mirror of
https://github.com/torvalds/linux.git
synced 2024-11-08 21:21:47 +00:00
5ad4e53bd5
Don't pull it in sched.h; very few files actually need it and those can include directly. sched.h itself only needs forward declaration of struct fs_struct; Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2298 lines
57 KiB
C
2298 lines
57 KiB
C
/*
|
|
* linux/fs/namespace.c
|
|
*
|
|
* (C) Copyright Al Viro 2000, 2001
|
|
* Released under GPL v2.
|
|
*
|
|
* Based on code from fs/super.c, copyright Linus Torvalds and others.
|
|
* Heavily rewritten.
|
|
*/
|
|
|
|
#include <linux/syscalls.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/acct.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/mnt_namespace.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/security.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/ramfs.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/fs_struct.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include "pnode.h"
|
|
#include "internal.h"
|
|
|
|
#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
|
|
#define HASH_SIZE (1UL << HASH_SHIFT)
|
|
|
|
/* spinlock for vfsmount related operations, inplace of dcache_lock */
|
|
__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
|
|
|
|
static int event;
|
|
static DEFINE_IDA(mnt_id_ida);
|
|
static DEFINE_IDA(mnt_group_ida);
|
|
|
|
static struct list_head *mount_hashtable __read_mostly;
|
|
static struct kmem_cache *mnt_cache __read_mostly;
|
|
static struct rw_semaphore namespace_sem;
|
|
|
|
/* /sys/fs */
|
|
struct kobject *fs_kobj;
|
|
EXPORT_SYMBOL_GPL(fs_kobj);
|
|
|
|
static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
|
|
{
|
|
unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
|
|
tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
|
|
tmp = tmp + (tmp >> HASH_SHIFT);
|
|
return tmp & (HASH_SIZE - 1);
|
|
}
|
|
|
|
#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
|
|
|
|
/* allocation is serialized by namespace_sem */
|
|
static int mnt_alloc_id(struct vfsmount *mnt)
|
|
{
|
|
int res;
|
|
|
|
retry:
|
|
ida_pre_get(&mnt_id_ida, GFP_KERNEL);
|
|
spin_lock(&vfsmount_lock);
|
|
res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
|
|
spin_unlock(&vfsmount_lock);
|
|
if (res == -EAGAIN)
|
|
goto retry;
|
|
|
|
return res;
|
|
}
|
|
|
|
static void mnt_free_id(struct vfsmount *mnt)
|
|
{
|
|
spin_lock(&vfsmount_lock);
|
|
ida_remove(&mnt_id_ida, mnt->mnt_id);
|
|
spin_unlock(&vfsmount_lock);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new peer group ID
|
|
*
|
|
* mnt_group_ida is protected by namespace_sem
|
|
*/
|
|
static int mnt_alloc_group_id(struct vfsmount *mnt)
|
|
{
|
|
if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
|
|
}
|
|
|
|
/*
|
|
* Release a peer group ID
|
|
*/
|
|
void mnt_release_group_id(struct vfsmount *mnt)
|
|
{
|
|
ida_remove(&mnt_group_ida, mnt->mnt_group_id);
|
|
mnt->mnt_group_id = 0;
|
|
}
|
|
|
|
struct vfsmount *alloc_vfsmnt(const char *name)
|
|
{
|
|
struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
|
|
if (mnt) {
|
|
int err;
|
|
|
|
err = mnt_alloc_id(mnt);
|
|
if (err)
|
|
goto out_free_cache;
|
|
|
|
if (name) {
|
|
mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
|
|
if (!mnt->mnt_devname)
|
|
goto out_free_id;
|
|
}
|
|
|
|
atomic_set(&mnt->mnt_count, 1);
|
|
INIT_LIST_HEAD(&mnt->mnt_hash);
|
|
INIT_LIST_HEAD(&mnt->mnt_child);
|
|
INIT_LIST_HEAD(&mnt->mnt_mounts);
|
|
INIT_LIST_HEAD(&mnt->mnt_list);
|
|
INIT_LIST_HEAD(&mnt->mnt_expire);
|
|
INIT_LIST_HEAD(&mnt->mnt_share);
|
|
INIT_LIST_HEAD(&mnt->mnt_slave_list);
|
|
INIT_LIST_HEAD(&mnt->mnt_slave);
|
|
atomic_set(&mnt->__mnt_writers, 0);
|
|
}
|
|
return mnt;
|
|
|
|
out_free_id:
|
|
mnt_free_id(mnt);
|
|
out_free_cache:
|
|
kmem_cache_free(mnt_cache, mnt);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Most r/o checks on a fs are for operations that take
|
|
* discrete amounts of time, like a write() or unlink().
|
|
* We must keep track of when those operations start
|
|
* (for permission checks) and when they end, so that
|
|
* we can determine when writes are able to occur to
|
|
* a filesystem.
|
|
*/
|
|
/*
|
|
* __mnt_is_readonly: check whether a mount is read-only
|
|
* @mnt: the mount to check for its write status
|
|
*
|
|
* This shouldn't be used directly ouside of the VFS.
|
|
* It does not guarantee that the filesystem will stay
|
|
* r/w, just that it is right *now*. This can not and
|
|
* should not be used in place of IS_RDONLY(inode).
|
|
* mnt_want/drop_write() will _keep_ the filesystem
|
|
* r/w.
|
|
*/
|
|
int __mnt_is_readonly(struct vfsmount *mnt)
|
|
{
|
|
if (mnt->mnt_flags & MNT_READONLY)
|
|
return 1;
|
|
if (mnt->mnt_sb->s_flags & MS_RDONLY)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__mnt_is_readonly);
|
|
|
|
struct mnt_writer {
|
|
/*
|
|
* If holding multiple instances of this lock, they
|
|
* must be ordered by cpu number.
|
|
*/
|
|
spinlock_t lock;
|
|
struct lock_class_key lock_class; /* compiles out with !lockdep */
|
|
unsigned long count;
|
|
struct vfsmount *mnt;
|
|
} ____cacheline_aligned_in_smp;
|
|
static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
|
|
|
|
static int __init init_mnt_writers(void)
|
|
{
|
|
int cpu;
|
|
for_each_possible_cpu(cpu) {
|
|
struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
|
|
spin_lock_init(&writer->lock);
|
|
lockdep_set_class(&writer->lock, &writer->lock_class);
|
|
writer->count = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
fs_initcall(init_mnt_writers);
|
|
|
|
static void unlock_mnt_writers(void)
|
|
{
|
|
int cpu;
|
|
struct mnt_writer *cpu_writer;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
cpu_writer = &per_cpu(mnt_writers, cpu);
|
|
spin_unlock(&cpu_writer->lock);
|
|
}
|
|
}
|
|
|
|
static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
|
|
{
|
|
if (!cpu_writer->mnt)
|
|
return;
|
|
/*
|
|
* This is in case anyone ever leaves an invalid,
|
|
* old ->mnt and a count of 0.
|
|
*/
|
|
if (!cpu_writer->count)
|
|
return;
|
|
atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
|
|
cpu_writer->count = 0;
|
|
}
|
|
/*
|
|
* must hold cpu_writer->lock
|
|
*/
|
|
static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
|
|
struct vfsmount *mnt)
|
|
{
|
|
if (cpu_writer->mnt == mnt)
|
|
return;
|
|
__clear_mnt_count(cpu_writer);
|
|
cpu_writer->mnt = mnt;
|
|
}
|
|
|
|
/*
|
|
* Most r/o checks on a fs are for operations that take
|
|
* discrete amounts of time, like a write() or unlink().
|
|
* We must keep track of when those operations start
|
|
* (for permission checks) and when they end, so that
|
|
* we can determine when writes are able to occur to
|
|
* a filesystem.
|
|
*/
|
|
/**
|
|
* mnt_want_write - get write access to a mount
|
|
* @mnt: the mount on which to take a write
|
|
*
|
|
* This tells the low-level filesystem that a write is
|
|
* about to be performed to it, and makes sure that
|
|
* writes are allowed before returning success. When
|
|
* the write operation is finished, mnt_drop_write()
|
|
* must be called. This is effectively a refcount.
|
|
*/
|
|
int mnt_want_write(struct vfsmount *mnt)
|
|
{
|
|
int ret = 0;
|
|
struct mnt_writer *cpu_writer;
|
|
|
|
cpu_writer = &get_cpu_var(mnt_writers);
|
|
spin_lock(&cpu_writer->lock);
|
|
if (__mnt_is_readonly(mnt)) {
|
|
ret = -EROFS;
|
|
goto out;
|
|
}
|
|
use_cpu_writer_for_mount(cpu_writer, mnt);
|
|
cpu_writer->count++;
|
|
out:
|
|
spin_unlock(&cpu_writer->lock);
|
|
put_cpu_var(mnt_writers);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mnt_want_write);
|
|
|
|
static void lock_mnt_writers(void)
|
|
{
|
|
int cpu;
|
|
struct mnt_writer *cpu_writer;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
cpu_writer = &per_cpu(mnt_writers, cpu);
|
|
spin_lock(&cpu_writer->lock);
|
|
__clear_mnt_count(cpu_writer);
|
|
cpu_writer->mnt = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* These per-cpu write counts are not guaranteed to have
|
|
* matched increments and decrements on any given cpu.
|
|
* A file open()ed for write on one cpu and close()d on
|
|
* another cpu will imbalance this count. Make sure it
|
|
* does not get too far out of whack.
