mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 03:21:32 +00:00
94f69966fa
Increasingly, Linux is running on thermally constrained devices. The simple thermal relationship between processor and fan has become past for modern computers. As hardware vendors cope with the thermal constraints on their products, more sensors are added, new cooling capabilities are introduced. The complexity of the thermal relationship can grow exponentially among cooling devices, zones, sensors, and trip points. They can also change dynamically. To expose such relationship to the userspace, Linux generic thermal layer introduced sysfs entry at /sys/class/thermal with a matrix of symbolic links, trip point bindings, and device instances. To traverse such matrix by hand is not a trivial task. Testing is also difficult in that thermal conditions are often exception cases that hard to reach in normal operations. TMON is conceived as a tool to help visualize, tune, and test the complex thermal subsystem. Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com> Signed-off-by: Zhang Rui <rui.zhang@intel.com>
143 lines
4.7 KiB
Groff
143 lines
4.7 KiB
Groff
.TH TMON 8
|
|
.SH NAME
|
|
\fBtmon\fP - A monitoring and testing tool for Linux kernel thermal subsystem
|
|
|
|
.SH SYNOPSIS
|
|
.ft B
|
|
.B tmon
|
|
.RB [ Options ]
|
|
.br
|
|
.SH DESCRIPTION
|
|
\fBtmon \fP can be used to visualize thermal relationship and
|
|
real-time thermal data; tune
|
|
and test cooling devices and sensors; collect thermal data for offline
|
|
analysis and plot. \fBtmon\fP must be run as root in order to control device
|
|
states via sysfs.
|
|
.PP
|
|
\fBFunctions\fP
|
|
.PP
|
|
.nf
|
|
1. Thermal relationships:
|
|
- show thermal zone information
|
|
- show cooling device information
|
|
- show trip point binding within each thermal zone
|
|
- show trip point and cooling device instance bindings
|
|
.PP
|
|
2. Real time data display
|
|
- show temperature of all thermal zones w.r.t. its trip points and types
|
|
- show states of all cooling devices
|
|
.PP
|
|
3. Thermal relationship learning and device tuning
|
|
- with a built-in Proportional Integral Derivative (\fBPID\fP)
|
|
controller, user can pair a cooling device to a thermal sensor for
|
|
testing the effectiveness and learn about the thermal distance between the two
|
|
- allow manual control of cooling device states and target temperature
|
|
.PP
|
|
4. Data logging in /var/tmp/tmon.log
|
|
- contains thermal configuration data, i.e. cooling device, thermal
|
|
zones, and trip points. Can be used for data collection in remote
|
|
debugging.
|
|
- log real-time thermal data into space separated format that can be
|
|
directly consumed by plotting tools such as Rscript.
|
|
|
|
.SS Options
|
|
.PP
|
|
The \fB-c --control\fP option sets a cooling device type to control temperature
|
|
of a thermal zone
|
|
.PP
|
|
The \fB-d --daemon\fP option runs \fBtmon \fP as daemon without user interface
|
|
.PP
|
|
The \fB-g --debug\fP option allow debug messages to be stored in syslog
|
|
.PP
|
|
The \fB-h --help\fP option shows help message
|
|
.PP
|
|
The \fB-l --log\fP option write data to /var/tmp/tmon.log
|
|
.PP
|
|
The \fB-t --time-interval\fP option sets the polling interval in seconds
|
|
.PP
|
|
The \fB-v --version\fP option shows the version of \fBtmon \fP
|
|
.PP
|
|
The \fB-z --zone\fP option sets the target therma zone instance to be controlled
|
|
.PP
|
|
|
|
.SH FIELD DESCRIPTIONS
|
|
.nf
|
|
.PP
|
|
\fBP \fP passive cooling trip point type
|
|
\fBA \fP active cooling trip point type (fan)
|
|
\fBC \fP critical trip point type
|
|
\fBA \fP hot trip point type
|
|
\fBkp \fP proportional gain of \fBPID\fP controller
|
|
\fBki \fP integral gain of \fBPID\fP controller
|
|
\fBkd \fP derivative gain of \fBPID\fP controller
|
|
|
|
.SH REQUIREMENT
|
|
Build depends on ncurses
|
|
.PP
|
|
Runtime depends on window size large enough to show the number of
|
|
devices found on the system.
