linux/arch/loongarch/kvm/mmu.c
Peter Xu e72c7c2b88 mm/treewide: drop pXd_large()
They're not used anymore, drop all of them.

Link: https://lkml.kernel.org/r/20240305043750.93762-10-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:19 -08:00

957 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020-2023 Loongson Technology Corporation Limited
*/
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_host.h>
#include <linux/page-flags.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/kvm_mmu.h>
static inline bool kvm_hugepage_capable(struct kvm_memory_slot *slot)
{
return slot->arch.flags & KVM_MEM_HUGEPAGE_CAPABLE;
}
static inline bool kvm_hugepage_incapable(struct kvm_memory_slot *slot)
{
return slot->arch.flags & KVM_MEM_HUGEPAGE_INCAPABLE;
}
static inline void kvm_ptw_prepare(struct kvm *kvm, kvm_ptw_ctx *ctx)
{
ctx->level = kvm->arch.root_level;
/* pte table */
ctx->invalid_ptes = kvm->arch.invalid_ptes;
ctx->pte_shifts = kvm->arch.pte_shifts;
ctx->pgtable_shift = ctx->pte_shifts[ctx->level];
ctx->invalid_entry = ctx->invalid_ptes[ctx->level];
ctx->opaque = kvm;
}
/*
* Mark a range of guest physical address space old (all accesses fault) in the
* VM's GPA page table to allow detection of commonly used pages.
*/
static int kvm_mkold_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
{
if (kvm_pte_young(*pte)) {
*pte = kvm_pte_mkold(*pte);
return 1;
}
return 0;
}
/*
* Mark a range of guest physical address space clean (writes fault) in the VM's
* GPA page table to allow dirty page tracking.
*/
static int kvm_mkclean_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
{
gfn_t offset;
kvm_pte_t val;
val = *pte;
/*
* For kvm_arch_mmu_enable_log_dirty_pt_masked with mask, start and end
* may cross hugepage, for first huge page parameter addr is equal to
* start, however for the second huge page addr is base address of
* this huge page, rather than start or end address
*/
if ((ctx->flag & _KVM_HAS_PGMASK) && !kvm_pte_huge(val)) {
offset = (addr >> PAGE_SHIFT) - ctx->gfn;
if (!(BIT(offset) & ctx->mask))
return 0;
}
/*
* Need not split huge page now, just set write-proect pte bit
* Split huge page until next write fault
*/
if (kvm_pte_dirty(val)) {
*pte = kvm_pte_mkclean(val);
return 1;
}
return 0;
}
/*
* Clear pte entry
*/
static int kvm_flush_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
{
struct kvm *kvm;
kvm = ctx->opaque;
if (ctx->level)
kvm->stat.hugepages--;
else
kvm->stat.pages--;
*pte = ctx->invalid_entry;
return 1;
}
/*
* kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
*
* Allocate a blank KVM GPA page directory (PGD) for representing guest physical
* to host physical page mappings.
*
* Returns: Pointer to new KVM GPA page directory.
* NULL on allocation failure.
*/
kvm_pte_t *kvm_pgd_alloc(void)
{
kvm_pte_t *pgd;
pgd = (kvm_pte_t *)__get_free_pages(GFP_KERNEL, 0);
if (pgd)
pgd_init((void *)pgd);
return pgd;
}
static void _kvm_pte_init(void *addr, unsigned long val)
{
unsigned long *p, *end;
p = (unsigned long *)addr;
end = p + PTRS_PER_PTE;
do {
p[0] = val;
p[1] = val;
p[2] = val;
p[3] = val;
p[4] = val;
p += 8;
p[-3] = val;
p[-2] = val;
p[-1] = val;
} while (p != end);
}
/*
* Caller must hold kvm->mm_lock
*
* Walk the page tables of kvm to find the PTE corresponding to the
* address @addr. If page tables don't exist for @addr, they will be created
* from the MMU cache if @cache is not NULL.