|
|
*/
|
|
static void handle_write_count_underflow(struct vfsmount *mnt)
|
|
{
|
|
if (atomic_read(&mnt->__mnt_writers) >=
|
|
MNT_WRITER_UNDERFLOW_LIMIT)
|
|
return;
|
|
/*
|
|
* It isn't necessary to hold all of the locks
|
|
* at the same time, but doing it this way makes
|
|
* us share a lot more code.
|
|
*/
|
|
lock_mnt_writers();
|
|
/*
|
|
* vfsmount_lock is for mnt_flags.
|
|
*/
|
|
spin_lock(&vfsmount_lock);
|
|
/*
|
|
* If coalescing the per-cpu writer counts did not
|
|
* get us back to a positive writer count, we have
|
|
* a bug.
|
|
*/
|
|
if ((atomic_read(&mnt->__mnt_writers) < 0) &&
|
|
!(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
|
|
WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
|
|
"count: %d\n",
|
|
mnt, atomic_read(&mnt->__mnt_writers));
|
|
/* use the flag to keep the dmesg spam down */
|
|
mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
|
|
}
|
|
spin_unlock(&vfsmount_lock);
|
|
unlock_mnt_writers();
|
|
}
|
|
|
|
/**
|
|
* mnt_drop_write - give up write access to a mount
|
|
* @mnt: the mount on which to give up write access
|
|
*
|
|
* Tells the low-level filesystem that we are done
|
|
* performing writes to it. Must be matched with
|
|
* mnt_want_write() call above.
|
|
*/
|
|
void mnt_drop_write(struct vfsmount *mnt)
|
|
{
|
|
int must_check_underflow = 0;
|
|
struct mnt_writer *cpu_writer;
|
|
|
|
cpu_writer = &get_cpu_var(mnt_writers);
|
|
spin_lock(&cpu_writer->lock);
|
|
|
|
use_cpu_writer_for_mount(cpu_writer, mnt);
|
|
if (cpu_writer->count > 0) {
|
|
cpu_writer->count--;
|
|
} else {
|
|
must_check_underflow = 1;
|
|
atomic_dec(&mnt->__mnt_writers);
|
|
}
|
|
|
|
spin_unlock(&cpu_writer->lock);
|
|
/*
|
|
* Logically, we could call this each time,
|
|
* but the __mnt_writers cacheline tends to
|
|
* be cold, and makes this expensive.
|
|
*/
|
|
if (must_check_underflow)
|
|
handle_write_count_underflow(mnt);
|
|
/*
|
|
* This could be done right after the spinlock
|
|
* is taken because the spinlock keeps us on
|
|
* the cpu, and disables preemption. However,
|
|
* putting it here bounds the amount that
|
|
* __mnt_writers can underflow. Without it,
|
|
* we could theoretically wrap __mnt_writers.
|
|
*/
|
|
put_cpu_var(mnt_writers);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mnt_drop_write);
|
|
|
|
static int mnt_make_readonly(struct vfsmount *mnt)
|
|
{
|
|
int ret = 0;
|
|
|
|
lock_mnt_writers();
|
|
/*
|
|
* With all the locks held, this value is stable
|
|
*/
|
|
if (atomic_read(&mnt->__mnt_writers) > 0) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
/*
|
|
* nobody can do a successful mnt_want_write() with all
|
|
* of the counts in MNT_DENIED_WRITE and the locks held.
|
|
*/
|
|
spin_lock(&vfsmount_lock);
|
|
if (!ret)
|
|
mnt->mnt_flags |= MNT_READONLY;
|
|
spin_unlock(&vfsmount_lock);
|
|
out:
|
|
unlock_mnt_writers();
|
|
return ret;
|
|
}
|
|
|
|
static void __mnt_unmake_readonly(struct vfsmount *mnt)
|
|
{
|
|
spin_lock(&vfsmount_lock);
|
|
mnt->mnt_flags &= ~MNT_READONLY;
|
|
spin_unlock(&vfsmount_lock);
|
|
}
|
|
|
|
void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
|
|
{
|
|
mnt->mnt_sb = sb;
|
|
mnt->mnt_root = dget(sb->s_root);
|
|
}
|
|
|
|
EXPORT_SYMBOL(simple_set_mnt);
|
|
|
|
void free_vfsmnt(struct vfsmount *mnt)
|
|
{
|
|
kfree(mnt->mnt_devname);
|
|
mnt_free_id(mnt);
|
|
kmem_cache_free(mnt_cache, mnt);
|
|
}
|
|
|
|
/*
|
|
* find the first or last mount at @dentry on vfsmount @mnt depending on
|
|
* @dir. If @dir is set return the first mount else return the last mount.
|
|
*/
|
|
struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
|
|
int dir)
|
|
{
|
|
struct list_head *head = mount_hashtable + hash(mnt, dentry);
|
|
struct list_head *tmp = head;
|
|
struct vfsmount *p, *found = NULL;
|
|
|
|
for (;;) {
|
|
tmp = dir ? tmp->next : tmp->prev;
|
|
p = NULL;
|
|
if (tmp == head)
|
|
break;
|
|
p = list_entry(tmp, struct vfsmount, mnt_hash);
|
|
if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
|
|
found = p;
|
|
break;
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* lookup_mnt increments the ref count before returning
|
|
* the vfsmount struct.
|
|
*/
|
|
struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
|
|
{
|
|
struct vfsmount *child_mnt;
|
|
spin_lock(&vfsmount_lock);
|
|
if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
|
|
mntget(child_mnt);
|
|
spin_unlock(&vfsmount_lock);
|
|
return child_mnt;
|
|
}
|
|
|
|
static inline int check_mnt(struct vfsmount *mnt)
|
|
{
|
|
return mnt->mnt_ns == current->nsproxy->mnt_ns;
|
|
}
|
|
|
|
static void touch_mnt_namespace(struct mnt_namespace *ns)
|
|
{
|
|
if (ns) {
|
|
ns->event = ++event;
|
|
wake_up_interruptible(&ns->poll);
|
|
}
|
|
}
|
|
|
|
static void __touch_mnt_namespace(struct mnt_namespace *ns)
|
|
{
|
|
if (ns && ns->event != event) {
|
|
ns->event = event;
|
|
wake_up_interruptible(&ns->poll);
|
|
}
|
|
}
|
|
|
|
static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
|
|
{
|
|
old_path->dentry = mnt->mnt_mountpoint;
|
|
old_path->mnt = mnt->mnt_parent;
|
|
mnt->mnt_parent = mnt;
|
|
mnt->mnt_mountpoint = mnt->mnt_root;
|
|
list_del_init(&mnt->mnt_child);
|
|
list_del_init(&mnt->mnt_hash);
|
|
old_path->dentry->d_mounted--;
|
|
}
|
|
|
|
void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
|
|
struct vfsmount *child_mnt)
|
|
{
|
|
child_mnt->mnt_parent = mntget(mnt);
|
|
child_mnt->mnt_mountpoint = dget(dentry);
|
|
dentry->d_mounted++;
|
|
}
|
|
|
|
static void attach_mnt(struct vfsmount *mnt, struct path *path)
|
|
{
|
|
mnt_set_mountpoint(path->mnt, path->dentry, mnt);
|
|
list_add_tail(&mnt->mnt_hash, mount_hashtable +
|
|
hash(path->mnt, path->dentry));
|
|
list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
|
|
}
|
|
|
|
/*
|
|
* the caller must hold vfsmount_lock
|
|
*/
|
|
static void commit_tree(struct vfsmount *mnt)
|
|
{
|
|
struct vfsmount *parent = mnt->mnt_parent;
|
|
struct vfsmount *m;
|
|
LIST_HEAD(head);
|
|
struct mnt_namespace *n = parent->mnt_ns;
|
|
|
|
BUG_ON(parent == mnt);
|
|
|
|
list_add_tail(&head, &mnt->mnt_list);
|
|
list_for_each_entry(m, &head, mnt_list)
|
|
m->mnt_ns = n;
|
|
list_splice(&head, n->list.prev);
|
|
|
|
list_add_tail(&mnt->mnt_hash, mount_hashtable +
|
|
hash(parent, mnt->mnt_mountpoint));
|
|
list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
|
|
touch_mnt_namespace(n);
|
|
}
|
|
|
|
static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
|
|
{
|
|
struct list_head *next = p->mnt_mounts.next;
|
|
if (next == &p->mnt_mounts) {
|
|
while (1) {
|
|
if (p == root)
|
|
return NULL;
|
|
next = p->mnt_child.next;
|
|
if (next != &p->mnt_parent->mnt_mounts)
|
|
break;
|
|
p = p->mnt_parent;
|
|
}
|
|
}
|
|
return list_entry(next, struct vfsmount, mnt_child);
|
|
}
|
|
|
|
static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
|
|
{
|
|
struct list_head *prev = p->mnt_mounts.prev;
|
|
while (prev != &p->mnt_mounts) {
|
|
p = list_entry(prev, struct vfsmount, mnt_child);
|
|
prev = p->mnt_mounts.prev;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
|
|
int flag)
|
|
{
|
|
struct super_block *sb = old->mnt_sb;
|
|
struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
|
|
|
|
if (mnt) {
|
|
if (flag & (CL_SLAVE | CL_PRIVATE))
|
|
mnt->mnt_group_id = 0; /* not a peer of original */
|
|
else
|
|
mnt->mnt_group_id = old->mnt_group_id;
|
|
|
|
if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
|
|
int err = mnt_alloc_group_id(mnt);
|
|
if (err)
|
|
goto out_free;
|
|
}
|
|
|
|
mnt->mnt_flags = old->mnt_flags;
|
|
atomic_inc(&sb->s_active);
|
|
mnt->mnt_sb = sb;
|
|
mnt->mnt_root = dget(root);
|
|
mnt->mnt_mountpoint = mnt->mnt_root;
|
|
mnt->mnt_parent = mnt;
|
|
|
|
if (flag & CL_SLAVE) {
|
|
list_add(&mnt->mnt_slave, &old->mnt_slave_list);
|
|
mnt->mnt_master = old;
|
|
CLEAR_MNT_SHARED(mnt);
|
|
} else if (!(flag & CL_PRIVATE)) {
|
|
if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
|
|
list_add(&mnt->mnt_share, &old->mnt_share);
|
|
if (IS_MNT_SLAVE(old))
|
|
list_add(&mnt->mnt_slave, &old->mnt_slave);
|
|
mnt->mnt_master = old->mnt_master;
|
|
}
|
|
if (flag & CL_MAKE_SHARED)
|
|
set_mnt_shared(mnt);
|
|
|
|
/* stick the duplicate mount on the same expiry list
|
|
* as the original if that was on one */
|
|
if (flag & CL_EXPIRE) {
|
|
if (!list_empty(&old->mnt_expire))
|
|
list_add(&mnt->mnt_expire, &old->mnt_expire);
|
|
}
|
|
}
|
|
return mnt;
|
|
|
|
out_free:
|
|
free_vfsmnt(mnt);
|
|
return NULL;
|
|
}
|
|
|
|
static inline void __mntput(struct vfsmount *mnt)
|
|
{
|
|
int cpu;
|
|
struct super_block *sb = mnt->mnt_sb;
|
|
/*
|
|
* We don't have to hold all of the locks at the
|
|
* same time here because we know that we're the
|
|
* last reference to mnt and that no new writers
|
|
* can come in.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
|
|
spin_lock(&cpu_writer->lock);
|
|
if (cpu_writer->mnt != mnt) {
|
|
spin_unlock(&cpu_writer->lock);
|
|
continue;
|
|
}
|
|
atomic_add(cpu_writer->count, &mnt->__mnt_writers);
|
|
cpu_writer->count = 0;
|
|
/*
|
|
* Might as well do this so that no one
|
|
* ever sees the pointer and expects
|
|
* it to be valid.
