_lock(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
struct xchk_ag *sa = &sc->sa;
|
|
int error = 0;
|
|
|
|
ASSERT(sa->pag != NULL);
|
|
ASSERT(sa->agi_bp == NULL);
|
|
ASSERT(sa->agf_bp == NULL);
|
|
|
|
do {
|
|
if (xchk_should_terminate(sc, &error))
|
|
return error;
|
|
|
|
error = xchk_perag_read_headers(sc, sa);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* If we've grabbed an inode for scrubbing then we assume that
|
|
* holding its ILOCK will suffice to coordinate with any intent
|
|
* chains involving this inode.
|
|
*/
|
|
if (sc->ip)
|
|
return 0;
|
|
|
|
/*
|
|
* Decide if this AG is quiet enough for all metadata to be
|
|
* consistent with each other. XFS allows the AG header buffer
|
|
* locks to cycle across transaction rolls while processing
|
|
* chains of deferred ops, which means that there could be
|
|
* other threads in the middle of processing a chain of
|
|
* deferred ops. For regular operations we are careful about
|
|
* ordering operations to prevent collisions between threads
|
|
* (which is why we don't need a per-AG lock), but scrub and
|
|
* repair have to serialize against chained operations.
|
|
*
|
|
* We just locked all the AG headers buffers; now take a look
|
|
* to see if there are any intents in progress. If there are,
|
|
* drop the AG headers and wait for the intents to drain.
|
|
* Since we hold all the AG header locks for the duration of
|
|
* the scrub, this is the only time we have to sample the
|
|
* intents counter; any threads increasing it after this point
|
|
* can't possibly be in the middle of a chain of AG metadata
|
|
* updates.
|
|
*
|
|
* Obviously, this should be slanted against scrub and in favor
|
|
* of runtime threads.
|
|
*/
|
|
if (!xfs_perag_intent_busy(sa->pag))
|
|
return 0;
|
|
|
|
if (sa->agf_bp) {
|
|
xfs_trans_brelse(sc->tp, sa->agf_bp);
|
|
sa->agf_bp = NULL;
|
|
}
|
|
|
|
if (sa->agi_bp) {
|
|
xfs_trans_brelse(sc->tp, sa->agi_bp);
|
|
sa->agi_bp = NULL;
|
|
}
|
|
|
|
if (!(sc->flags & XCHK_FSGATES_DRAIN))
|
|
return -ECHRNG;
|
|
error = xfs_perag_intent_drain(sa->pag);
|
|
if (error == -ERESTARTSYS)
|
|
error = -EINTR;
|
|
} while (!error);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Grab the per-AG structure, grab all AG header buffers, and wait until there
|
|
* aren't any pending intents. Returns -ENOENT if we can't grab the perag
|
|
* structure.
|
|
*/
|
|
int
|
|
xchk_ag_read_headers(
|
|
struct xfs_scrub *sc,
|
|
xfs_agnumber_t agno,
|
|
struct xchk_ag *sa)
|
|
{
|
|
struct xfs_mount *mp = sc->mp;
|
|
|
|
ASSERT(!sa->pag);
|
|
sa->pag = xfs_perag_get(mp, agno);
|
|
if (!sa->pag)
|
|
return -ENOENT;
|
|
|
|
return xchk_perag_drain_and_lock(sc);
|
|
}
|
|
|
|
/* Release all the AG btree cursors. */
|
|
void
|
|
xchk_ag_btcur_free(
|
|
struct xchk_ag *sa)
|
|
{
|
|
if (sa->refc_cur)
|
|
xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
|
|
if (sa->rmap_cur)
|
|
xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
|
|
if (sa->fino_cur)
|
|
xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
|
|
if (sa->ino_cur)
|
|
xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
|
|
if (sa->cnt_cur)
|
|
xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
|
|
if (sa->bno_cur)
|
|
xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
|
|
|
|
sa->refc_cur = NULL;
|
|
sa->rmap_cur = NULL;
|
|
sa->fino_cur = NULL;
|
|
sa->ino_cur = NULL;
|
|