*/
static kvm_pte_t *kvm_populate_gpa(struct kvm *kvm,
struct kvm_mmu_memory_cache *cache,
unsigned long addr, int level)
{
kvm_ptw_ctx ctx;
kvm_pte_t *entry, *child;
kvm_ptw_prepare(kvm, &ctx);
child = kvm->arch.pgd;
while (ctx.level > level) {
entry = kvm_pgtable_offset(&ctx, child, addr);
if (kvm_pte_none(&ctx, entry)) {
if (!cache)
return NULL;
child = kvm_mmu_memory_cache_alloc(cache);
_kvm_pte_init(child, ctx.invalid_ptes[ctx.level - 1]);
kvm_set_pte(entry, __pa(child));
} else if (kvm_pte_huge(*entry)) {
return entry;
} else
child = (kvm_pte_t *)__va(PHYSADDR(*entry));
kvm_ptw_enter(&ctx);
}
entry = kvm_pgtable_offset(&ctx, child, addr);
return entry;
}
/*
* Page walker for VM shadow mmu at last level
* The last level is small pte page or huge pmd page
*/
static int kvm_ptw_leaf(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
{
int ret;
phys_addr_t next, start, size;
struct list_head *list;
kvm_pte_t *entry, *child;
ret = 0;
start = addr;
child = (kvm_pte_t *)__va(PHYSADDR(*dir));
entry = kvm_pgtable_offset(ctx, child, addr);
do {
next = addr + (0x1UL << ctx->pgtable_shift);
if (!kvm_pte_present(ctx, entry))
continue;
ret |= ctx->ops(entry, addr, ctx);
} while (entry++, addr = next, addr < end);
if (kvm_need_flush(ctx)) {
size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3);
if (start + size == end) {
list = (struct list_head *)child;
list_add_tail(list, &ctx->list);
*dir = ctx->invalid_ptes[ctx->level + 1];
}
}
return ret;
}
/*
* Page walker for VM shadow mmu at page table dir level
*/
static int kvm_ptw_dir(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
{
int ret;
phys_addr_t next, start, size;
struct list_head *list;
kvm_pte_t *entry, *child;
ret = 0;
start = addr;
child = (kvm_pte_t *)__va(PHYSADDR(*dir));
entry = kvm_pgtable_offset(ctx, child, addr);
do {
next = kvm_pgtable_addr_end(ctx, addr, end);
if (!kvm_pte_present(ctx, entry))
continue;
if (kvm_pte_huge(*entry)) {
ret |= ctx->ops(entry, addr, ctx);
continue;
}
kvm_ptw_enter(ctx);
if (ctx->level == 0)
ret |= kvm_ptw_leaf(entry, addr, next, ctx);
else
ret |= kvm_ptw_dir(entry, addr, next, ctx);
kvm_ptw_exit(ctx);
} while (entry++, addr = next, addr < end);
if (kvm_need_flush(ctx)) {
size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3);
if (start + size == end) {
list = (struct list_head *)child;
list_add_tail(list, &ctx->list);
*dir = ctx->invalid_ptes[ctx->level + 1];
}
}
return ret;
}
/*
* Page walker for VM shadow mmu at page root table
*/
static int kvm_ptw_top(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
{
int ret;
phys_addr_t next;
kvm_pte_t *entry;
ret = 0;
entry = kvm_pgtable_offset(ctx, dir, addr);
do {
next = kvm_pgtable_addr_end(ctx, addr, end);
if (!kvm_pte_present(ctx, entry))
continue;
kvm_ptw_enter(ctx);
ret |= kvm_ptw_dir(entry, addr, next, ctx);
kvm_ptw_exit(ctx);
} while (entry++, addr = next, addr < end);
return ret;
}
/*
* kvm_flush_range() - Flush a range of guest physical addresses.
* @kvm: KVM pointer.
* @start_gfn: Guest frame number of first page in GPA range to flush.
