linux/arch/i386/mm/discontig.c
Dave Hansen 22a9835c35 [PATCH] unify PFN_* macros
Just about every architecture defines some macros to do operations on pfns.
 They're all virtually identical.  This patch consolidates all of them.

One minor glitch is that at least i386 uses them in a very skeletal header
file.  To keep away from #include dependency hell, I stuck the new
definitions in a new, isolated header.

Of all of the implementations, sh64 is the only one that varied by a bit.
It used some masks to ensure that any sign-extension got ripped away before
the arithmetic is done.  This has been posted to that sh64 maintainers and
the development list.

Compiles on x86, x86_64, ia64 and ppc64.

Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:48 -08:00

426 lines
12 KiB
C

/*
* Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
* August 2002: added remote node KVA remap - Martin J. Bligh
*
* Copyright (C) 2002, IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <linux/kexec.h>
#include <linux/pfn.h>
#include <asm/e820.h>
#include <asm/setup.h>
#include <asm/mmzone.h>
#include <bios_ebda.h>
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);
bootmem_data_t node0_bdata;
/*
* numa interface - we expect the numa architecture specfic code to have
* populated the following initialisation.
*
* 1) node_online_map - the map of all nodes configured (online) in the system
* 2) node_start_pfn - the starting page frame number for a node
* 3) node_end_pfn - the ending page fram number for a node
*/
unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
#ifdef CONFIG_DISCONTIGMEM
/*
* 4) physnode_map - the mapping between a pfn and owning node
* physnode_map keeps track of the physical memory layout of a generic
* numa node on a 256Mb break (each element of the array will
* represent 256Mb of memory and will be marked by the node id. so,
* if the first gig is on node 0, and the second gig is on node 1
* physnode_map will contain:
*
* physnode_map[0-3] = 0;
* physnode_map[4-7] = 1;
* physnode_map[8- ] = -1;
*/
s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
EXPORT_SYMBOL(physnode_map);
void memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
nid, start, end);
printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
printk(KERN_DEBUG " ");
for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
printk("%ld ", pfn);
}
printk("\n");
}
unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long nr_pages = end_pfn - start_pfn;
if (!nr_pages)
return 0;
return (nr_pages + 1) * sizeof(struct page);
}
#endif
extern unsigned long find_max_low_pfn(void);
extern void find_max_pfn(void);
extern void add_one_highpage_init(struct page *, int, int);
extern struct e820map e820;
extern unsigned long init_pg_tables_end;
extern unsigned long highend_pfn, highstart_pfn;
extern unsigned long max_low_pfn;
extern unsigned long totalram_pages;
extern unsigned long totalhigh_pages;
#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
unsigned long node_remap_start_pfn[MAX_NUMNODES];
unsigned long node_remap_size[MAX_NUMNODES];
unsigned long node_remap_offset[MAX_NUMNODES];
void *node_remap_start_vaddr[MAX_NUMNODES];
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
void *node_remap_end_vaddr[MAX_NUMNODES];
void *node_remap_alloc_vaddr[MAX_NUMNODES];
/*
* FLAT - support for basic PC memory model with discontig enabled, essentially
* a single node with all available processors in it with a flat
* memory map.
*/
int __init get_memcfg_numa_flat(void)
{
printk("NUMA - single node, flat memory mode\n");
/* Run the memory configuration and find the top of memory. */
find_max_pfn();
node_start_pfn[0] = 0;
node_end_pfn[0] = max_pfn;
memory_present(0, 0, max_pfn);
/* Indicate there is one node available. */
nodes_clear(node_online_map);
node_set_online(0);
return 1;
}
/*
* Find the highest page frame number we have available for the node
*/
static void __init find_max_pfn_node(int nid)
{
if (node_end_pfn[nid] > max_pfn)
node_end_pfn[nid] = max_pfn;
/*
* if a user has given mem=XXXX, then we need to make sure
* that the node _starts_ before that, too, not just ends
*/
if (node_start_pfn[nid] > max_pfn)
node_start_pfn[nid] = max_pfn;
if (node_start_pfn[nid] > node_end_pfn[nid])
BUG();
}
/* Find the owning node for a pfn. */
int early_pfn_to_nid(unsigned long pfn)
{
int nid;
for_each_node(nid) {
if (node_end_pfn[nid] == 0)
break;
if (node_start_pfn[nid] <= pfn && node_end_pfn[nid] >= pfn)
return nid;
}
return 0;
}
/*
* Allocate memory for the pg_data_t for this node via a crude pre-bootmem
* method. For node zero take this from the bottom of memory, for
* subsequent nodes place them at node_remap_start_vaddr which contains
* node local data in physically node local memory. See setup_memory()
* for details.
*/
static void __init allocate_pgdat(int nid)
{
if (nid && node_has_online_mem(nid))
NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
else {
NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT));
min_low_pfn += PFN_UP(sizeof(pg_data_t));
}
}
void *alloc_remap(int nid, unsigned long size)
{
void *allocation = node_remap_alloc_vaddr[nid];
size = ALIGN(size, L1_CACHE_BYTES);
if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
return 0;
node_remap_alloc_vaddr[nid] += size;
memset(allocation, 0, size);
return allocation;
}
void __init remap_numa_kva(void)
{
void *vaddr;
unsigned long pfn;
int node;
for_each_online_node(node) {
for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
