linux/drivers/pci/msi.c
Matthew Wilcox 0b49ec37a2 PCI/MSI: fix msi_mask() shift fix
Hidetoshi Seto points out that commit
bffac3c593 has wrong values in the array.
Rather than correct the array, we can just use a bounds check and
perform the calculation specified in the comment.  As a bonus, this will
not run off the end of the array if the device specifies an illegal
value in the MSI capability.

Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-13 11:59:03 -08:00

800 lines
20 KiB
C

/*
* File: msi.c
* Purpose: PCI Message Signaled Interrupt (MSI)
*
* Copyright (C) 2003-2004 Intel
* Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
*/
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/msi.h>
#include <linux/smp.h>
#include <asm/errno.h>
#include <asm/io.h>
#include "pci.h"
#include "msi.h"
static int pci_msi_enable = 1;
/* Arch hooks */
int __attribute__ ((weak))
arch_msi_check_device(struct pci_dev *dev, int nvec, int type)
{
return 0;
}
int __attribute__ ((weak))
arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *entry)
{
return 0;
}
int __attribute__ ((weak))
arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
{
struct msi_desc *entry;
int ret;
list_for_each_entry(entry, &dev->msi_list, list) {
ret = arch_setup_msi_irq(dev, entry);
if (ret)
return ret;
}
return 0;
}
void __attribute__ ((weak)) arch_teardown_msi_irq(unsigned int irq)
{
return;
}
void __attribute__ ((weak))
arch_teardown_msi_irqs(struct pci_dev *dev)
{
struct msi_desc *entry;
list_for_each_entry(entry, &dev->msi_list, list) {
if (entry->irq != 0)
arch_teardown_msi_irq(entry->irq);
}
}
static void __msi_set_enable(struct pci_dev *dev, int pos, int enable)
{
u16 control;
if (pos) {
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
control &= ~PCI_MSI_FLAGS_ENABLE;
if (enable)
control |= PCI_MSI_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
}
}
static void msi_set_enable(struct pci_dev *dev, int enable)
{
__msi_set_enable(dev, pci_find_capability(dev, PCI_CAP_ID_MSI), enable);
}
static void msix_set_enable(struct pci_dev *dev, int enable)
{
int pos;
u16 control;
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (pos) {
pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
control &= ~PCI_MSIX_FLAGS_ENABLE;
if (enable)
control |= PCI_MSIX_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
}
}
static inline __attribute_const__ u32 msi_mask(unsigned x)
{
/* Don't shift by >= width of type */
if (x >= 5)
return 0xffffffff;
return (1 << (1 << x)) - 1;
}
static void msix_flush_writes(struct irq_desc *desc)
{
struct msi_desc *entry;
entry = get_irq_desc_msi(desc);
BUG_ON(!entry || !entry->dev);
switch (entry->msi_attrib.type) {
case PCI_CAP_ID_MSI:
/* nothing to do */
break;
case PCI_CAP_ID_MSIX:
{
int offset = entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE +
PCI_MSIX_ENTRY_VECTOR_CTRL_OFFSET;
readl(entry->mask_base + offset);
break;
}
default:
BUG();
break;
}
}
/*
* PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to
* mask all MSI interrupts by clearing the MSI enable bit does not work
* reliably as devices without an INTx disable bit will then generate a
* level IRQ which will never be cleared.
*
* Returns 1 if it succeeded in masking the interrupt and 0 if the device
* doesn't support MSI masking.