|
|
*/
|
|
cpu_writer->mnt = NULL;
|
|
spin_unlock(&cpu_writer->lock);
|
|
}
|
|
/*
|
|
* This probably indicates that somebody messed
|
|
* up a mnt_want/drop_write() pair. If this
|
|
* happens, the filesystem was probably unable
|
|
* to make r/w->r/o transitions.
|
|
*/
|
|
WARN_ON(atomic_read(&mnt->__mnt_writers));
|
|
dput(mnt->mnt_root);
|
|
free_vfsmnt(mnt);
|
|
deactivate_super(sb);
|
|
}
|
|
|
|
void mntput_no_expire(struct vfsmount *mnt)
|
|
{
|
|
repeat:
|
|
if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
|
|
if (likely(!mnt->mnt_pinned)) {
|
|
spin_unlock(&vfsmount_lock);
|
|
__mntput(mnt);
|
|
return;
|
|
}
|
|
atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
|
|
mnt->mnt_pinned = 0;
|
|
spin_unlock(&vfsmount_lock);
|
|
acct_auto_close_mnt(mnt);
|
|
security_sb_umount_close(mnt);
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(mntput_no_expire);
|
|
|
|
void mnt_pin(struct vfsmount *mnt)
|
|
{
|
|
spin_lock(&vfsmount_lock);
|
|
mnt->mnt_pinned++;
|
|
spin_unlock(&vfsmount_lock);
|
|
}
|
|
|
|
EXPORT_SYMBOL(mnt_pin);
|
|
|
|
void mnt_unpin(struct vfsmount *mnt)
|
|
{
|
|
spin_lock(&vfsmount_lock);
|
|
if (mnt->mnt_pinned) {
|
|
atomic_inc(&mnt->mnt_count);
|
|
mnt->mnt_pinned--;
|
|
}
|
|
spin_unlock(&vfsmount_lock);
|
|
}
|
|
|
|
EXPORT_SYMBOL(mnt_unpin);
|
|
|
|
static inline void mangle(struct seq_file *m, const char *s)
|
|
{
|
|
seq_escape(m, s, " \t\n\\");
|
|
}
|
|
|
|
/*
|
|
* Simple .show_options callback for filesystems which don't want to
|
|
* implement more complex mount option showing.
|
|
*
|
|
* See also save_mount_options().
|
|
*/
|
|
int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
|
|
{
|
|
const char *options = mnt->mnt_sb->s_options;
|
|
|
|
if (options != NULL && options[0]) {
|
|
seq_putc(m, ',');
|
|
mangle(m, options);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(generic_show_options);
|
|
|
|
/*
|
|
* If filesystem uses generic_show_options(), this function should be
|
|
* called from the fill_super() callback.
|
|
*
|
|
* The .remount_fs callback usually needs to be handled in a special
|
|
* way, to make sure, that previous options are not overwritten if the
|
|
* remount fails.
|
|
*
|
|
* Also note, that if the filesystem's .remount_fs function doesn't
|
|
* reset all options to their default value, but changes only newly
|
|
* given options, then the displayed options will not reflect reality
|
|
* any more.
|
|
*/
|
|
void save_mount_options(struct super_block *sb, char *options)
|
|
{
|
|
kfree(sb->s_options);
|
|
sb->s_options = kstrdup(options, GFP_KERNEL);
|
|
}
|
|
EXPORT_SYMBOL(save_mount_options);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/* iterator */
|
|
static void *m_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
struct proc_mounts *p = m->private;
|
|
|
|
down_read(&namespace_sem);
|
|
return seq_list_start(&p->ns->list, *pos);
|
|
}
|
|
|
|
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
struct proc_mounts *p = m->private;
|
|
|
|
return seq_list_next(v, &p->ns->list, pos);
|
|
}
|
|
|
|
static void m_stop(struct seq_file *m, void *v)
|
|
{
|
|
up_read(&namespace_sem);
|
|
}
|
|
|
|
struct proc_fs_info {
|
|
int flag;
|
|
const char *str;
|
|
};
|
|
|
|
static int show_sb_opts(struct seq_file *m, struct super_block *sb)
|
|
{
|
|
static const struct proc_fs_info fs_info[] = {
|
|
{ MS_SYNCHRONOUS, ",sync" },
|
|
{ MS_DIRSYNC, ",dirsync" },
|
|
{ MS_MANDLOCK, ",mand" },
|
|
{ 0, NULL }
|
|
};
|
|
const struct proc_fs_info *fs_infop;
|
|
|
|
for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
|
|
if (sb->s_flags & fs_infop->flag)
|
|
seq_puts(m, fs_infop->str);
|
|
}
|
|
|
|
return security_sb_show_options(m, sb);
|
|
}
|
|
|
|
static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
|
|
{
|
|
static const struct proc_fs_info mnt_info[] = {
|
|
{ MNT_NOSUID, ",nosuid" },
|
|
{ MNT_NODEV, ",nodev" },
|
|
{ MNT_NOEXEC, ",noexec" },
|
|
{ MNT_NOATIME, ",noatime" },
|
|
{ MNT_NODIRATIME, ",nodiratime" },
|
|
{ MNT_RELATIME, ",relatime" },
|
|
{ MNT_STRICTATIME, ",strictatime" },
|
|
{ 0, NULL }
|
|
};
|
|
const struct proc_fs_info *fs_infop;
|
|
|
|
for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
|
|
if (mnt->mnt_flags & fs_infop->flag)
|
|
seq_puts(m, fs_infop->str);
|
|
}
|
|
}
|
|
|
|
static void show_type(struct seq_file *m, struct super_block *sb)
|
|
{
|
|
mangle(m, sb->s_type->name);
|
|
if (sb->s_subtype && sb->s_subtype[0]) {
|
|
seq_putc(m, '.');
|
|
mangle(m, sb->s_subtype);
|
|
}
|
|
}
|
|
|
|
static int show_vfsmnt(struct seq_file *m, void *v)
|
|
{
|
|
struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
|
|
int err = 0;
|
|
struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
|
|
|
|
mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
|
|
seq_putc(m, ' ');
|
|
seq_path(m, &mnt_path, " \t\n\\");
|
|
seq_putc(m, ' ');
|
|
show_type(m, mnt->mnt_sb);
|
|
seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
|
|
err = show_sb_opts(m, mnt->mnt_sb);
|
|
if (err)
|
|
goto out;
|
|
show_mnt_opts(m, mnt);
|
|
if (mnt->mnt_sb->s_op->show_options)
|
|
err = mnt->mnt_sb->s_op->show_options(m, mnt);
|
|
seq_puts(m, " 0 0\n");
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
const struct seq_operations mounts_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_vfsmnt
|
|
};
|
|
|
|
static int show_mountinfo(struct seq_file *m, void *v)
|
|
{
|
|
struct proc_mounts *p = m->private;
|
|
struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
|
|
struct super_block *sb = mnt->mnt_sb;
|
|
struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
|
|
struct path root = p->root;
|
|
int err = 0;
|
|
|
|
seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
|
|
MAJOR(sb->s_dev), MINOR(sb->s_dev));
|
|
seq_dentry(m, mnt->mnt_root, " \t\n\\");
|
|
seq_putc(m, ' ');
|
|
seq_path_root(m, &mnt_path, &root, " \t\n\\");
|
|
if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
|
|
/*
|
|
* Mountpoint is outside root, discard that one. Ugly,
|
|
* but less so than trying to do that in iterator in a
|
|
* race-free way (due to renames).