sa->bno_cur = NULL;
|
|
sa->cnt_cur = NULL;
|
|
}
|
|
|
|
/* Initialize all the btree cursors for an AG. */
|
|
void
|
|
xchk_ag_btcur_init(
|
|
struct xfs_scrub *sc,
|
|
struct xchk_ag *sa)
|
|
{
|
|
struct xfs_mount *mp = sc->mp;
|
|
|
|
if (sa->agf_bp) {
|
|
/* Set up a bnobt cursor for cross-referencing. */
|
|
sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
|
|
sa->pag);
|
|
xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur,
|
|
XFS_SCRUB_TYPE_BNOBT);
|
|
|
|
/* Set up a cntbt cursor for cross-referencing. */
|
|
sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
|
|
sa->pag);
|
|
xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur,
|
|
XFS_SCRUB_TYPE_CNTBT);
|
|
|
|
/* Set up a rmapbt cursor for cross-referencing. */
|
|
if (xfs_has_rmapbt(mp)) {
|
|
sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp,
|
|
sa->agf_bp, sa->pag);
|
|
xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur,
|
|
XFS_SCRUB_TYPE_RMAPBT);
|
|
}
|
|
|
|
/* Set up a refcountbt cursor for cross-referencing. */
|
|
if (xfs_has_reflink(mp)) {
|
|
sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
|
|
sa->agf_bp, sa->pag);
|
|
xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur,
|
|
XFS_SCRUB_TYPE_REFCNTBT);
|
|
}
|
|
}
|
|
|
|
if (sa->agi_bp) {
|
|
/* Set up a inobt cursor for cross-referencing. */
|
|
sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp,
|
|
sa->agi_bp);
|
|
xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur,
|
|
XFS_SCRUB_TYPE_INOBT);
|
|
|
|
/* Set up a finobt cursor for cross-referencing. */
|
|
if (xfs_has_finobt(mp)) {
|
|
sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp,
|
|
sa->agi_bp);
|
|
xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur,
|
|
XFS_SCRUB_TYPE_FINOBT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Release the AG header context and btree cursors. */
|
|
void
|
|
xchk_ag_free(
|
|
struct xfs_scrub *sc,
|
|
struct xchk_ag *sa)
|
|
{
|
|
xchk_ag_btcur_free(sa);
|
|
xrep_reset_perag_resv(sc);
|
|
if (sa->agf_bp) {
|
|
xfs_trans_brelse(sc->tp, sa->agf_bp);
|
|
sa->agf_bp = NULL;
|
|
}
|
|
if (sa->agi_bp) {
|
|
xfs_trans_brelse(sc->tp, sa->agi_bp);
|
|
sa->agi_bp = NULL;
|
|
}
|
|
if (sa->pag) {
|
|
xfs_perag_put(sa->pag);
|
|
sa->pag = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For scrub, grab the perag structure, the AGI, and the AGF headers, in that
|
|
* order. Locking order requires us to get the AGI before the AGF. We use the
|
|
* transaction to avoid deadlocking on crosslinked metadata buffers; either the
|
|
* caller passes one in (bmap scrub) or we have to create a transaction
|
|
* ourselves. Returns ENOENT if the perag struct cannot be grabbed.
|
|
*/
|
|
int
|
|
xchk_ag_init(
|
|
struct xfs_scrub *sc,
|
|
xfs_agnumber_t agno,
|
|
struct xchk_ag *sa)
|
|
{
|
|
int error;
|
|
|
|
error = xchk_ag_read_headers(sc, agno, sa);
|
|
if (error)
|
|
return error;
|
|
|
|
xchk_ag_btcur_init(sc, sa);
|
|
return 0;
|
|
}
|
|
|
|
/* Per-scrubber setup functions */
|
|
|
|
void
|
|
xchk_trans_cancel(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
xfs_trans_cancel(sc->tp);
|
|
sc->tp = NULL;
|
|
}
|
|
|
|
int
|
|
xchk_trans_alloc_empty(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
return xfs_trans_alloc_empty(sc->mp, &sc->tp);
|
|
}
|
|
|
|
/*
|
|
* Grab an empty transaction so that we can re-grab locked buffers if
|
|
* one of our btrees turns out to be cyclic.