* @end_gfn: Guest frame number of last page in GPA range to flush.
* @lock: Whether to hold mmu_lock or not
*
* Flushes a range of GPA mappings from the GPA page tables.
*/
static void kvm_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn, int lock)
{
int ret;
kvm_ptw_ctx ctx;
struct list_head *pos, *temp;
ctx.ops = kvm_flush_pte;
ctx.flag = _KVM_FLUSH_PGTABLE;
kvm_ptw_prepare(kvm, &ctx);
INIT_LIST_HEAD(&ctx.list);
if (lock) {
spin_lock(&kvm->mmu_lock);
ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT,
end_gfn << PAGE_SHIFT, &ctx);
spin_unlock(&kvm->mmu_lock);
} else
ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT,
end_gfn << PAGE_SHIFT, &ctx);
/* Flush vpid for each vCPU individually */
if (ret)
kvm_flush_remote_tlbs(kvm);
/*
* free pte table page after mmu_lock
* the pte table page is linked together with ctx.list
*/
list_for_each_safe(pos, temp, &ctx.list) {
list_del(pos);
free_page((unsigned long)pos);
}
}
/*
* kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
* @kvm: KVM pointer.
* @start_gfn: Guest frame number of first page in GPA range to flush.
* @end_gfn: Guest frame number of last page in GPA range to flush.
*
* Make a range of GPA mappings clean so that guest writes will fault and
* trigger dirty page logging.
*
* The caller must hold the @kvm->mmu_lock spinlock.
*
* Returns: Whether any GPA mappings were modified, which would require
* derived mappings (GVA page tables & TLB enties) to be
* invalidated.
*/
static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
{
kvm_ptw_ctx ctx;
ctx.ops = kvm_mkclean_pte;
ctx.flag = 0;
kvm_ptw_prepare(kvm, &ctx);
return kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx);
}
/*
* kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
* @kvm: The KVM pointer
* @slot: The memory slot associated with mask
* @gfn_offset: The gfn offset in memory slot
* @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
* slot to be write protected
*
* Walks bits set in mask write protects the associated pte's. Caller must
* acquire @kvm->mmu_lock.
*/
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask)
{
kvm_ptw_ctx ctx;
gfn_t base_gfn = slot->base_gfn + gfn_offset;
gfn_t start = base_gfn + __ffs(mask);
gfn_t end = base_gfn + __fls(mask) + 1;
ctx.ops = kvm_mkclean_pte;
ctx.flag = _KVM_HAS_PGMASK;
ctx.mask = mask;
ctx.gfn = base_gfn;
kvm_ptw_prepare(kvm, &ctx);
kvm_ptw_top(kvm->arch.pgd, start << PAGE_SHIFT, end << PAGE_SHIFT, &ctx);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old,
struct kvm_memory_slot *new, enum kvm_mr_change change)
{
gpa_t gpa_start;
hva_t hva_start;
size_t size, gpa_offset, hva_offset;
if ((change != KVM_MR_MOVE) && (change != KVM_MR_CREATE))
return 0;
/*
* Prevent userspace from creating a memory region outside of the
* VM GPA address space
*/
if ((new->base_gfn + new->npages) > (kvm->arch.gpa_size >> PAGE_SHIFT))
return -ENOMEM;
new->arch.flags = 0;
size = new->npages * PAGE_SIZE;
gpa_start = new->base_gfn << PAGE_SHIFT;
hva_start = new->userspace_addr;
if (IS_ALIGNED(size, PMD_SIZE) && IS_ALIGNED(gpa_start, PMD_SIZE)
&& IS_ALIGNED(hva_start, PMD_SIZE))
new->arch.flags |= KVM_MEM_HUGEPAGE_CAPABLE;
else {
/*
* Pages belonging to memslots that don't have the same
* alignment within a PMD for userspace and GPA cannot be
* mapped with PMD entries, because we'll end up mapping
* the wrong pages.