|
|
*/
|
|
return SEQ_SKIP;
|
|
}
|
|
seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
|
|
show_mnt_opts(m, mnt);
|
|
|
|
/* Tagged fields ("foo:X" or "bar") */
|
|
if (IS_MNT_SHARED(mnt))
|
|
seq_printf(m, " shared:%i", mnt->mnt_group_id);
|
|
if (IS_MNT_SLAVE(mnt)) {
|
|
int master = mnt->mnt_master->mnt_group_id;
|
|
int dom = get_dominating_id(mnt, &p->root);
|
|
seq_printf(m, " master:%i", master);
|
|
if (dom && dom != master)
|
|
seq_printf(m, " propagate_from:%i", dom);
|
|
}
|
|
if (IS_MNT_UNBINDABLE(mnt))
|
|
seq_puts(m, " unbindable");
|
|
|
|
/* Filesystem specific data */
|
|
seq_puts(m, " - ");
|
|
show_type(m, sb);
|
|
seq_putc(m, ' ');
|
|
mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
|
|
seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
|
|
err = show_sb_opts(m, sb);
|
|
if (err)
|
|
goto out;
|
|
if (sb->s_op->show_options)
|
|
err = sb->s_op->show_options(m, mnt);
|
|
seq_putc(m, '\n');
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
const struct seq_operations mountinfo_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_mountinfo,
|
|
};
|
|
|
|
static int show_vfsstat(struct seq_file *m, void *v)
|
|
{
|
|
struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
|
|
struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
|
|
int err = 0;
|
|
|
|
/* device */
|
|
if (mnt->mnt_devname) {
|
|
seq_puts(m, "device ");
|
|
mangle(m, mnt->mnt_devname);
|
|
} else
|
|
seq_puts(m, "no device");
|
|
|
|
/* mount point */
|
|
seq_puts(m, " mounted on ");
|
|
seq_path(m, &mnt_path, " \t\n\\");
|
|
seq_putc(m, ' ');
|
|
|
|
/* file system type */
|
|
seq_puts(m, "with fstype ");
|
|
show_type(m, mnt->mnt_sb);
|
|
|
|
/* optional statistics */
|
|
if (mnt->mnt_sb->s_op->show_stats) {
|
|
seq_putc(m, ' ');
|
|
err = mnt->mnt_sb->s_op->show_stats(m, mnt);
|
|
}
|
|
|
|
seq_putc(m, '\n');
|
|
return err;
|
|
}
|
|
|
|
const struct seq_operations mountstats_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_vfsstat,
|
|
};
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
/**
|
|
* may_umount_tree - check if a mount tree is busy
|
|
* @mnt: root of mount tree
|
|
*
|
|
* This is called to check if a tree of mounts has any
|
|
* open files, pwds, chroots or sub mounts that are
|
|
* busy.
|
|
*/
|
|
int may_umount_tree(struct vfsmount *mnt)
|
|
{
|
|
int actual_refs = 0;
|
|
int minimum_refs = 0;
|
|
struct vfsmount *p;
|
|
|
|
spin_lock(&vfsmount_lock);
|
|
for (p = mnt; p; p = next_mnt(p, mnt)) {
|
|
actual_refs += atomic_read(&p->mnt_count);
|
|
minimum_refs += 2;
|
|
}
|
|
spin_unlock(&vfsmount_lock);
|
|
|
|
if (actual_refs > minimum_refs)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
EXPORT_SYMBOL(may_umount_tree);
|
|
|
|
/**
|
|
* may_umount - check if a mount point is busy
|
|
* @mnt: root of mount
|
|
*
|
|
* This is called to check if a mount point has any
|
|
* open files, pwds, chroots or sub mounts. If the
|
|
* mount has sub mounts this will return busy
|
|
* regardless of whether the sub mounts are busy.
|
|
*
|
|
* Doesn't take quota and stuff into account. IOW, in some cases it will
|
|
* give false negatives. The main reason why it's here is that we need
|
|
* a non-destructive way to look for easily umountable filesystems.
|
|
*/
|
|
int may_umount(struct vfsmount *mnt)
|
|
{
|
|
int ret = 1;
|
|
spin_lock(&vfsmount_lock);
|
|
if (propagate_mount_busy(mnt, 2))
|
|
ret = 0;
|
|
spin_unlock(&vfsmount_lock);
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(may_umount);
|
|
|
|
void release_mounts(struct list_head *head)
|
|
{
|
|
struct vfsmount *mnt;
|
|
while (!list_empty(head)) {
|
|
mnt = list_first_entry(head, struct vfsmount, mnt_hash);
|
|
list_del_init(&mnt->mnt_hash);
|
|
if (mnt->mnt_parent != mnt) {
|
|
struct dentry *dentry;
|
|
struct vfsmount *m;
|
|
spin_lock(&vfsmount_lock);
|
|
dentry = mnt->mnt_mountpoint;
|
|
m = mnt->mnt_parent;
|
|
mnt->mnt_mountpoint = mnt->mnt_root;
|
|
mnt->mnt_parent = mnt;
|
|
m->mnt_ghosts--;
|
|
spin_unlock(&vfsmount_lock);
|
|
dput(dentry);
|
|
mntput(m);
|
|
}
|
|
mntput(mnt);
|
|
}
|
|
}
|
|
|
|
void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
|
|
{
|
|
struct vfsmount *p;
|
|
|
|
for (p = mnt; p; p = next_mnt(p, mnt))
|
|
list_move(&p->mnt_hash, kill);
|
|
|
|
if (propagate)
|
|
propagate_umount(kill);
|
|
|
|
list_for_each_entry(p, kill, mnt_hash) {
|
|
list_del_init(&p->mnt_expire);
|
|
list_del_init(&p->mnt_list);
|
|
__touch_mnt_namespace(p->mnt_ns);
|
|
p->mnt_ns = NULL;
|
|
list_del_init(&p->mnt_child);
|
|
if (p->mnt_parent != p) {
|
|
p->mnt_parent->mnt_ghosts++;
|
|
p->mnt_mountpoint->d_mounted--;
|
|
}
|
|
change_mnt_propagation(p, MS_PRIVATE);
|
|
}
|
|
}
|
|
|
|
static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
|
|
|
|
static int do_umount(struct vfsmount *mnt, int flags)
|
|
{
|
|
struct super_block *sb = mnt->mnt_sb;
|
|
int retval;
|
|
LIST_HEAD(umount_list);
|
|
|
|
retval = security_sb_umount(mnt, flags);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Allow userspace to request a mountpoint be expired rather than
|
|
* unmounting unconditionally. Unmount only happens if:
|
|
* (1) the mark is already set (the mark is cleared by mntput())
|
|
* (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
|
|
*/
|
|
if (flags & MNT_EXPIRE) {
|
|
if (mnt == current->fs->root.mnt ||
|
|
flags & (MNT_FORCE | MNT_DETACH))
|
|
return -EINVAL;
|
|
|
|
if (atomic_read(&mnt->mnt_count) != 2)
|
|
return -EBUSY;
|
|
|
|
if (!xchg(&mnt->mnt_expiry_mark, 1))
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* If we may have to abort operations to get out of this
|
|
* mount, and they will themselves hold resources we must
|
|
* allow the fs to do things. In the Unix tradition of
|
|
* 'Gee thats tricky lets do it in userspace' the umount_begin
|
|
* might fail to complete on the first run through as other tasks
|
|
* must return, and the like. Thats for the mount program to worry
|
|
* about for the moment.
|
|
*/
|
|
|
|
if (flags & MNT_FORCE && sb->s_op->umount_begin) {
|
|
lock_kernel();
|
|
sb->s_op->umount_begin(sb);
|
|
unlock_kernel();
|
|
}
|
|
|
|
/*
|
|
* No sense to grab the lock for this test, but test itself looks
|
|
* somewhat bogus. Suggestions for better replacement?
|
|
* Ho-hum... In principle, we might treat that as umount + switch
|
|
* to rootfs. GC would eventually take care of the old vfsmount.
|
|
* Actually it makes sense, especially if rootfs would contain a
|
|
* /reboot - static binary that would close all descriptors and
|
|
* call reboot(9). Then init(8) could umount root and exec /reboot.
|
|
*/
|
|
if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
|
|
/*
|
|
* Special case for "unmounting" root ...
|
|
* we just try to remount it readonly.
|
|
*/
|
|
down_write(&sb->s_umount);
|
|
if (!(sb->s_flags & MS_RDONLY)) {
|
|
lock_kernel();
|
|
retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
|
|
unlock_kernel();
|
|
}
|
|
up_write(&sb->s_umount);
|
|
return retval;
|
|
}
|
|
|
|
down_write(&namespace_sem);
|
|
spin_lock(&vfsmount_lock);
|
|
event++;
|
|
|
|
if (!(flags & MNT_DETACH))
|
|
shrink_submounts(mnt, &umount_list);
|
|
|
|
retval = -EBUSY;
|
|
if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
|
|
if (!list_empty(&mnt->mnt_list))
|
|
umount_tree(mnt, 1, &umount_list);
|
|
retval = 0;
|
|
}
|
|
spin_unlock(&vfsmount_lock);
|
|
if (retval)
|
|
security_sb_umount_busy(mnt);
|
|
up_write(&namespace_sem);
|
|
release_mounts(&umount_list);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Now umount can handle mount points as well as block devices.
|
|
* This is important for filesystems which use unnamed block devices.
