mirror of
https://github.com/torvalds/linux.git
synced 2024-12-15 15:41:58 +00:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
477 lines
10 KiB
C
477 lines
10 KiB
C
#ifndef __ASM_SH_BITOPS_H
|
|
#define __ASM_SH_BITOPS_H
|
|
|
|
#ifdef __KERNEL__
|
|
#include <asm/system.h>
|
|
/* For __swab32 */
|
|
#include <asm/byteorder.h>
|
|
|
|
static __inline__ void set_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask;
|
|
volatile unsigned int *a = addr;
|
|
unsigned long flags;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
local_irq_save(flags);
|
|
*a |= mask;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static __inline__ void __set_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask;
|
|
volatile unsigned int *a = addr;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
*a |= mask;
|
|
}
|
|
|
|
/*
|
|
* clear_bit() doesn't provide any barrier for the compiler.
|
|
*/
|
|
#define smp_mb__before_clear_bit() barrier()
|
|
#define smp_mb__after_clear_bit() barrier()
|
|
static __inline__ void clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask;
|
|
volatile unsigned int *a = addr;
|
|
unsigned long flags;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
local_irq_save(flags);
|
|
*a &= ~mask;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static __inline__ void __clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask;
|
|
volatile unsigned int *a = addr;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
*a &= ~mask;
|
|
}
|
|
|
|
static __inline__ void change_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask;
|
|
volatile unsigned int *a = addr;
|
|
unsigned long flags;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
local_irq_save(flags);
|
|
*a ^= mask;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static __inline__ void __change_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask;
|
|
volatile unsigned int *a = addr;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
*a ^= mask;
|
|
}
|
|
|
|
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask, retval;
|
|
volatile unsigned int *a = addr;
|
|
unsigned long flags;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
local_irq_save(flags);
|
|
retval = (mask & *a) != 0;
|
|
*a |= mask;
|
|
local_irq_restore(flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask, retval;
|
|
volatile unsigned int *a = addr;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
retval = (mask & *a) != 0;
|
|
*a |= mask;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask, retval;
|
|
volatile unsigned int *a = addr;
|
|
unsigned long flags;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
local_irq_save(flags);
|
|
retval = (mask & *a) != 0;
|
|
*a &= ~mask;
|
|
local_irq_restore(flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask, retval;
|
|
volatile unsigned int *a = addr;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
retval = (mask & *a) != 0;
|
|
*a &= ~mask;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask, retval;
|
|
volatile unsigned int *a = addr;
|
|
unsigned long flags;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
local_irq_save(flags);
|
|
retval = (mask & *a) != 0;
|
|
*a ^= mask;
|
|
local_irq_restore(flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask, retval;
|
|
volatile unsigned int *a = addr;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
retval = (mask & *a) != 0;
|
|
*a ^= mask;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int test_bit(int nr, const volatile void *addr)
|
|
{
|
|
return 1UL & (((const volatile unsigned int *) addr)[nr >> 5] >> (nr & 31));
|
|
}
|
|
|
|
static __inline__ unsigned long ffz(unsigned long word)
|
|
{
|
|
unsigned long result;
|
|
|
|
__asm__("1:\n\t"
|
|
"shlr %1\n\t"
|
|
"bt/s 1b\n\t"
|
|
" add #1, %0"
|
|
: "=r" (result), "=r" (word)
|
|
: "0" (~0L), "1" (word)
|
|
: "t");
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* __ffs - find first bit in word.
|
|
* @word: The word to search
|
|
*
|
|
* Undefined if no bit exists, so code should check against 0 first.
|
|
*/
|
|
static __inline__ unsigned long __ffs(unsigned long word)
|
|
{
|
|
unsigned long result;
|
|
|
|
__asm__("1:\n\t"
|
|
"shlr %1\n\t"
|
|
"bf/s 1b\n\t"
|
|
" add #1, %0"
|
|
: "=r" (result), "=r" (word)
|
|
: "0" (~0L), "1" (word)
|
|
: "t");
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* find_next_bit - find the next set bit in a memory region
|
|
* @addr: The address to base the search on
|
|
* @offset: The bitnumber to start searching at
|
|
* @size: The maximum size to search
|
|
*/
|
|
static __inline__ unsigned long find_next_bit(const unsigned long *addr,
|
|
unsigned long size, unsigned long offset)
|
|
{
|
|
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
|
|
unsigned int result = offset & ~31UL;
|
|
unsigned int tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if (offset) {
|
|
tmp = *p++;
|
|
tmp &= ~0UL << offset;
|
|
if (size < 32)
|
|
goto found_first;
|
|
if (tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while (size >= 32) {
|
|
if ((tmp = *p++) != 0)
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if (!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
tmp &= ~0UL >> (32 - size);
|
|
if (tmp == 0UL) /* Are any bits set? */
|
|
return result + size; /* Nope. */
|
|
found_middle:
|
|
return result + __ffs(tmp);
|
|
}
|
|
|
|
/**
|
|
* find_first_bit - find the first set bit in a memory region
|
|
* @addr: The address to start the search at
|
|
* @size: The maximum size to search
|
|
*
|
|
* Returns the bit-number of the first set bit, not the number of the byte
|
|
* containing a bit.