|
|
*
|
|
* If we're going to repair something, we need to ask for the largest possible
|
|
* log reservation so that we can handle the worst case scenario for metadata
|
|
* updates while rebuilding a metadata item. We also need to reserve as many
|
|
* blocks in the head transaction as we think we're going to need to rebuild
|
|
* the metadata object.
|
|
*/
|
|
int
|
|
xchk_trans_alloc(
|
|
struct xfs_scrub *sc,
|
|
uint resblks)
|
|
{
|
|
if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
|
|
return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
|
|
resblks, 0, 0, &sc->tp);
|
|
|
|
return xchk_trans_alloc_empty(sc);
|
|
}
|
|
|
|
/* Set us up with a transaction and an empty context. */
|
|
int
|
|
xchk_setup_fs(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
uint resblks;
|
|
|
|
resblks = xrep_calc_ag_resblks(sc);
|
|
return xchk_trans_alloc(sc, resblks);
|
|
}
|
|
|
|
/* Set us up with AG headers and btree cursors. */
|
|
int
|
|
xchk_setup_ag_btree(
|
|
struct xfs_scrub *sc,
|
|
bool force_log)
|
|
{
|
|
struct xfs_mount *mp = sc->mp;
|
|
int error;
|
|
|
|
/*
|
|
* If the caller asks us to checkpont the log, do so. This
|
|
* expensive operation should be performed infrequently and only
|
|
* as a last resort. Any caller that sets force_log should
|
|
* document why they need to do so.
|
|
*/
|
|
if (force_log) {
|
|
error = xchk_checkpoint_log(mp);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
error = xchk_setup_fs(sc);
|
|
if (error)
|
|
return error;
|
|
|
|
return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
|
|
}
|
|
|
|
/* Push everything out of the log onto disk. */
|
|
int
|
|
xchk_checkpoint_log(
|
|
struct xfs_mount *mp)
|
|
{
|
|
int error;
|
|
|
|
error = xfs_log_force(mp, XFS_LOG_SYNC);
|
|
if (error)
|
|
return error;
|
|
xfs_ail_push_all_sync(mp->m_ail);
|
|
return 0;
|
|
}
|
|
|
|
/* Verify that an inode is allocated ondisk, then return its cached inode. */
|
|
int
|
|
xchk_iget(
|
|
struct xfs_scrub *sc,
|
|
xfs_ino_t inum,
|
|
struct xfs_inode **ipp)
|
|
{
|
|
ASSERT(sc->tp != NULL);
|
|
|
|
return xfs_iget(sc->mp, sc->tp, inum, XCHK_IGET_FLAGS, 0, ipp);
|
|
}
|
|
|
|
/*
|
|
* Try to grab an inode in a manner that avoids races with physical inode
|
|
* allocation. If we can't, return the locked AGI buffer so that the caller
|
|
* can single-step the loading process to see where things went wrong.
|
|
* Callers must have a valid scrub transaction.
|
|
*
|
|
* If the iget succeeds, return 0, a NULL AGI, and the inode.
|
|
*
|
|
* If the iget fails, return the error, the locked AGI, and a NULL inode. This
|
|
* can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
|
|
* no longer allocated; or any other corruption or runtime error.
|
|
*
|
|
* If the AGI read fails, return the error, a NULL AGI, and NULL inode.
|
|
*
|
|
* If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
|
|
*/
|
|
int
|
|
xchk_iget_agi(
|
|
struct xfs_scrub *sc,
|
|
xfs_ino_t inum,
|
|
struct xfs_buf **agi_bpp,
|
|
struct xfs_inode **ipp)
|
|
{
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_trans *tp = sc->tp;
|
|
struct xfs_perag *pag;
|
|
int error;
|
|
|
|
ASSERT(sc->tp != NULL);
|
|
|
|
again:
|
|
*agi_bpp = NULL;
|
|
*ipp = NULL;
|
|
error = 0;
|
|
|
|
if (xchk_should_terminate(sc, &error))
|
|
return error;
|
|
|
|
/*
|
|
* Attach the AGI buffer to the scrub transaction to avoid deadlocks
|
|
* in the iget cache miss path.