|
|
*
|
|
* We now support a flag for forced unmount like the other 'big iron'
|
|
* unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
|
|
*/
|
|
|
|
SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
|
|
{
|
|
struct path path;
|
|
int retval;
|
|
|
|
retval = user_path(name, &path);
|
|
if (retval)
|
|
goto out;
|
|
retval = -EINVAL;
|
|
if (path.dentry != path.mnt->mnt_root)
|
|
goto dput_and_out;
|
|
if (!check_mnt(path.mnt))
|
|
goto dput_and_out;
|
|
|
|
retval = -EPERM;
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
goto dput_and_out;
|
|
|
|
retval = do_umount(path.mnt, flags);
|
|
dput_and_out:
|
|
/* we mustn't call path_put() as that would clear mnt_expiry_mark */
|
|
dput(path.dentry);
|
|
mntput_no_expire(path.mnt);
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_OLDUMOUNT
|
|
|
|
/*
|
|
* The 2.0 compatible umount. No flags.
|
|
*/
|
|
SYSCALL_DEFINE1(oldumount, char __user *, name)
|
|
{
|
|
return sys_umount(name, 0);
|
|
}
|
|
|
|
#endif
|
|
|
|
static int mount_is_safe(struct path *path)
|
|
{
|
|
if (capable(CAP_SYS_ADMIN))
|
|
return 0;
|
|
return -EPERM;
|
|
#ifdef notyet
|
|
if (S_ISLNK(path->dentry->d_inode->i_mode))
|
|
return -EPERM;
|
|
if (path->dentry->d_inode->i_mode & S_ISVTX) {
|
|
if (current_uid() != path->dentry->d_inode->i_uid)
|
|
return -EPERM;
|
|
}
|
|
if (inode_permission(path->dentry->d_inode, MAY_WRITE))
|
|
return -EPERM;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
|
|
int flag)
|
|
{
|
|
struct vfsmount *res, *p, *q, *r, *s;
|
|
struct path path;
|
|
|
|
if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
|
|
return NULL;
|
|
|
|
res = q = clone_mnt(mnt, dentry, flag);
|
|
if (!q)
|
|
goto Enomem;
|
|
q->mnt_mountpoint = mnt->mnt_mountpoint;
|
|
|
|
p = mnt;
|
|
list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
|
|
if (!is_subdir(r->mnt_mountpoint, dentry))
|
|
continue;
|
|
|
|
for (s = r; s; s = next_mnt(s, r)) {
|
|
if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
|
|
s = skip_mnt_tree(s);
|
|
continue;
|
|
}
|
|
while (p != s->mnt_parent) {
|
|
p = p->mnt_parent;
|
|
q = q->mnt_parent;
|
|
}
|
|
p = s;
|
|
path.mnt = q;
|
|
path.dentry = p->mnt_mountpoint;
|
|
q = clone_mnt(p, p->mnt_root, flag);
|
|
if (!q)
|
|
goto Enomem;
|
|
spin_lock(&vfsmount_lock);
|
|
list_add_tail(&q->mnt_list, &res->mnt_list);
|
|
attach_mnt(q, &path);
|
|
spin_unlock(&vfsmount_lock);
|
|
}
|
|
}
|
|
return res;
|
|
Enomem:
|
|
if (res) {
|
|
LIST_HEAD(umount_list);
|
|
spin_lock(&vfsmount_lock);
|
|
umount_tree(res, 0, &umount_list);
|
|
spin_unlock(&vfsmount_lock);
|
|
release_mounts(&umount_list);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
|
|
{
|
|
struct vfsmount *tree;
|
|
down_write(&namespace_sem);
|
|
tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
|
|
up_write(&namespace_sem);
|
|
return tree;
|
|
}
|
|
|
|
void drop_collected_mounts(struct vfsmount *mnt)
|
|
{
|
|
LIST_HEAD(umount_list);
|
|
down_write(&namespace_sem);
|
|
spin_lock(&vfsmount_lock);
|
|
umount_tree(mnt, 0, &umount_list);
|
|
spin_unlock(&vfsmount_lock);
|
|
up_write(&namespace_sem);
|
|
release_mounts(&umount_list);
|
|
}
|
|
|
|
static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
|
|
{
|
|
struct vfsmount *p;
|
|
|
|
for (p = mnt; p != end; p = next_mnt(p, mnt)) {
|
|
if (p->mnt_group_id && !IS_MNT_SHARED(p))
|
|
mnt_release_group_id(p);
|
|
}
|
|
}
|
|
|
|
static int invent_group_ids(struct vfsmount *mnt, bool recurse)
|
|
{
|
|
struct vfsmount *p;
|
|
|
|
for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
|
|
if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
|
|
int err = mnt_alloc_group_id(p);
|
|
if (err) {
|
|
cleanup_group_ids(mnt, p);
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* @source_mnt : mount tree to be attached
|
|
* @nd : place the mount tree @source_mnt is attached
|
|
* @parent_nd : if non-null, detach the source_mnt from its parent and
|
|
* store the parent mount and mountpoint dentry.
|
|
* (done when source_mnt is moved)
|
|
*
|
|
* NOTE: in the table below explains the semantics when a source mount
|
|
* of a given type is attached to a destination mount of a given type.
|
|
* ---------------------------------------------------------------------------
|
|
* | BIND MOUNT OPERATION |
|
|
* |**************************************************************************
|
|
* | source-->| shared | private | slave | unbindable |
|
|
* | dest | | | | |
|
|
* | | | | | | |
|
|
* | v | | | | |
|
|
* |**************************************************************************
|
|
* | shared | shared (++) | shared (+) | shared(+++)| invalid |
|
|
* | | | | | |
|
|
* |non-shared| shared (+) | private | slave (*) | invalid |
|
|
* ***************************************************************************
|
|
* A bind operation clones the source mount and mounts the clone on the
|
|
* destination mount.
|
|
*
|
|
* (++) the cloned mount is propagated to all the mounts in the propagation
|
|
* tree of the destination mount and the cloned mount is added to
|
|
* the peer group of the source mount.
|
|
* (+) the cloned mount is created under the destination mount and is marked
|
|
* as shared. The cloned mount is added to the peer group of the source
|
|
* mount.
|
|
* (+++) the mount is propagated to all the mounts in the propagation tree
|
|
* of the destination mount and the cloned mount is made slave
|
|
* of the same master as that of the source mount. The cloned mount
|
|
* is marked as 'shared and slave'.
|
|
* (*) the cloned mount is made a slave of the same master as that of the
|
|
* source mount.
|
|
*
|
|
* ---------------------------------------------------------------------------
|
|
* | MOVE MOUNT OPERATION |
|
|
* |**************************************************************************
|
|
* | source-->| shared | private | slave | unbindable |
|
|
* | dest | | | | |
|
|
* | | | | | | |
|
|
* | v | | | | |
|
|
* |**************************************************************************
|
|
* | shared | shared (+) | shared (+) | shared(+++) | invalid |
|
|
* | | | | | |
|
|
* |non-shared| shared (+*) | private | slave (*) | unbindable |
|
|
* ***************************************************************************
|
|
*
|
|
* (+) the mount is moved to the destination. And is then propagated to
|
|
* all the mounts in the propagation tree of the destination mount.
|
|
* (+*) the mount is moved to the destination.
|
|
* (+++) the mount is moved to the destination and is then propagated to
|
|
* all the mounts belonging to the destination mount's propagation tree.
|
|
* the mount is marked as 'shared and slave'.
|
|
* (*) the mount continues to be a slave at the new location.
|
|
*
|
|
* if the source mount is a tree, the operations explained above is
|
|
* applied to each mount in the tree.
|
|
* Must be called without spinlocks held, since this function can sleep
|
|
* in allocations.
|
|
*/
|
|
static int attach_recursive_mnt(struct vfsmount *source_mnt,
|
|
struct path *path, struct path *parent_path)
|
|
{
|
|
LIST_HEAD(tree_list);
|
|
struct vfsmount *dest_mnt = path->mnt;
|
|
struct dentry *dest_dentry = path->dentry;
|
|
struct vfsmount *child, *p;
|
|
int err;
|
|
|
|
if (IS_MNT_SHARED(dest_mnt)) {
|
|
err = invent_group_ids(source_mnt, true);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
|
|
if (err)
|
|
goto out_cleanup_ids;
|
|
|
|
if (IS_MNT_SHARED(dest_mnt)) {
|
|
for (p = source_mnt; p; p = next_mnt(p, source_mnt))
|
|
set_mnt_shared(p);
|
|
}
|
|
|
|
spin_lock(&vfsmount_lock);
|
|
if (parent_path) {
|
|
detach_mnt(source_mnt, parent_path);
|
|
attach_mnt(source_mnt, path);
|
|
touch_mnt_namespace(current->nsproxy->mnt_ns);
|
|
} else {
|
|
mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
|
|
commit_tree(source_mnt);
|
|
}
|
|
|
|
list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
|
|
list_del_init(&child->mnt_hash);
|
|
commit_tree(child);
|
|
}
|
|
spin_unlock(&vfsmount_lock);
|
|
return 0;
|
|
|
|
out_cleanup_ids:
|
|
if (IS_MNT_SHARED(dest_mnt))
|
|
cleanup_group_ids(source_mnt, NULL);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int graft_tree(struct vfsmount *mnt, struct path *path)
|
|
{
|
|
int err;
|
|
if (mnt->mnt_sb->s_flags & MS_NOUSER)
|
|
return -EINVAL;
|
|
|
|
if (S_ISDIR(path->dentry->d_inode->i_mode) !=
|
|
S_ISDIR(mnt->mnt_root->d_inode->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
err = -ENOENT;
|
|
mutex_lock(&path->dentry->d_inode->i_mutex);
|
|
if (IS_DEADDIR(path->dentry->d_inode))
|
|
goto out_unlock;
|
|
|
|
err = security_sb_check_sb(mnt, path);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
err = -ENOENT;
|
|
if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
|
|
err = attach_recursive_mnt(mnt, path, NULL);
|
|
out_unlock:
|
|
mutex_unlock(&path->dentry->d_inode->i_mutex);
|
|
if (!err)
|
|
security_sb_post_addmount(mnt, path);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* recursively change the type of the mountpoint.