|
|
|
|
.PP
|
|
|
|
.SH INTERACTIVE COMMANDS
|
|
.pp
|
|
.nf
|
|
\fBCtrl-C, q/Q\fP stops \fBtmon\fP
|
|
\fBTAB\fP shows tuning pop up panel, choose a letter to modify
|
|
|
|
.SH EXAMPLES
|
|
Without any parameters, tmon is in monitoring only mode and refresh
|
|
screen every 1 second.
|
|
.PP
|
|
1. For monitoring only:
|
|
.nf
|
|
$ sudo ./tmon
|
|
|
|
2. Use Processor cooling device to control thermal zone 0 at default 65C.
|
|
$ sudo ./tmon -c Processor -z 0
|
|
|
|
3. Use intel_powerclamp(idle injection) cooling device to control thermal zone 1
|
|
$ sudo ./tmon -c intel_powerclamp -z 1
|
|
|
|
4. Turn on debug and collect data log at /var/tmp/tmon.log
|
|
$ sudo ./tmon -g -l
|
|
|
|
For example, the log below shows PID controller was adjusting current states
|
|
for all cooling devices with "Processor" type such that thermal zone 0
|
|
can stay below 65 dC.
|
|
|
|
#---------- THERMAL DATA LOG STARTED -----------
|
|
Samples TargetTemp acpitz0 acpitz1 Fan0 Fan1 Fan2 Fan3 Fan4 Fan5
|
|
Fan6 Fan7 Fan8 Fan9 Processor10 Processor11 Processor12 Processor13
|
|
LCD14 intel_powerclamp15 1 65.0 65 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 2
|
|
65.0 66 65 0 0 0 0 0 0 0 0 0 0 4 4 4 4 6 0 3 65.0 60 54 0 0 0 0 0 0 0 0
|
|
0 0 4 4 4 4 6 0 4 65.0 53 53 0 0 0 0 0 0 0 0 0 0 4 4 4 4 6 0
|
|
5 65.0 52 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0
|
|
6 65.0 53 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0
|
|
7 65.0 68 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0
|
|
8 65.0 68 68 0 0 0 0 0 0 0 0 0 0 5 5 5 5 6 0
|
|
9 65.0 68 68 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 0
|
|
10 65.0 67 67 0 0 0 0 0 0 0 0 0 0 7 7 7 7 6 0
|
|
11 65.0 67 67 0 0 0 0 0 0 0 0 0 0 8 8 8 8 6 0
|
|
12 65.0 67 67 0 0 0 0 0 0 0 0 0 0 8 8 8 8 6 0
|
|
13 65.0 67 67 0 0 0 0 0 0 0 0 0 0 9 9 9 9 6 0
|
|
14 65.0 66 66 0 0 0 0 0 0 0 0 0 0 10 10 10 10 6 0
|
|
15 65.0 66 67 0 0 0 0 0 0 0 0 0 0 10 10 10 10 6 0
|
|
16 65.0 66 66 0 0 0 0 0 0 0 0 0 0 11 11 11 11 6 0
|
|
17 65.0 66 66 0 0 0 0 0 0 0 0 0 0 11 11 11 11 6 0
|
|
18 65.0 64 61 0 0 0 0 0 0 0 0 0 0 11 11 11 11 6 0
|
|
19 65.0 60 59 0 0 0 0 0 0 0 0 0 0 12 12 12 12 6 0
|
|
|
|
Data can be read directly into an array by an example R-script below:
|
|
|
|
#!/usr/bin/Rscript
|
|
tdata <- read.table("/var/tmp/tmon.log", header=T, comment.char="#")
|
|
attach(tdata)
|
|
jpeg("tmon.jpg")
|
|
X11()
|
|
g_range <- range(0, intel_powerclamp15, TargetTemp, acpitz0)
|
|
plot( Samples, intel_powerclamp15, col="blue", ylim=g_range, axes=FALSE, ann=FALSE)
|
|
par(new=TRUE)
|
|
lines(TargetTemp, type="o", pch=22, lty=2, col="red")
|
|
dev.off()
|