*/
static int msi_set_mask_bits(struct irq_desc *desc, u32 mask, u32 flag)
{
struct msi_desc *entry;
entry = get_irq_desc_msi(desc);
BUG_ON(!entry || !entry->dev);
switch (entry->msi_attrib.type) {
case PCI_CAP_ID_MSI:
if (entry->msi_attrib.maskbit) {
int pos;
u32 mask_bits;
pos = (long)entry->mask_base;
pci_read_config_dword(entry->dev, pos, &mask_bits);
mask_bits &= ~(mask);
mask_bits |= flag & mask;
pci_write_config_dword(entry->dev, pos, mask_bits);
} else {
return 0;
}
break;
case PCI_CAP_ID_MSIX:
{
int offset = entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE +
PCI_MSIX_ENTRY_VECTOR_CTRL_OFFSET;
writel(flag, entry->mask_base + offset);
readl(entry->mask_base + offset);
break;
}
default:
BUG();
break;
}
entry->msi_attrib.masked = !!flag;
return 1;
}
void read_msi_msg_desc(struct irq_desc *desc, struct msi_msg *msg)
{
struct msi_desc *entry = get_irq_desc_msi(desc);
switch(entry->msi_attrib.type) {
case PCI_CAP_ID_MSI:
{
struct pci_dev *dev = entry->dev;
int pos = entry->msi_attrib.pos;
u16 data;
pci_read_config_dword(dev, msi_lower_address_reg(pos),
&msg->address_lo);
if (entry->msi_attrib.is_64) {
pci_read_config_dword(dev, msi_upper_address_reg(pos),
&msg->address_hi);
pci_read_config_word(dev, msi_data_reg(pos, 1), &data);
} else {
msg->address_hi = 0;
pci_read_config_word(dev, msi_data_reg(pos, 0), &data);
}
msg->data = data;
break;
}
case PCI_CAP_ID_MSIX:
{
void __iomem *base;
base = entry->mask_base +
entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR_OFFSET);
msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR_OFFSET);
msg->data = readl(base + PCI_MSIX_ENTRY_DATA_OFFSET);
break;
}
default:
BUG();
}
}
void read_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct irq_desc *desc = irq_to_desc(irq);
read_msi_msg_desc(desc, msg);
}
void write_msi_msg_desc(struct irq_desc *desc, struct msi_msg *msg)
{
struct msi_desc *entry = get_irq_desc_msi(desc);
switch (entry->msi_attrib.type) {
case PCI_CAP_ID_MSI:
{
struct pci_dev *dev = entry->dev;
int pos = entry->msi_attrib.pos;
pci_write_config_dword(dev, msi_lower_address_reg(pos),
msg->address_lo);
if (entry->msi_attrib.is_64) {
pci_write_config_dword(dev, msi_upper_address_reg(pos),
msg->address_hi);
pci_write_config_word(dev, msi_data_reg(pos, 1),
msg->data);
} else {
pci_write_config_word(dev, msi_data_reg(pos, 0),
msg->data);
}
break;
}
case PCI_CAP_ID_MSIX:
{
void __iomem *base;
base = entry->mask_base +
entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
writel(msg->address_lo,
base + PCI_MSIX_ENTRY_LOWER_ADDR_OFFSET);
writel(msg->address_hi,
base + PCI_MSIX_ENTRY_UPPER_ADDR_OFFSET);
writel(msg->data, base + PCI_MSIX_ENTRY_DATA_OFFSET);
break;
}
default:
BUG();
}
entry->msg = *msg;
}
void write_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct irq_desc *desc = irq_to_desc(irq);
write_msi_msg_desc(desc, msg);
}
void mask_msi_irq(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
msi_set_mask_bits(desc, 1, 1);
msix_flush_writes(desc);
}
void unmask_msi_irq(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
msi_set_mask_bits(desc, 1, 0);
msix_flush_writes(desc);
}
static int msi_free_irqs(struct pci_dev* dev);
static struct msi_desc* alloc_msi_entry(void)
{
struct msi_desc *entry;
entry = kzalloc(sizeof(struct msi_desc), GFP_KERNEL);
if (!entry)
return NULL;
INIT_LIST_HEAD(&entry->list);
entry->irq = 0;
entry->dev = NULL;
return entry;
}