|
|
*/
|
|
static int do_change_type(struct path *path, int flag)
|
|
{
|
|
struct vfsmount *m, *mnt = path->mnt;
|
|
int recurse = flag & MS_REC;
|
|
int type = flag & ~MS_REC;
|
|
int err = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (path->dentry != path->mnt->mnt_root)
|
|
return -EINVAL;
|
|
|
|
down_write(&namespace_sem);
|
|
if (type == MS_SHARED) {
|
|
err = invent_group_ids(mnt, recurse);
|
|
if (err)
|
|
goto out_unlock;
|
|
}
|
|
|
|
spin_lock(&vfsmount_lock);
|
|
for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
|
|
change_mnt_propagation(m, type);
|
|
spin_unlock(&vfsmount_lock);
|
|
|
|
out_unlock:
|
|
up_write(&namespace_sem);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* do loopback mount.
|
|
*/
|
|
static int do_loopback(struct path *path, char *old_name,
|
|
int recurse)
|
|
{
|
|
struct path old_path;
|
|
struct vfsmount *mnt = NULL;
|
|
int err = mount_is_safe(path);
|
|
if (err)
|
|
return err;
|
|
if (!old_name || !*old_name)
|
|
return -EINVAL;
|
|
err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
|
|
if (err)
|
|
return err;
|
|
|
|
down_write(&namespace_sem);
|
|
err = -EINVAL;
|
|
if (IS_MNT_UNBINDABLE(old_path.mnt))
|
|
goto out;
|
|
|
|
if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
|
|
goto out;
|
|
|
|
err = -ENOMEM;
|
|
if (recurse)
|
|
mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
|
|
else
|
|
mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
|
|
|
|
if (!mnt)
|
|
goto out;
|
|
|
|
err = graft_tree(mnt, path);
|
|
if (err) {
|
|
LIST_HEAD(umount_list);
|
|
spin_lock(&vfsmount_lock);
|
|
umount_tree(mnt, 0, &umount_list);
|
|
spin_unlock(&vfsmount_lock);
|
|
release_mounts(&umount_list);
|
|
}
|
|
|
|
out:
|
|
up_write(&namespace_sem);
|
|
path_put(&old_path);
|
|
return err;
|
|
}
|
|
|
|
static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
|
|
{
|
|
int error = 0;
|
|
int readonly_request = 0;
|
|
|
|
if (ms_flags & MS_RDONLY)
|
|
readonly_request = 1;
|
|
if (readonly_request == __mnt_is_readonly(mnt))
|
|
return 0;
|
|
|
|
if (readonly_request)
|
|
error = mnt_make_readonly(mnt);
|
|
else
|
|
__mnt_unmake_readonly(mnt);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* change filesystem flags. dir should be a physical root of filesystem.
|
|
* If you've mounted a non-root directory somewhere and want to do remount
|
|
* on it - tough luck.
|
|
*/
|
|
static int do_remount(struct path *path, int flags, int mnt_flags,
|
|
void *data)
|
|
{
|
|
int err;
|
|
struct super_block *sb = path->mnt->mnt_sb;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (!check_mnt(path->mnt))
|
|
return -EINVAL;
|
|
|
|
if (path->dentry != path->mnt->mnt_root)
|
|
return -EINVAL;
|
|
|
|
down_write(&sb->s_umount);
|
|
if (flags & MS_BIND)
|
|
err = change_mount_flags(path->mnt, flags);
|
|
else
|
|
err = do_remount_sb(sb, flags, data, 0);
|
|
if (!err)
|
|
path->mnt->mnt_flags = mnt_flags;
|
|
up_write(&sb->s_umount);
|
|
if (!err) {
|
|
security_sb_post_remount(path->mnt, flags, data);
|
|
|
|
spin_lock(&vfsmount_lock);
|
|
touch_mnt_namespace(path->mnt->mnt_ns);
|
|
spin_unlock(&vfsmount_lock);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static inline int tree_contains_unbindable(struct vfsmount *mnt)
|
|
{
|
|
struct vfsmount *p;
|
|
for (p = mnt; p; p = next_mnt(p, mnt)) {
|
|
if (IS_MNT_UNBINDABLE(p))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int do_move_mount(struct path *path, char *old_name)
|
|
{
|
|
struct path old_path, parent_path;
|
|
struct vfsmount *p;
|
|
int err = 0;
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (!old_name || !*old_name)
|
|
return -EINVAL;
|
|
err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
|
|
if (err)
|
|
return err;
|
|
|
|
down_write(&namespace_sem);
|
|
while (d_mountpoint(path->dentry) &&
|
|
follow_down(&path->mnt, &path->dentry))
|
|
;
|
|
err = -EINVAL;
|
|
if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
|
|
goto out;
|
|
|
|
err = -ENOENT;
|
|
mutex_lock(&path->dentry->d_inode->i_mutex);
|
|
if (IS_DEADDIR(path->dentry->d_inode))
|
|
goto out1;
|
|
|
|
if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
|
|
goto out1;
|
|
|
|
err = -EINVAL;
|
|
if (old_path.dentry != old_path.mnt->mnt_root)
|
|
goto out1;
|
|
|
|
if (old_path.mnt == old_path.mnt->mnt_parent)
|
|
goto out1;
|
|
|
|
if (S_ISDIR(path->dentry->d_inode->i_mode) !=
|
|
S_ISDIR(old_path.dentry->d_inode->i_mode))
|
|
goto out1;
|
|
/*
|
|
* Don't move a mount residing in a shared parent.
|
|
*/
|
|
if (old_path.mnt->mnt_parent &&
|
|
IS_MNT_SHARED(old_path.mnt->mnt_parent))
|
|
goto out1;
|
|
/*
|
|
* Don't move a mount tree containing unbindable mounts to a destination
|
|
* mount which is shared.
|
|
*/
|
|
if (IS_MNT_SHARED(path->mnt) &&
|
|
tree_contains_unbindable(old_path.mnt))
|
|
goto out1;
|
|
err = -ELOOP;
|
|
for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
|
|
if (p == old_path.mnt)
|
|
goto out1;
|
|
|
|
err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
|
|
if (err)
|
|
goto out1;
|
|
|
|
/* if the mount is moved, it should no longer be expire
|
|
* automatically */
|
|
list_del_init(&old_path.mnt->mnt_expire);
|
|
out1:
|
|
mutex_unlock(&path->dentry->d_inode->i_mutex);
|
|
out:
|
|
up_write(&namespace_sem);
|
|
if (!err)
|
|
path_put(&parent_path);
|
|
path_put(&old_path);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* create a new mount for userspace and request it to be added into the
|
|
* namespace's tree
|
|
*/
|
|
static int do_new_mount(struct path *path, char *type, int flags,
|
|
int mnt_flags, char *name, void *data)
|
|
{
|
|
struct vfsmount *mnt;
|
|
|
|
if (!type || !memchr(type, 0, PAGE_SIZE))
|
|
return -EINVAL;
|
|
|
|
/* we need capabilities... */
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
mnt = do_kern_mount(type, flags, name, data);
|
|
if (IS_ERR(mnt))
|
|
return PTR_ERR(mnt);
|
|
|
|
return do_add_mount(mnt, path, mnt_flags, NULL);
|
|
}
|
|
|
|
/*
|
|
* add a mount into a namespace's mount tree
|
|
* - provide the option of adding the new mount to an expiration list
|
|
*/
|
|
int do_add_mount(struct vfsmount *newmnt, struct path *path,
|
|
int mnt_flags, struct list_head *fslist)
|
|
{
|
|
int err;
|
|
|
|
down_write(&namespace_sem);
|
|
/* Something was mounted here while we slept */
|
|
while (d_mountpoint(path->dentry) &&
|
|
follow_down(&path->mnt, &path->dentry))
|
|
;
|
|
err = -EINVAL;
|
|
if (!check_mnt(path->mnt))
|
|
goto unlock;
|
|
|
|
/* Refuse the same filesystem on the same mount point */
|
|
err = -EBUSY;
|
|
if (path->mnt->mnt_sb == newmnt->mnt_sb &&
|
|
path->mnt->mnt_root == path->dentry)
|
|
goto unlock;
|
|
|
|
err = -EINVAL;
|
|
if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
|
|
goto unlock;
|
|
|
|
newmnt->mnt_flags = mnt_flags;
|
|
if ((err = graft_tree(newmnt, path)))
|
|
goto unlock;
|
|
|
|
if (fslist) /* add to the specified expiration list */
|
|
list_add_tail(&newmnt->mnt_expire, fslist);
|
|
|
|
up_write(&namespace_sem);
|
|
return 0;
|
|
|
|
unlock:
|
|
up_write(&namespace_sem);
|
|
mntput(newmnt);
|
|
return err;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(do_add_mount);
|
|
|
|
/*
|
|
* process a list of expirable mountpoints with the intent of discarding any
|
|
* mountpoints that aren't in use and haven't been touched since last we came
|
|
* here
|
|
*/
|
|
void mark_mounts_for_expiry(struct list_head *mounts)
|
|
{
|
|
struct vfsmount *mnt, *next;
|
|
LIST_HEAD(graveyard);
|
|
LIST_HEAD(umounts);
|
|
|
|
if (list_empty(mounts))
|
|
return;
|
|
|
|
down_write(&namespace_sem);
|
|
spin_lock(&vfsmount_lock);
|
|
|
|
/* extract from the expiration list every vfsmount that matches the
|
|
* following criteria:
|
|
* - only referenced by its parent vfsmount
|
|
* - still marked for expiry (marked on the last call here; marks are
|
|
* cleared by mntput())
|
|
*/
|
|
list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
|
|
if (!xchg(&mnt->mnt_expiry_mark, 1) ||
|
|
propagate_mount_busy(mnt, 1))
|
|
continue;
|
|
list_move(&mnt->mnt_expire, &graveyard);
|
|
}
|
|
while (!list_empty(&graveyard)) {
|
|
mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
|
|
touch_mnt_namespace(mnt->mnt_ns);
|
|
umount_tree(mnt, 1, &umounts);
|
|
}
|
|
spin_unlock(&vfsmount_lock);
|
|
up_write(&namespace_sem);
|
|
|
|
release_mounts(&umounts);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
|
|
|
|
/*
|
|
* Ripoff of 'select_parent()'
|
|
*
|
|
* search the list of submounts for a given mountpoint, and move any
|
|
* shrinkable submounts to the 'graveyard' list.