|
|
*/
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
|
|
error = xfs_ialloc_read_agi(pag, tp, 0, agi_bpp);
|
|
xfs_perag_put(pag);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_iget(mp, tp, inum, XFS_IGET_NORETRY | XCHK_IGET_FLAGS, 0,
|
|
ipp);
|
|
if (error == -EAGAIN) {
|
|
/*
|
|
* The inode may be in core but temporarily unavailable and may
|
|
* require the AGI buffer before it can be returned. Drop the
|
|
* AGI buffer and retry the lookup.
|
|
*
|
|
* Incore lookup will fail with EAGAIN on a cache hit if the
|
|
* inode is queued to the inactivation list. The inactivation
|
|
* worker may remove the inode from the unlinked list and hence
|
|
* needs the AGI.
|
|
*
|
|
* Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
|
|
* to allow inodegc to make progress and move the inode to
|
|
* IRECLAIMABLE state where xfs_iget will be able to return it
|
|
* again if it can lock the inode.
|
|
*/
|
|
xfs_trans_brelse(tp, *agi_bpp);
|
|
delay(1);
|
|
goto again;
|
|
}
|
|
if (error)
|
|
return error;
|
|
|
|
/* We got the inode, so we can release the AGI. */
|
|
ASSERT(*ipp != NULL);
|
|
xfs_trans_brelse(tp, *agi_bpp);
|
|
*agi_bpp = NULL;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_XFS_QUOTA
|
|
/*
|
|
* Try to attach dquots to this inode if we think we might want to repair it.
|
|
* Callers must not hold any ILOCKs. If the dquots are broken and cannot be
|
|
* attached, a quotacheck will be scheduled.
|
|
*/
|
|
int
|
|
xchk_ino_dqattach(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
ASSERT(sc->tp != NULL);
|
|
ASSERT(sc->ip != NULL);
|
|
|
|
if (!xchk_could_repair(sc))
|
|
return 0;
|
|
|
|
return xrep_ino_dqattach(sc);
|
|
}
|
|
#endif
|
|
|
|
/* Install an inode that we opened by handle for scrubbing. */
|
|
int
|
|
xchk_install_handle_inode(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_inode *ip)
|
|
{
|
|
if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
|
|
xchk_irele(sc, ip);
|
|
return -ENOENT;
|
|
}
|
|
|
|
sc->ip = ip;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Install an already-referenced inode for scrubbing. Get our own reference to
|
|
* the inode to make disposal simpler. The inode must not be in I_FREEING or
|
|
* I_WILL_FREE state!
|
|
*/
|
|
int
|
|
xchk_install_live_inode(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_inode *ip)
|
|
{
|
|
if (!igrab(VFS_I(ip))) {
|
|
xchk_ino_set_corrupt(sc, ip->i_ino);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
sc->ip = ip;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* In preparation to scrub metadata structures that hang off of an inode,
|
|
* grab either the inode referenced in the scrub control structure or the
|
|
* inode passed in. If the inumber does not reference an allocated inode
|
|
* record, the function returns ENOENT to end the scrub early. The inode
|
|
* is not locked.
|
|
*/
|
|
int
|
|
xchk_iget_for_scrubbing(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
struct xfs_imap imap;
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_perag *pag;
|
|
struct xfs_buf *agi_bp;
|
|
struct xfs_inode *ip_in = XFS_I(file_inode(sc->file));
|
|
struct xfs_inode *ip = NULL;
|
|
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
|
|
int error;
|
|
|
|
ASSERT(sc->tp == NULL);
|
|
|
|
/* We want to scan the inode we already had opened. */
|
|
if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
|
|
return xchk_install_live_inode(sc, ip_in);
|
|
|
|
/* Reject internal metadata files and obviously bad inode numbers. */
|
|
if (xfs_internal_inum(mp, sc->sm->sm_ino))
|
|
return -ENOENT;
|
|
if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
|
|
return -ENOENT;
|
|
|
|
/* Try a safe untrusted iget. */
|
|
error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
|
|
if (!error)
|
|
return xchk_install_handle_inode(sc, ip);
|
|
if (error == -ENOENT)
|
|
return error;
|
|
if (error != -EINVAL)
|
|
goto out_error;
|
|
|
|
/*
|
|
* EINVAL with IGET_UNTRUSTED probably means one of several things:
|
|
* userspace gave us an inode number that doesn't correspond to fs
|
|
* space; the inode btree lacks a record for this inode; or there is a
|
|
* record, and it says this inode is free.