*
* Consider a layout like the following:
*
* memslot->userspace_addr:
* +-----+--------------------+--------------------+---+
* |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
* +-----+--------------------+--------------------+---+
*
* memslot->base_gfn << PAGE_SIZE:
* +---+--------------------+--------------------+-----+
* |abc|def Stage-2 block | Stage-2 block |tvxyz|
* +---+--------------------+--------------------+-----+
*
* If we create those stage-2 blocks, we'll end up with this
* incorrect mapping:
* d -> f
* e -> g
* f -> h
*/
gpa_offset = gpa_start & (PMD_SIZE - 1);
hva_offset = hva_start & (PMD_SIZE - 1);
if (gpa_offset != hva_offset) {
new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE;
} else {
if (gpa_offset == 0)
gpa_offset = PMD_SIZE;
if ((size + gpa_offset) < (PMD_SIZE * 2))
new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE;
}
}
return 0;
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
int needs_flush;
/*
* If dirty page logging is enabled, write protect all pages in the slot
* ready for dirty logging.
*
* There is no need to do this in any of the following cases:
* CREATE: No dirty mappings will already exist.
* MOVE/DELETE: The old mappings will already have been cleaned up by
* kvm_arch_flush_shadow_memslot()
*/
if (change == KVM_MR_FLAGS_ONLY &&
(!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
spin_lock(&kvm->mmu_lock);
/* Write protect GPA page table entries */
needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn,
new->base_gfn + new->npages);
spin_unlock(&kvm->mmu_lock);
if (needs_flush)
kvm_flush_remote_tlbs(kvm);
}
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT, 0);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
{
/*
* The slot has been made invalid (ready for moving or deletion), so we
* need to ensure that it can no longer be accessed by any guest vCPUs.
*/
kvm_flush_range(kvm, slot->base_gfn, slot->base_gfn + slot->npages, 1);
}
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
{
kvm_ptw_ctx ctx;
ctx.flag = 0;
ctx.ops = kvm_flush_pte;
kvm_ptw_prepare(kvm, &ctx);
INIT_LIST_HEAD(&ctx.list);
return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT,
range->end << PAGE_SHIFT, &ctx);
}
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
unsigned long prot_bits;
kvm_pte_t *ptep;
kvm_pfn_t pfn = pte_pfn(range->arg.pte);
gpa_t gpa = range->start << PAGE_SHIFT;
ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
if (!ptep)
return false;
/* Replacing an absent or old page doesn't need flushes */
if (!kvm_pte_present(NULL, ptep) || !kvm_pte_young(*ptep)) {
kvm_set_pte(ptep, 0);
return false;
}
/* Fill new pte if write protected or page migrated */
prot_bits = _PAGE_PRESENT | __READABLE;
prot_bits |= _CACHE_MASK & pte_val(range->arg.pte);
/*
* Set _PAGE_WRITE or _PAGE_DIRTY iff old and new pte both support
* _PAGE_WRITE for map_page_fast if next page write fault
* _PAGE_DIRTY since gpa has already recorded as dirty page
*/
prot_bits |= __WRITEABLE & *ptep & pte_val(range->arg.pte);
kvm_set_pte(ptep, kvm_pfn_pte(pfn, __pgprot(prot_bits)));
return true;
}
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
kvm_ptw_ctx ctx;
ctx.flag = 0;
ctx.ops = kvm_mkold_pte;
kvm_ptw_prepare(kvm, &ctx);
return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT,
range->end << PAGE_SHIFT, &ctx);
}
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
gpa_t gpa = range->start << PAGE_SHIFT;
kvm_pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
if (ptep && kvm_pte_present(NULL, ptep) && kvm_pte_young(*ptep))
return true;
return false;
}
/*
* kvm_map_page_fast() - Fast path GPA fault handler.
* @vcpu: vCPU pointer.
* @gpa: Guest physical address of fault.
* @write: Whether the fault was due to a write.