|
|
*/
|
|
static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
|
|
{
|
|
struct vfsmount *this_parent = parent;
|
|
struct list_head *next;
|
|
int found = 0;
|
|
|
|
repeat:
|
|
next = this_parent->mnt_mounts.next;
|
|
resume:
|
|
while (next != &this_parent->mnt_mounts) {
|
|
struct list_head *tmp = next;
|
|
struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
|
|
|
|
next = tmp->next;
|
|
if (!(mnt->mnt_flags & MNT_SHRINKABLE))
|
|
continue;
|
|
/*
|
|
* Descend a level if the d_mounts list is non-empty.
|
|
*/
|
|
if (!list_empty(&mnt->mnt_mounts)) {
|
|
this_parent = mnt;
|
|
goto repeat;
|
|
}
|
|
|
|
if (!propagate_mount_busy(mnt, 1)) {
|
|
list_move_tail(&mnt->mnt_expire, graveyard);
|
|
found++;
|
|
}
|
|
}
|
|
/*
|
|
* All done at this level ... ascend and resume the search
|
|
*/
|
|
if (this_parent != parent) {
|
|
next = this_parent->mnt_child.next;
|
|
this_parent = this_parent->mnt_parent;
|
|
goto resume;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* process a list of expirable mountpoints with the intent of discarding any
|
|
* submounts of a specific parent mountpoint
|
|
*/
|
|
static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
|
|
{
|
|
LIST_HEAD(graveyard);
|
|
struct vfsmount *m;
|
|
|
|
/* extract submounts of 'mountpoint' from the expiration list */
|
|
while (select_submounts(mnt, &graveyard)) {
|
|
while (!list_empty(&graveyard)) {
|
|
m = list_first_entry(&graveyard, struct vfsmount,
|
|
mnt_expire);
|
|
touch_mnt_namespace(m->mnt_ns);
|
|
umount_tree(m, 1, umounts);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some copy_from_user() implementations do not return the exact number of
|
|
* bytes remaining to copy on a fault. But copy_mount_options() requires that.
|
|
* Note that this function differs from copy_from_user() in that it will oops
|
|
* on bad values of `to', rather than returning a short copy.
|
|
*/
|
|
static long exact_copy_from_user(void *to, const void __user * from,
|
|
unsigned long n)
|
|
{
|
|
char *t = to;
|
|
const char __user *f = from;
|
|
char c;
|
|
|
|
if (!access_ok(VERIFY_READ, from, n))
|
|
return n;
|
|
|
|
while (n) {
|
|
if (__get_user(c, f)) {
|
|
memset(t, 0, n);
|
|
break;
|
|
}
|
|
*t++ = c;
|
|
f++;
|
|
n--;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
int copy_mount_options(const void __user * data, unsigned long *where)
|
|
{
|
|
int i;
|
|
unsigned long page;
|
|
unsigned long size;
|
|
|
|
*where = 0;
|
|
if (!data)
|
|
return 0;
|
|
|
|
if (!(page = __get_free_page(GFP_KERNEL)))
|
|
return -ENOMEM;
|
|
|
|
/* We only care that *some* data at the address the user
|
|
* gave us is valid. Just in case, we'll zero
|
|
* the remainder of the page.
|
|
*/
|
|
/* copy_from_user cannot cross TASK_SIZE ! */
|
|
size = TASK_SIZE - (unsigned long)data;
|
|
if (size > PAGE_SIZE)
|
|
size = PAGE_SIZE;
|
|
|
|
i = size - exact_copy_from_user((void *)page, data, size);
|
|
if (!i) {
|
|
free_page(page);
|
|
return -EFAULT;
|
|
}
|
|
if (i != PAGE_SIZE)
|
|
memset((char *)page + i, 0, PAGE_SIZE - i);
|
|
*where = page;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
|
|
* be given to the mount() call (ie: read-only, no-dev, no-suid etc).
|
|
*
|
|
* data is a (void *) that can point to any structure up to
|
|
* PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
|
|
* information (or be NULL).
|
|
*
|
|
* Pre-0.97 versions of mount() didn't have a flags word.
|
|
* When the flags word was introduced its top half was required
|
|
* to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
|
|
* Therefore, if this magic number is present, it carries no information
|
|
* and must be discarded.
|
|
*/
|
|
long do_mount(char *dev_name, char *dir_name, char *type_page,
|
|
unsigned long flags, void *data_page)
|
|
{
|
|
struct path path;
|
|
int retval = 0;
|
|
int mnt_flags = 0;
|
|
|
|
/* Discard magic */
|
|
if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
|
|
flags &= ~MS_MGC_MSK;
|
|
|
|
/* Basic sanity checks */
|
|
|
|
if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
|
|
return -EINVAL;
|
|
if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
|
|
return -EINVAL;
|
|
|
|
if (data_page)
|
|
((char *)data_page)[PAGE_SIZE - 1] = 0;
|
|
|
|
/* Default to relatime */
|
|
mnt_flags |= MNT_RELATIME;
|
|
|
|
/* Separate the per-mountpoint flags */
|
|
if (flags & MS_NOSUID)
|
|
mnt_flags |= MNT_NOSUID;
|
|
if (flags & MS_NODEV)
|
|
mnt_flags |= MNT_NODEV;
|
|
if (flags & MS_NOEXEC)
|
|
mnt_flags |= MNT_NOEXEC;
|
|
if (flags & MS_NOATIME)
|
|
mnt_flags |= MNT_NOATIME;
|
|
if (flags & MS_NODIRATIME)
|
|
mnt_flags |= MNT_NODIRATIME;
|
|
if (flags & MS_STRICTATIME)
|
|
mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
|
|
if (flags & MS_RDONLY)
|
|
mnt_flags |= MNT_READONLY;
|
|
|
|
flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
|
|
MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
|
|
MS_STRICTATIME);
|
|
|
|
/* ... and get the mountpoint */
|
|
retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = security_sb_mount(dev_name, &path,
|
|
type_page, flags, data_page);
|
|
if (retval)
|
|
goto dput_out;
|
|
|
|
if (flags & MS_REMOUNT)
|
|
retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
|
|
data_page);
|
|
else if (flags & MS_BIND)
|
|
retval = do_loopback(&path, dev_name, flags & MS_REC);
|
|
else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
|
|
retval = do_change_type(&path, flags);
|
|
else if (flags & MS_MOVE)
|
|
retval = do_move_mount(&path, dev_name);
|
|
else
|
|
retval = do_new_mount(&path, type_page, flags, mnt_flags,
|
|
dev_name, data_page);
|
|
dput_out:
|
|
path_put(&path);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new namespace structure and populate it with contents
|
|
* copied from the namespace of the passed in task structure.
|
|
*/
|
|
static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
|
|
struct fs_struct *fs)
|
|
{
|
|
struct mnt_namespace *new_ns;
|
|
struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
|
|
struct vfsmount *p, *q;
|
|
|
|
new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
|
|
if (!new_ns)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
atomic_set(&new_ns->count, 1);
|
|
INIT_LIST_HEAD(&new_ns->list);
|
|
init_waitqueue_head(&new_ns->poll);
|
|
new_ns->event = 0;
|
|
|
|
down_write(&namespace_sem);
|
|
/* First pass: copy the tree topology */
|
|
new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
|
|
CL_COPY_ALL | CL_EXPIRE);
|
|
if (!new_ns->root) {
|
|
up_write(&namespace_sem);
|
|
kfree(new_ns);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
spin_lock(&vfsmount_lock);
|
|
list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
|
|
spin_unlock(&vfsmount_lock);
|
|
|
|
/*
|
|
* Second pass: switch the tsk->fs->* elements and mark new vfsmounts
|
|
* as belonging to new namespace. We have already acquired a private
|
|
* fs_struct, so tsk->fs->lock is not needed.