|
|
*
|
|
* We want to look up this inode in the inobt to distinguish two
|
|
* scenarios: (1) the inobt says the inode is free, in which case
|
|
* there's nothing to do; and (2) the inobt says the inode is
|
|
* allocated, but loading it failed due to corruption.
|
|
*
|
|
* Allocate a transaction and grab the AGI to prevent inobt activity
|
|
* in this AG. Retry the iget in case someone allocated a new inode
|
|
* after the first iget failed.
|
|
*/
|
|
error = xchk_trans_alloc(sc, 0);
|
|
if (error)
|
|
goto out_error;
|
|
|
|
error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
|
|
if (error == 0) {
|
|
/* Actually got the inode, so install it. */
|
|
xchk_trans_cancel(sc);
|
|
return xchk_install_handle_inode(sc, ip);
|
|
}
|
|
if (error == -ENOENT)
|
|
goto out_gone;
|
|
if (error != -EINVAL)
|
|
goto out_cancel;
|
|
|
|
/* Ensure that we have protected against inode allocation/freeing. */
|
|
if (agi_bp == NULL) {
|
|
ASSERT(agi_bp != NULL);
|
|
error = -ECANCELED;
|
|
goto out_cancel;
|
|
}
|
|
|
|
/*
|
|
* Untrusted iget failed a second time. Let's try an inobt lookup.
|
|
* If the inobt thinks this the inode neither can exist inside the
|
|
* filesystem nor is allocated, return ENOENT to signal that the check
|
|
* can be skipped.
|
|
*
|
|
* If the lookup returns corruption, we'll mark this inode corrupt and
|
|
* exit to userspace. There's little chance of fixing anything until
|
|
* the inobt is straightened out, but there's nothing we can do here.
|
|
*
|
|
* If the lookup encounters any other error, exit to userspace.
|
|
*
|
|
* If the lookup succeeds, something else must be very wrong in the fs
|
|
* such that setting up the incore inode failed in some strange way.
|
|
* Treat those as corruptions.
|
|
*/
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
|
|
if (!pag) {
|
|
error = -EFSCORRUPTED;
|
|
goto out_cancel;
|
|
}
|
|
|
|
error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
|
|
XFS_IGET_UNTRUSTED);
|
|
xfs_perag_put(pag);
|
|
if (error == -EINVAL || error == -ENOENT)
|
|
goto out_gone;
|
|
if (!error)
|
|
error = -EFSCORRUPTED;
|
|
|
|
out_cancel:
|
|
xchk_trans_cancel(sc);
|
|
out_error:
|
|
trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
|
|
error, __return_address);
|
|
return error;
|
|
out_gone:
|
|
/* The file is gone, so there's nothing to check. */
|
|
xchk_trans_cancel(sc);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Release an inode, possibly dropping it in the process. */
|
|
void
|
|
xchk_irele(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_inode *ip)
|
|
{
|
|
if (sc->tp) {
|
|
/*
|
|
* If we are in a transaction, we /cannot/ drop the inode
|
|
* ourselves, because the VFS will trigger writeback, which
|
|
* can require a transaction. Clear DONTCACHE to force the
|
|
* inode to the LRU, where someone else can take care of
|
|
* dropping it.
|
|
*
|
|
* Note that when we grabbed our reference to the inode, it
|
|
* could have had an active ref and DONTCACHE set if a sysadmin
|
|
* is trying to coerce a change in file access mode. icache
|
|
* hits do not clear DONTCACHE, so we must do it here.