*
* Perform fast path GPA fault handling, doing all that can be done without
* calling into KVM. This handles marking old pages young (for idle page
* tracking), and dirtying of clean pages (for dirty page logging).
*
* Returns: 0 on success, in which case we can update derived mappings and
* resume guest execution.
* -EFAULT on failure due to absent GPA mapping or write to
* read-only page, in which case KVM must be consulted.
*/
static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
{
int ret = 0;
kvm_pfn_t pfn = 0;
kvm_pte_t *ptep, changed, new;
gfn_t gfn = gpa >> PAGE_SHIFT;
struct kvm *kvm = vcpu->kvm;
struct kvm_memory_slot *slot;
spin_lock(&kvm->mmu_lock);
/* Fast path - just check GPA page table for an existing entry */
ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
if (!ptep || !kvm_pte_present(NULL, ptep)) {
ret = -EFAULT;
goto out;
}
/* Track access to pages marked old */
new = *ptep;
if (!kvm_pte_young(new))
new = kvm_pte_mkyoung(new);
/* call kvm_set_pfn_accessed() after unlock */
if (write && !kvm_pte_dirty(new)) {
if (!kvm_pte_write(new)) {
ret = -EFAULT;
goto out;
}
if (kvm_pte_huge(new)) {
/*
* Do not set write permission when dirty logging is
* enabled for HugePages
*/
slot = gfn_to_memslot(kvm, gfn);
if (kvm_slot_dirty_track_enabled(slot)) {
ret = -EFAULT;
goto out;
}
}
/* Track dirtying of writeable pages */
new = kvm_pte_mkdirty(new);
}
changed = new ^ (*ptep);
if (changed) {
kvm_set_pte(ptep, new);
pfn = kvm_pte_pfn(new);
}
spin_unlock(&kvm->mmu_lock);
/*
* Fixme: pfn may be freed after mmu_lock
* kvm_try_get_pfn(pfn)/kvm_release_pfn pair to prevent this?
*/
if (kvm_pte_young(changed))
kvm_set_pfn_accessed(pfn);
if (kvm_pte_dirty(changed)) {
mark_page_dirty(kvm, gfn);
kvm_set_pfn_dirty(pfn);
}
return ret;
out:
spin_unlock(&kvm->mmu_lock);
return ret;
}
static bool fault_supports_huge_mapping(struct kvm_memory_slot *memslot,
unsigned long hva, bool write)
{
hva_t start, end;
/* Disable dirty logging on HugePages */
if (kvm_slot_dirty_track_enabled(memslot) && write)
return false;
if (kvm_hugepage_capable(memslot))
return true;
if (kvm_hugepage_incapable(memslot))
return false;
start = memslot->userspace_addr;
end = start + memslot->npages * PAGE_SIZE;
/*
* Next, let's make sure we're not trying to map anything not covered
* by the memslot. This means we have to prohibit block size mappings
* for the beginning and end of a non-block aligned and non-block sized
* memory slot (illustrated by the head and tail parts of the
* userspace view above containing pages 'abcde' and 'xyz',
* respectively).
*
* Note that it doesn't matter if we do the check using the
* userspace_addr or the base_gfn, as both are equally aligned (per
* the check above) and equally sized.
*/
return (hva >= ALIGN(start, PMD_SIZE)) && (hva < ALIGN_DOWN(end, PMD_SIZE));
}
/*
* Lookup the mapping level for @gfn in the current mm.
*
* WARNING! Use of host_pfn_mapping_level() requires the caller and the end
* consumer to be tied into KVM's handlers for MMU notifier events!
*
* There are several ways to safely use this helper:
*
* - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
* consuming it. In this case, mmu_lock doesn't need to be held during the
* lookup, but it does need to be held while checking the MMU notifier.
*
* - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
* event for the hva. This can be done by explicit checking the MMU notifier
* or by ensuring that KVM already has a valid mapping that covers the hva.