|
|
*/
|
|
p = mnt_ns->root;
|
|
q = new_ns->root;
|
|
while (p) {
|
|
q->mnt_ns = new_ns;
|
|
if (fs) {
|
|
if (p == fs->root.mnt) {
|
|
rootmnt = p;
|
|
fs->root.mnt = mntget(q);
|
|
}
|
|
if (p == fs->pwd.mnt) {
|
|
pwdmnt = p;
|
|
fs->pwd.mnt = mntget(q);
|
|
}
|
|
}
|
|
p = next_mnt(p, mnt_ns->root);
|
|
q = next_mnt(q, new_ns->root);
|
|
}
|
|
up_write(&namespace_sem);
|
|
|
|
if (rootmnt)
|
|
mntput(rootmnt);
|
|
if (pwdmnt)
|
|
mntput(pwdmnt);
|
|
|
|
return new_ns;
|
|
}
|
|
|
|
struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
|
|
struct fs_struct *new_fs)
|
|
{
|
|
struct mnt_namespace *new_ns;
|
|
|
|
BUG_ON(!ns);
|
|
get_mnt_ns(ns);
|
|
|
|
if (!(flags & CLONE_NEWNS))
|
|
return ns;
|
|
|
|
new_ns = dup_mnt_ns(ns, new_fs);
|
|
|
|
put_mnt_ns(ns);
|
|
return new_ns;
|
|
}
|
|
|
|
SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
|
|
char __user *, type, unsigned long, flags, void __user *, data)
|
|
{
|
|
int retval;
|
|
unsigned long data_page;
|
|
unsigned long type_page;
|
|
unsigned long dev_page;
|
|
char *dir_page;
|
|
|
|
retval = copy_mount_options(type, &type_page);
|
|
if (retval < 0)
|
|
return retval;
|
|
|
|
dir_page = getname(dir_name);
|
|
retval = PTR_ERR(dir_page);
|
|
if (IS_ERR(dir_page))
|
|
goto out1;
|
|
|
|
retval = copy_mount_options(dev_name, &dev_page);
|
|
if (retval < 0)
|
|
goto out2;
|
|
|
|
retval = copy_mount_options(data, &data_page);
|
|
if (retval < 0)
|
|
goto out3;
|
|
|
|
lock_kernel();
|
|
retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
|
|
flags, (void *)data_page);
|
|
unlock_kernel();
|
|
free_page(data_page);
|
|
|
|
out3:
|
|
free_page(dev_page);
|
|
out2:
|
|
putname(dir_page);
|
|
out1:
|
|
free_page(type_page);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* pivot_root Semantics:
|
|
* Moves the root file system of the current process to the directory put_old,
|
|
* makes new_root as the new root file system of the current process, and sets
|
|
* root/cwd of all processes which had them on the current root to new_root.
|
|
*
|
|
* Restrictions:
|
|
* The new_root and put_old must be directories, and must not be on the
|
|
* same file system as the current process root. The put_old must be
|
|
* underneath new_root, i.e. adding a non-zero number of /.. to the string
|
|
* pointed to by put_old must yield the same directory as new_root. No other
|
|
* file system may be mounted on put_old. After all, new_root is a mountpoint.
|
|
*
|
|
* Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
|
|
* See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
|
|
* in this situation.
|
|
*
|
|
* Notes:
|
|
* - we don't move root/cwd if they are not at the root (reason: if something
|
|
* cared enough to change them, it's probably wrong to force them elsewhere)
|
|
* - it's okay to pick a root that isn't the root of a file system, e.g.
|
|
* /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
|
|
* though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
|
|
* first.
|
|
*/
|
|
SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
|
|
const char __user *, put_old)
|
|
{
|
|
struct vfsmount *tmp;
|
|
struct path new, old, parent_path, root_parent, root;
|
|
int error;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
error = user_path_dir(new_root, &new);
|
|
if (error)
|
|
goto out0;
|
|
error = -EINVAL;
|
|
if (!check_mnt(new.mnt))
|
|
goto out1;
|
|
|
|
error = user_path_dir(put_old, &old);
|
|
if (error)
|
|
goto out1;
|
|
|
|
error = security_sb_pivotroot(&old, &new);
|
|
if (error) {
|
|
path_put(&old);
|
|
goto out1;
|
|
}
|
|
|
|
read_lock(¤t->fs->lock);
|
|
root = current->fs->root;
|
|
path_get(¤t->fs->root);
|
|
read_unlock(¤t->fs->lock);
|
|
down_write(&namespace_sem);
|
|
mutex_lock(&old.dentry->d_inode->i_mutex);
|
|
error = -EINVAL;
|
|
if (IS_MNT_SHARED(old.mnt) ||
|
|
IS_MNT_SHARED(new.mnt->mnt_parent) ||
|
|
IS_MNT_SHARED(root.mnt->mnt_parent))
|
|
goto out2;
|
|
if (!check_mnt(root.mnt))
|
|
goto out2;
|
|
error = -ENOENT;
|
|
if (IS_DEADDIR(new.dentry->d_inode))
|
|
goto out2;
|
|
if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
|
|
goto out2;
|
|
if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
|
|
goto out2;
|
|
error = -EBUSY;
|
|
if (new.mnt == root.mnt ||
|
|
old.mnt == root.mnt)
|
|
goto out2; /* loop, on the same file system */
|
|
error = -EINVAL;
|
|
if (root.mnt->mnt_root != root.dentry)
|
|
goto out2; /* not a mountpoint */
|
|
if (root.mnt->mnt_parent == root.mnt)
|
|
goto out2; /* not attached */
|
|
if (new.mnt->mnt_root != new.dentry)
|
|
goto out2; /* not a mountpoint */
|
|
if (new.mnt->mnt_parent == new.mnt)
|
|
goto out2; /* not attached */
|
|
/* make sure we can reach put_old from new_root */
|
|
tmp = old.mnt;
|
|
spin_lock(&vfsmount_lock);
|
|
if (tmp != new.mnt) {
|
|
for (;;) {
|
|
if (tmp->mnt_parent == tmp)
|
|
goto out3; /* already mounted on put_old */
|
|
if (tmp->mnt_parent == new.mnt)
|
|
break;
|
|
tmp = tmp->mnt_parent;
|
|
}
|
|
if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
|
|
goto out3;
|
|
} else if (!is_subdir(old.dentry, new.dentry))
|
|
goto out3;
|
|
detach_mnt(new.mnt, &parent_path);
|
|
detach_mnt(root.mnt, &root_parent);
|
|
/* mount old root on put_old */
|
|
attach_mnt(root.mnt, &old);
|
|
/* mount new_root on / */
|
|
attach_mnt(new.mnt, &root_parent);
|
|
touch_mnt_namespace(current->nsproxy->mnt_ns);
|
|
spin_unlock(&vfsmount_lock);
|
|
chroot_fs_refs(&root, &new);
|
|
security_sb_post_pivotroot(&root, &new);
|
|
error = 0;
|
|
path_put(&root_parent);
|
|
path_put(&parent_path);
|
|
out2:
|
|
mutex_unlock(&old.dentry->d_inode->i_mutex);
|
|
up_write(&namespace_sem);
|
|
path_put(&root);
|
|
path_put(&old);
|
|
out1:
|
|
path_put(&new);
|
|
out0:
|
|
return error;
|
|
out3:
|
|
spin_unlock(&vfsmount_lock);
|
|
goto out2;
|
|
}
|
|
|
|
static void __init init_mount_tree(void)
|
|
{
|
|
struct vfsmount *mnt;
|
|
struct mnt_namespace *ns;
|
|
struct path root;
|
|
|
|
mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
|
|
if (IS_ERR(mnt))
|
|
panic("Can't create rootfs");
|
|
ns = kmalloc(sizeof(*ns), GFP_KERNEL);
|
|
if (!ns)
|
|
panic("Can't allocate initial namespace");
|
|
atomic_set(&ns->count, 1);
|
|
INIT_LIST_HEAD(&ns->list);
|
|
init_waitqueue_head(&ns->poll);
|
|
ns->event = 0;
|
|
list_add(&mnt->mnt_list, &ns->list);
|
|
ns->root = mnt;
|
|
mnt->mnt_ns = ns;
|
|
|
|
init_task.nsproxy->mnt_ns = ns;
|
|
get_mnt_ns(ns);
|
|
|
|
root.mnt = ns->root;
|
|
root.dentry = ns->root->mnt_root;
|
|
|
|
set_fs_pwd(current->fs, &root);
|
|
set_fs_root(current->fs, &root);
|
|
}
|
|
|
|
void __init mnt_init(void)
|
|
{
|
|
unsigned u;
|
|
int err;
|
|
|
|
init_rwsem(&namespace_sem);
|
|
|
|
mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
|
|
0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
|
|
|
|
mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
|
|
|
|
if (!mount_hashtable)
|
|
panic("Failed to allocate mount hash table\n");
|
|
|
|
printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
|
|
|
|
for (u = 0; u < HASH_SIZE; u++)
|
|
INIT_LIST_HEAD(&mount_hashtable[u]);
|
|
|
|
err = sysfs_init();
|
|
if (err)
|
|
printk(KERN_WARNING "%s: sysfs_init error: %d\n",
|
|
__func__, err);
|
|
fs_kobj = kobject_create_and_add("fs", NULL);
|
|
if (!fs_kobj)
|
|
printk(KERN_WARNING "%s: kobj create error\n", __func__);
|
|
init_rootfs();
|
|
init_mount_tree();
|
|
}
|
|
|
|
void __put_mnt_ns(struct mnt_namespace *ns)
|
|
{
|
|
struct vfsmount *root = ns->root;
|
|
LIST_HEAD(umount_list);
|
|
ns->root = NULL;
|
|
spin_unlock(&vfsmount_lock);
|
|
down_write(&namespace_sem);
|
|
spin_lock(&vfsmount_lock);
|
|
umount_tree(root, 0, &umount_list);
|
|
spin_unlock(&vfsmount_lock);
|
|
up_write(&namespace_sem);
|
|
release_mounts(&umount_list);
|
|
kfree(ns);
|
|
}
|