|
|
*/
|
|
spin_lock(&VFS_I(ip)->i_lock);
|
|
VFS_I(ip)->i_state &= ~I_DONTCACHE;
|
|
spin_unlock(&VFS_I(ip)->i_lock);
|
|
}
|
|
|
|
xfs_irele(ip);
|
|
}
|
|
|
|
/*
|
|
* Set us up to scrub metadata mapped by a file's fork. Callers must not use
|
|
* this to operate on user-accessible regular file data because the MMAPLOCK is
|
|
* not taken.
|
|
*/
|
|
int
|
|
xchk_setup_inode_contents(
|
|
struct xfs_scrub *sc,
|
|
unsigned int resblks)
|
|
{
|
|
int error;
|
|
|
|
error = xchk_iget_for_scrubbing(sc);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Lock the inode so the VFS cannot touch this file. */
|
|
xchk_ilock(sc, XFS_IOLOCK_EXCL);
|
|
|
|
error = xchk_trans_alloc(sc, resblks);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = xchk_ino_dqattach(sc);
|
|
if (error)
|
|
goto out;
|
|
|
|
xchk_ilock(sc, XFS_ILOCK_EXCL);
|
|
out:
|
|
/* scrub teardown will unlock and release the inode for us */
|
|
return error;
|
|
}
|
|
|
|
void
|
|
xchk_ilock(
|
|
struct xfs_scrub *sc,
|
|
unsigned int ilock_flags)
|
|
{
|
|
xfs_ilock(sc->ip, ilock_flags);
|
|
sc->ilock_flags |= ilock_flags;
|
|
}
|
|
|
|
bool
|
|
xchk_ilock_nowait(
|
|
struct xfs_scrub *sc,
|
|
unsigned int ilock_flags)
|
|
{
|
|
if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
|
|
sc->ilock_flags |= ilock_flags;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void
|
|
xchk_iunlock(
|
|
struct xfs_scrub *sc,
|
|
unsigned int ilock_flags)
|
|
{
|
|
sc->ilock_flags &= ~ilock_flags;
|
|
xfs_iunlock(sc->ip, ilock_flags);
|
|
}
|
|
|
|
/*
|
|
* Predicate that decides if we need to evaluate the cross-reference check.
|
|
* If there was an error accessing the cross-reference btree, just delete
|
|
* the cursor and skip the check.
|
|
*/
|
|
bool
|
|
xchk_should_check_xref(
|
|
struct xfs_scrub *sc,
|
|
int *error,
|
|
struct xfs_btree_cur **curpp)
|
|
{
|
|
/* No point in xref if we already know we're corrupt. */
|
|
if (xchk_skip_xref(sc->sm))
|
|
return false;
|
|
|
|
if (*error == 0)
|
|
return true;
|
|
|
|
if (curpp) {
|
|
/* If we've already given up on xref, just bail out. */
|
|
if (!*curpp)
|
|
return false;
|
|
|
|
/* xref error, delete cursor and bail out. */
|
|
xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
|
|
*curpp = NULL;
|
|
}
|
|
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
|
|
trace_xchk_xref_error(sc, *error, __return_address);
|
|
|
|
/*
|
|
* Errors encountered during cross-referencing with another
|
|
* data structure should not cause this scrubber to abort.
|
|
*/
|
|
*error = 0;
|
|
return false;
|
|
}
|
|
|
|
/* Run the structure verifiers on in-memory buffers to detect bad memory. */
|
|
void
|
|
xchk_buffer_recheck(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *bp)
|
|
{
|
|
xfs_failaddr_t fa;
|
|
|
|
if (bp->b_ops == NULL) {
|
|
xchk_block_set_corrupt(sc, bp);
|
|
return;
|
|
}
|
|
if (bp->b_ops->verify_struct == NULL) {
|
|
xchk_set_incomplete(sc);
|
|
return;
|
|
}
|
|
fa = bp->b_ops->verify_struct(bp);
|
|
if (!fa)
|
|
return;
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
|
|
trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
|
|
}
|
|
|
|
static inline int
|
|
xchk_metadata_inode_subtype(
|
|
struct xfs_scrub *sc,
|
|
unsigned int scrub_type)
|
|
{
|
|
struct xfs_scrub_subord *sub;
|
|
int error;
|
|
|
|
sub = xchk_scrub_create_subord(sc, scrub_type);
|
|
error = sub->sc.ops->scrub(&sub->sc);
|
|
xchk_scrub_free_subord(sub);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Scrub the attr/data forks of a metadata inode. The metadata inode must be
|
|
* pointed to by sc->ip and the ILOCK must be held.