*
* - Do not use the result to install new mappings, e.g. use the host mapping
* level only to decide whether or not to zap an entry. In this case, it's
* not required to hold mmu_lock (though it's highly likely the caller will
* want to hold mmu_lock anyways, e.g. to modify SPTEs).
*
* Note! The lookup can still race with modifications to host page tables, but
* the above "rules" ensure KVM will not _consume_ the result of the walk if a
* race with the primary MMU occurs.
*/
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
const struct kvm_memory_slot *slot)
{
int level = 0;
unsigned long hva;
unsigned long flags;
pgd_t pgd;
p4d_t p4d;
pud_t pud;
pmd_t pmd;
/*
* Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
* is not solely for performance, it's also necessary to avoid the
* "writable" check in __gfn_to_hva_many(), which will always fail on
* read-only memslots due to gfn_to_hva() assuming writes. Earlier
* page fault steps have already verified the guest isn't writing a
* read-only memslot.
*/
hva = __gfn_to_hva_memslot(slot, gfn);
/*
* Disable IRQs to prevent concurrent tear down of host page tables,
* e.g. if the primary MMU promotes a P*D to a huge page and then frees
* the original page table.
*/
local_irq_save(flags);
/*
* Read each entry once. As above, a non-leaf entry can be promoted to
* a huge page _during_ this walk. Re-reading the entry could send the
* walk into the weeks, e.g. p*d_leaf() returns false (sees the old
* value) and then p*d_offset() walks into the target huge page instead
* of the old page table (sees the new value).
*/
pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
if (pgd_none(pgd))
goto out;
p4d = READ_ONCE(*p4d_offset(&pgd, hva));
if (p4d_none(p4d) || !p4d_present(p4d))
goto out;
pud = READ_ONCE(*pud_offset(&p4d, hva));
if (pud_none(pud) || !pud_present(pud))
goto out;
pmd = READ_ONCE(*pmd_offset(&pud, hva));
if (pmd_none(pmd) || !pmd_present(pmd))
goto out;
if (kvm_pte_huge(pmd_val(pmd)))
level = 1;
out:
local_irq_restore(flags);
return level;
}
/*
* Split huge page
*/
static kvm_pte_t *kvm_split_huge(struct kvm_vcpu *vcpu, kvm_pte_t *ptep, gfn_t gfn)
{
int i;
kvm_pte_t val, *child;
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_memory_cache *memcache;
memcache = &vcpu->arch.mmu_page_cache;
child = kvm_mmu_memory_cache_alloc(memcache);
val = kvm_pte_mksmall(*ptep);
for (i = 0; i < PTRS_PER_PTE; i++) {
kvm_set_pte(child + i, val);
val += PAGE_SIZE;
}
/* The later kvm_flush_tlb_gpa() will flush hugepage tlb */
kvm_set_pte(ptep, __pa(child));
kvm->stat.hugepages--;
kvm->stat.pages += PTRS_PER_PTE;
return child + (gfn & (PTRS_PER_PTE - 1));
}
/*
* kvm_map_page() - Map a guest physical page.
* @vcpu: vCPU pointer.
* @gpa: Guest physical address of fault.
* @write: Whether the fault was due to a write.
*
* Handle GPA faults by creating a new GPA mapping (or updating an existing
* one).
*
* This takes care of marking pages young or dirty (idle/dirty page tracking),
* asking KVM for the corresponding PFN, and creating a mapping in the GPA page
* tables. Derived mappings (GVA page tables and TLBs) must be handled by the
* caller.
*
* Returns: 0 on success
* -EFAULT if there is no memory region at @gpa or a write was
* attempted to a read-only memory region. This is usually handled
* as an MMIO access.