set_pmd_pfn((ulong) vaddr,
node_remap_start_pfn[node] + pfn,
PAGE_KERNEL_LARGE);
}
}
}
static unsigned long calculate_numa_remap_pages(void)
{
int nid;
unsigned long size, reserve_pages = 0;
unsigned long pfn;
for_each_online_node(nid) {
/*
* The acpi/srat node info can show hot-add memroy zones
* where memory could be added but not currently present.
*/
if (node_start_pfn[nid] > max_pfn)
continue;
if (node_end_pfn[nid] > max_pfn)
node_end_pfn[nid] = max_pfn;
/* ensure the remap includes space for the pgdat. */
size = node_remap_size[nid] + sizeof(pg_data_t);
/* convert size to large (pmd size) pages, rounding up */
size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
/* now the roundup is correct, convert to PAGE_SIZE pages */
size = size * PTRS_PER_PTE;
/*
* Validate the region we are allocating only contains valid
* pages.
*/
for (pfn = node_end_pfn[nid] - size;
pfn < node_end_pfn[nid]; pfn++)
if (!page_is_ram(pfn))
break;
if (pfn != node_end_pfn[nid])
size = 0;
printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
size, nid);
node_remap_size[nid] = size;
node_remap_offset[nid] = reserve_pages;
reserve_pages += size;
printk("Shrinking node %d from %ld pages to %ld pages\n",
nid, node_end_pfn[nid], node_end_pfn[nid] - size);
if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
/*
* Align node_end_pfn[] and node_remap_start_pfn[] to
* pmd boundary. remap_numa_kva will barf otherwise.
*/
printk("Shrinking node %d further by %ld pages for proper alignment\n",
nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
size += node_end_pfn[nid] & (PTRS_PER_PTE-1);
}
node_end_pfn[nid] -= size;
node_remap_start_pfn[nid] = node_end_pfn[nid];
}
printk("Reserving total of %ld pages for numa KVA remap\n",
reserve_pages);
return reserve_pages;
}
extern void setup_bootmem_allocator(void);
unsigned long __init setup_memory(void)
{
int nid;
unsigned long system_start_pfn, system_max_low_pfn;
unsigned long reserve_pages;
/*
* When mapping a NUMA machine we allocate the node_mem_map arrays
* from node local memory. They are then mapped directly into KVA
* between zone normal and vmalloc space. Calculate the size of
* this space and use it to adjust the boundry between ZONE_NORMAL
* and ZONE_HIGHMEM.
*/
find_max_pfn();
get_memcfg_numa();
reserve_pages = calculate_numa_remap_pages();
/* partially used pages are not usable - thus round upwards */
system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages;
printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n",
reserve_pages, max_low_pfn + reserve_pages);
printk("max_pfn = %ld\n", max_pfn);
#ifdef CONFIG_HIGHMEM
highstart_pfn = highend_pfn = max_pfn;
if (max_pfn > system_max_low_pfn)
highstart_pfn = system_max_low_pfn;
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
pages_to_mb(highend_pfn - highstart_pfn));
#endif
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
pages_to_mb(system_max_low_pfn));
printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
min_low_pfn, max_low_pfn, highstart_pfn);
printk("Low memory ends at vaddr %08lx\n",
(ulong) pfn_to_kaddr(max_low_pfn));
for_each_online_node(nid) {
node_remap_start_vaddr[nid] = pfn_to_kaddr(
highstart_pfn + node_remap_offset[nid]);
/* Init the node remap allocator */
node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
(node_remap_size[nid] * PAGE_SIZE);
node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
ALIGN(sizeof(pg_data_t), PAGE_SIZE);
allocate_pgdat(nid);
printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
(ulong) node_remap_start_vaddr[nid],
(ulong) pfn_to_kaddr(highstart_pfn
+ node_remap_offset[nid] + node_remap_size[nid]));
}
printk("High memory starts at vaddr %08lx\n",
(ulong) pfn_to_kaddr(highstart_pfn));
vmalloc_earlyreserve = reserve_pages * PAGE_SIZE;
for_each_online_node(nid)
find_max_pfn_node(nid);
memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
NODE_DATA(0)->bdata = &node0_bdata;
setup_bootmem_allocator();
return max_low_pfn;
}
void __init zone_sizes_init(void)
{
int nid;
for_each_online_node(nid) {
unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
unsigned long *zholes_size;
unsigned int max_dma;
unsigned long low = max_low_pfn;
unsigned long start = node_start_pfn[nid];
unsigned long high = node_end_pfn[nid];
max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
if (node_has_online_mem(nid)){
if (start > low) {
#ifdef CONFIG_HIGHMEM
BUG_ON(start > high);
zones_size[ZONE_HIGHMEM] = high - start;
#endif
} else {
if (low < max_dma)
zones_size[ZONE_DMA] = low;
else {
BUG_ON(max_dma > low);
BUG_ON(low > high);
zones_size[ZONE_DMA] = max_dma;
zones_size[ZONE_NORMAL] = low - max_dma;
#ifdef CONFIG_HIGHMEM
zones_size[ZONE_HIGHMEM] = high - low;
#endif
}
}
}
zholes_size = get_zholes_size(nid);
free_area_init_node(nid, NODE_DATA(nid), zones_size, start,
zholes_size);
}
return;
}
void __init set_highmem_pages_init(int bad_ppro)
{
#ifdef CONFIG_HIGHMEM
struct zone *zone;
struct page *page;
for_each_zone(zone) {
unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
if (!is_highmem(zone))
continue;
zone_start_pfn = zone->zone_start_pfn;
zone_end_pfn = zone_start_pfn + zone->spanned_pages;
printk("Initializing %s for node %d (%08lx:%08lx)\n",
zone->name, zone->zone_pgdat->node_id,
zone_start_pfn, zone_end_pfn);
for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
if (!pfn_valid(node_pfn))
continue;
page = pfn_to_page(node_pfn);
add_one_highpage_init(page, node_pfn, bad_ppro);
}
}
totalram_pages += totalhigh_pages;
#endif
}