|
|
*/
|
|
int
|
|
xchk_metadata_inode_forks(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
bool shared;
|
|
int error;
|
|
|
|
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
|
|
return 0;
|
|
|
|
/* Check the inode record. */
|
|
error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
|
|
if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
|
|
return error;
|
|
|
|
/* Metadata inodes don't live on the rt device. */
|
|
if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
|
|
xchk_ino_set_corrupt(sc, sc->ip->i_ino);
|
|
return 0;
|
|
}
|
|
|
|
/* They should never participate in reflink. */
|
|
if (xfs_is_reflink_inode(sc->ip)) {
|
|
xchk_ino_set_corrupt(sc, sc->ip->i_ino);
|
|
return 0;
|
|
}
|
|
|
|
/* They also should never have extended attributes. */
|
|
if (xfs_inode_hasattr(sc->ip)) {
|
|
xchk_ino_set_corrupt(sc, sc->ip->i_ino);
|
|
return 0;
|
|
}
|
|
|
|
/* Invoke the data fork scrubber. */
|
|
error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
|
|
if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
|
|
return error;
|
|
|
|
/* Look for incorrect shared blocks. */
|
|
if (xfs_has_reflink(sc->mp)) {
|
|
error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
|
|
&shared);
|
|
if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
|
|
&error))
|
|
return error;
|
|
if (shared)
|
|
xchk_ino_set_corrupt(sc, sc->ip->i_ino);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
|
|
* operation. Callers must not hold any locks that intersect with the CPU
|
|
* hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
|
|
* to change kernel code.
|
|
*/
|
|
void
|
|
xchk_fsgates_enable(
|
|
struct xfs_scrub *sc,
|
|
unsigned int scrub_fsgates)
|
|
{
|
|
ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
|
|
ASSERT(!(sc->flags & scrub_fsgates));
|
|
|
|
trace_xchk_fsgates_enable(sc, scrub_fsgates);
|
|
|
|
if (scrub_fsgates & XCHK_FSGATES_DRAIN)
|
|
xfs_drain_wait_enable();
|
|
|
|
if (scrub_fsgates & XCHK_FSGATES_QUOTA)
|
|
xfs_dqtrx_hook_enable();
|
|
|
|
if (scrub_fsgates & XCHK_FSGATES_DIRENTS)
|
|
xfs_dir_hook_enable();
|
|
|
|
if (scrub_fsgates & XCHK_FSGATES_RMAP)
|
|
xfs_rmap_hook_enable();
|
|
|
|
sc->flags |= scrub_fsgates;
|
|
}
|
|
|
|
/*
|
|
* Decide if this is this a cached inode that's also allocated. The caller
|
|
* must hold a reference to an AG and the AGI buffer lock to prevent inodes
|
|
* from being allocated or freed.
|
|
*
|
|
* Look up an inode by number in the given file system. If the inode number
|
|
* is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA.
|
|
* If the inode is being reclaimed, return -ENODATA because we know the inode
|
|
* cache cannot be updating the ondisk metadata.
|
|
*
|
|
* Otherwise, the incore inode is the one we want, and it is either live,
|
|
* somewhere in the inactivation machinery, or reclaimable. The inode is
|
|
* allocated if i_mode is nonzero. In all three cases, the cached inode will
|
|
* be more up to date than the ondisk inode buffer, so we must use the incore
|
|
* i_mode.