*/
static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
{
bool writeable;
int srcu_idx, err, retry_no = 0, level;
unsigned long hva, mmu_seq, prot_bits;
kvm_pfn_t pfn;
kvm_pte_t *ptep, new_pte;
gfn_t gfn = gpa >> PAGE_SHIFT;
struct kvm *kvm = vcpu->kvm;
struct kvm_memory_slot *memslot;
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
/* Try the fast path to handle old / clean pages */
srcu_idx = srcu_read_lock(&kvm->srcu);
err = kvm_map_page_fast(vcpu, gpa, write);
if (!err)
goto out;
memslot = gfn_to_memslot(kvm, gfn);
hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable);
if (kvm_is_error_hva(hva) || (write && !writeable)) {
err = -EFAULT;
goto out;
}
/* We need a minimum of cached pages ready for page table creation */
err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
if (err)
goto out;
retry:
/*
* Used to check for invalidations in progress, of the pfn that is
* returned by pfn_to_pfn_prot below.
*/
mmu_seq = kvm->mmu_invalidate_seq;
/*
* Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in
* gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
* risk the page we get a reference to getting unmapped before we have a
* chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
*
* This smp_rmb() pairs with the effective smp_wmb() of the combination
* of the pte_unmap_unlock() after the PTE is zapped, and the
* spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before
* mmu_invalidate_seq is incremented.
*/
smp_rmb();
/* Slow path - ask KVM core whether we can access this GPA */
pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable);
if (is_error_noslot_pfn(pfn)) {
err = -EFAULT;
goto out;
}
/* Check if an invalidation has taken place since we got pfn */
spin_lock(&kvm->mmu_lock);
if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
/*
* This can happen when mappings are changed asynchronously, but
* also synchronously if a COW is triggered by
* gfn_to_pfn_prot().
*/
spin_unlock(&kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
if (retry_no > 100) {
retry_no = 0;
schedule();
}
retry_no++;
goto retry;
}
/*
* For emulated devices such virtio device, actual cache attribute is
* determined by physical machine.
* For pass through physical device, it should be uncachable
*/
prot_bits = _PAGE_PRESENT | __READABLE;
if (pfn_valid(pfn))
prot_bits |= _CACHE_CC;
else
prot_bits |= _CACHE_SUC;
if (writeable) {
prot_bits |= _PAGE_WRITE;
if (write)
prot_bits |= __WRITEABLE;
}
/* Disable dirty logging on HugePages */
level = 0;
if (!fault_supports_huge_mapping(memslot, hva, write)) {
level = 0;
} else {
level = host_pfn_mapping_level(kvm, gfn, memslot);
if (level == 1) {
gfn = gfn & ~(PTRS_PER_PTE - 1);
pfn = pfn & ~(PTRS_PER_PTE - 1);
}
}
/* Ensure page tables are allocated */
ptep = kvm_populate_gpa(kvm, memcache, gpa, level);
new_pte = kvm_pfn_pte(pfn, __pgprot(prot_bits));
if (level == 1) {
new_pte = kvm_pte_mkhuge(new_pte);
/*
* previous pmd entry is invalid_pte_table
* there is invalid tlb with small page
* need flush these invalid tlbs for current vcpu
*/
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
++kvm->stat.hugepages;
} else if (kvm_pte_huge(*ptep) && write)
ptep = kvm_split_huge(vcpu, ptep, gfn);
else
++kvm->stat.pages;
kvm_set_pte(ptep, new_pte);
spin_unlock(&kvm->mmu_lock);
if (prot_bits & _PAGE_DIRTY) {
mark_page_dirty_in_slot(kvm, memslot, gfn);
kvm_set_pfn_dirty(pfn);
}
kvm_set_pfn_accessed(pfn);
kvm_release_pfn_clean(pfn);
out:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return err;
}
int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
{
int ret;
ret = kvm_map_page(vcpu, gpa, write);
if (ret)
return ret;
/* Invalidate this entry in the TLB */
kvm_flush_tlb_gpa(vcpu, gpa);
return 0;
}
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
}
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
const struct kvm_memory_slot *memslot)
{
kvm_flush_remote_tlbs(kvm);
}