|
|
*/
|
|
#define find_first_bit(addr, size) \
|
|
find_next_bit((addr), (size), 0)
|
|
|
|
static __inline__ int find_next_zero_bit(const unsigned long *addr, int size, int offset)
|
|
{
|
|
const unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
unsigned long result = offset & ~31UL;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if (offset) {
|
|
tmp = *(p++);
|
|
tmp |= ~0UL >> (32-offset);
|
|
if (size < 32)
|
|
goto found_first;
|
|
if (~tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while (size & ~31UL) {
|
|
if (~(tmp = *(p++)))
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if (!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
tmp |= ~0UL << size;
|
|
found_middle:
|
|
return result + ffz(tmp);
|
|
}
|
|
|
|
#define find_first_zero_bit(addr, size) \
|
|
find_next_zero_bit((addr), (size), 0)
|
|
|
|
/*
|
|
* ffs: find first bit set. This is defined the same way as
|
|
* the libc and compiler builtin ffs routines, therefore
|
|
* differs in spirit from the above ffz (man ffs).
|
|
*/
|
|
|
|
#define ffs(x) generic_ffs(x)
|
|
|
|
/*
|
|
* hweightN: returns the hamming weight (i.e. the number
|
|
* of bits set) of a N-bit word
|
|
*/
|
|
|
|
#define hweight32(x) generic_hweight32(x)
|
|
#define hweight16(x) generic_hweight16(x)
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
/*
|
|
* Every architecture must define this function. It's the fastest
|
|
* way of searching a 140-bit bitmap where the first 100 bits are
|
|
* unlikely to be set. It's guaranteed that at least one of the 140
|
|
* bits is cleared.
|
|
*/
|
|
|
|
static inline int sched_find_first_bit(const unsigned long *b)
|
|
{
|
|
if (unlikely(b[0]))
|
|
return __ffs(b[0]);
|
|
if (unlikely(b[1]))
|
|
return __ffs(b[1]) + 32;
|
|
if (unlikely(b[2]))
|
|
return __ffs(b[2]) + 64;
|
|
if (b[3])
|
|
return __ffs(b[3]) + 96;
|
|
return __ffs(b[4]) + 128;
|
|
}
|
|
|
|
#ifdef __LITTLE_ENDIAN__
|
|
#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
|
|
#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
|
|
#define ext2_test_bit(nr, addr) test_bit((nr), (addr))
|
|
#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
|
|
#define ext2_find_next_zero_bit(addr, size, offset) \
|
|
find_next_zero_bit((unsigned long *)(addr), (size), (offset))
|
|
#else
|
|
static __inline__ int ext2_set_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask, retval;
|
|
unsigned long flags;
|
|
volatile unsigned char *ADDR = (unsigned char *) addr;
|
|
|
|
ADDR += nr >> 3;
|
|
mask = 1 << (nr & 0x07);
|
|
local_irq_save(flags);
|
|
retval = (mask & *ADDR) != 0;
|
|
*ADDR |= mask;
|
|
local_irq_restore(flags);
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int ext2_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask, retval;
|
|
unsigned long flags;
|
|
volatile unsigned char *ADDR = (unsigned char *) addr;
|
|
|
|
ADDR += nr >> 3;
|
|
mask = 1 << (nr & 0x07);
|
|
local_irq_save(flags);
|
|
retval = (mask & *ADDR) != 0;
|
|
*ADDR &= ~mask;
|
|
local_irq_restore(flags);
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int ext2_test_bit(int nr, const volatile void * addr)
|
|
{
|
|
int mask;
|
|
const volatile unsigned char *ADDR = (const unsigned char *) addr;
|
|
|
|
ADDR += nr >> 3;
|
|
mask = 1 << (nr & 0x07);
|
|
return ((mask & *ADDR) != 0);
|
|
}
|
|
|
|
#define ext2_find_first_zero_bit(addr, size) \
|
|
ext2_find_next_zero_bit((addr), (size), 0)
|
|
|
|
static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
|
|
{
|
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
unsigned long result = offset & ~31UL;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if(offset) {
|
|
/* We hold the little endian value in tmp, but then the
|
|
* shift is illegal. So we could keep a big endian value
|
|
* in tmp, like this:
|
|
*
|
|
* tmp = __swab32(*(p++));
|
|
* tmp |= ~0UL >> (32-offset);
|
|
*
|
|
* but this would decrease preformance, so we change the
|
|
* shift:
|
|
*/
|
|
tmp = *(p++);
|
|
tmp |= __swab32(~0UL >> (32-offset));
|
|
if(size < 32)
|
|
goto found_first;
|
|
if(~tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while(size & ~31UL) {
|
|
if(~(tmp = *(p++)))
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if(!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
/* tmp is little endian, so we would have to swab the shift,
|
|
* see above. But then we have to swab tmp below for ffz, so
|
|
* we might as well do this here.
|
|
*/
|
|
return result + ffz(__swab32(tmp) | (~0UL << size));
|
|
found_middle:
|
|
return result + ffz(__swab32(tmp));
|
|
}
|
|
#endif
|
|
|
|
#define ext2_set_bit_atomic(lock, nr, addr) \
|
|
({ \
|
|
int ret; \
|
|
spin_lock(lock); \
|
|
ret = ext2_set_bit((nr), (addr)); \
|
|
spin_unlock(lock); \
|
|
ret; \
|
|
})
|
|
|
|
#define ext2_clear_bit_atomic(lock, nr, addr) \
|
|
({ \
|
|
int ret; \
|
|
spin_lock(lock); \
|
|
ret = ext2_clear_bit((nr), (addr)); \
|
|
spin_unlock(lock); \
|
|
ret; \
|
|
})
|
|
|
|
/* Bitmap functions for the minix filesystem. */
|
|
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
|
|
#define minix_set_bit(nr,addr) set_bit(nr,addr)
|
|
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
|
|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
|
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
|
|
|
/*
|
|
* fls: find last bit set.
|
|
*/
|
|
|
|
#define fls(x) generic_fls(x)
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* __ASM_SH_BITOPS_H */
|