|
|
*/
|
|
int
|
|
xchk_inode_is_allocated(
|
|
struct xfs_scrub *sc,
|
|
xfs_agino_t agino,
|
|
bool *inuse)
|
|
{
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_perag *pag = sc->sa.pag;
|
|
xfs_ino_t ino;
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
|
|
/* caller must hold perag reference */
|
|
if (pag == NULL) {
|
|
ASSERT(pag != NULL);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* caller must have AGI buffer */
|
|
if (sc->sa.agi_bp == NULL) {
|
|
ASSERT(sc->sa.agi_bp != NULL);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* reject inode numbers outside existing AGs */
|
|
ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino);
|
|
if (!xfs_verify_ino(mp, ino))
|
|
return -EINVAL;
|
|
|
|
error = -ENODATA;
|
|
rcu_read_lock();
|
|
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
|
|
if (!ip) {
|
|
/* cache miss */
|
|
goto out_rcu;
|
|
}
|
|
|
|
/*
|
|
* If the inode number doesn't match, the incore inode got reused
|
|
* during an RCU grace period and the radix tree hasn't been updated.
|
|
* This isn't the inode we want.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (ip->i_ino != ino)
|
|
goto out_skip;
|
|
|
|
trace_xchk_inode_is_allocated(ip);
|
|
|
|
/*
|
|
* We have an incore inode that matches the inode we want, and the
|
|
* caller holds the perag structure and the AGI buffer. Let's check
|
|
* our assumptions below:
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
/*
|
|
* (1) If the incore inode is live (i.e. referenced from the dcache),
|
|
* it will not be INEW, nor will it be in the inactivation or reclaim
|
|
* machinery. The ondisk inode had better be allocated. This is the
|
|
* most trivial case.
|
|
*/
|
|
if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
|
|
XFS_INACTIVATING))) {
|
|
/* live inode */
|
|
ASSERT(VFS_I(ip)->i_mode != 0);
|
|
}
|
|
|
|
/*
|
|
* If the incore inode is INEW, there are several possibilities:
|
|
*
|
|
* (2) For a file that is being created, note that we allocate the
|
|
* ondisk inode before allocating, initializing, and adding the incore
|
|
* inode to the radix tree.
|
|
*
|
|
* (3) If the incore inode is being recycled, the inode has to be
|
|
* allocated because we don't allow freed inodes to be recycled.
|
|
* Recycling doesn't touch i_mode.
|
|
*/
|
|
if (ip->i_flags & XFS_INEW) {
|
|
/* created on disk already or recycling */
|
|
ASSERT(VFS_I(ip)->i_mode != 0);
|
|
}
|
|
|
|
/*
|
|
* (4) If the inode is queued for inactivation (NEED_INACTIVE) but
|
|
* inactivation has not started (!INACTIVATING), it is still allocated.
|
|
*/
|
|
if ((ip->i_flags & XFS_NEED_INACTIVE) &&
|
|
!(ip->i_flags & XFS_INACTIVATING)) {
|
|
/* definitely before difree */
|
|
ASSERT(VFS_I(ip)->i_mode != 0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If the incore inode is undergoing inactivation (INACTIVATING), there
|
|
* are two possibilities:
|
|
*
|
|
* (5) It is before the point where it would get freed ondisk, in which
|
|
* case i_mode is still nonzero.
|
|
*
|
|
* (6) It has already been freed, in which case i_mode is zero.
|
|
*
|
|
* We don't take the ILOCK here, but difree and dialloc update the AGI,
|
|
* and we've taken the AGI buffer lock, which prevents that from
|
|
* happening.
|
|
*/
|
|
|
|
/*
|
|
* (7) Inodes undergoing inactivation (INACTIVATING) or queued for
|
|
* reclaim (IRECLAIMABLE) could be allocated or free. i_mode still
|
|
* reflects the ondisk state.
|
|
*/
|
|
|
|
/*
|
|
* (8) If the inode is in IFLUSHING, it's safe to query i_mode because
|
|
* the flush code uses i_mode to format the ondisk inode.
|
|
*/
|
|
|
|
/*
|
|
* (9) If the inode is in IRECLAIM and was reachable via the radix
|
|
* tree, it still has the same i_mode as it did before it entered
|
|
* reclaim. The inode object is still alive because we hold the RCU
|
|
* read lock.
|
|
*/
|
|
|
|
*inuse = VFS_I(ip)->i_mode != 0;
|
|
error = 0;
|
|
|
|
out_skip:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
out_rcu:
|
|
rcu_read_unlock();
|
|
return error;
|
|
}
|