static void pci_intx_for_msi(struct pci_dev *dev, int enable)
{
if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
pci_intx(dev, enable);
}
static void __pci_restore_msi_state(struct pci_dev *dev)
{
int pos;
u16 control;
struct msi_desc *entry;
if (!dev->msi_enabled)
return;
entry = get_irq_msi(dev->irq);
pos = entry->msi_attrib.pos;
pci_intx_for_msi(dev, 0);
msi_set_enable(dev, 0);
write_msi_msg(dev->irq, &entry->msg);
if (entry->msi_attrib.maskbit) {
struct irq_desc *desc = irq_to_desc(dev->irq);
msi_set_mask_bits(desc, entry->msi_attrib.maskbits_mask,
entry->msi_attrib.masked);
}
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
control &= ~PCI_MSI_FLAGS_QSIZE;
control |= PCI_MSI_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
}
static void __pci_restore_msix_state(struct pci_dev *dev)
{
int pos;
struct msi_desc *entry;
u16 control;
if (!dev->msix_enabled)
return;
/* route the table */
pci_intx_for_msi(dev, 0);
msix_set_enable(dev, 0);
list_for_each_entry(entry, &dev->msi_list, list) {
struct irq_desc *desc = irq_to_desc(entry->irq);
write_msi_msg(entry->irq, &entry->msg);
msi_set_mask_bits(desc, 1, entry->msi_attrib.masked);
}
BUG_ON(list_empty(&dev->msi_list));
entry = list_entry(dev->msi_list.next, struct msi_desc, list);
pos = entry->msi_attrib.pos;
pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
control &= ~PCI_MSIX_FLAGS_MASKALL;
control |= PCI_MSIX_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
}
void pci_restore_msi_state(struct pci_dev *dev)
{
__pci_restore_msi_state(dev);
__pci_restore_msix_state(dev);
}
EXPORT_SYMBOL_GPL(pci_restore_msi_state);
/**
* msi_capability_init - configure device's MSI capability structure
* @dev: pointer to the pci_dev data structure of MSI device function
*
* Setup the MSI capability structure of device function with a single
* MSI irq, regardless of device function is capable of handling
* multiple messages. A return of zero indicates the successful setup
* of an entry zero with the new MSI irq or non-zero for otherwise.
**/
static int msi_capability_init(struct pci_dev *dev)
{
struct msi_desc *entry;
int pos, ret;
u16 control;
msi_set_enable(dev, 0); /* Ensure msi is disabled as I set it up */
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
pci_read_config_word(dev, msi_control_reg(pos), &control);
/* MSI Entry Initialization */
entry = alloc_msi_entry();
if (!entry)
return -ENOMEM;
entry->msi_attrib.type = PCI_CAP_ID_MSI;
entry->msi_attrib.is_64 = is_64bit_address(control);
entry->msi_attrib.entry_nr = 0;
entry->msi_attrib.maskbit = is_mask_bit_support(control);
entry->msi_attrib.masked = 1;
entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
entry->msi_attrib.pos = pos;
entry->dev = dev;
if (entry->msi_attrib.maskbit) {
unsigned int base, maskbits, temp;
base = msi_mask_bits_reg(pos, entry->msi_attrib.is_64);
entry->mask_base = (void __iomem *)(long)base;
/* All MSIs are unmasked by default, Mask them all */
pci_read_config_dword(dev, base, &maskbits);
temp = msi_mask((control & PCI_MSI_FLAGS_QMASK) >> 1);
maskbits |= temp;
pci_write_config_dword(dev, base, maskbits);
entry->msi_attrib.maskbits_mask = temp;
}
list_add_tail(&entry->list, &dev->msi_list);
/* Configure MSI capability structure */
ret = arch_setup_msi_irqs(dev, 1, PCI_CAP_ID_MSI);
if (ret) {
msi_free_irqs(dev);
return ret;
}
/* Set MSI enabled bits */
pci_intx_for_msi(dev, 0);
msi_set_enable(dev, 1);
dev->msi_enabled = 1;
dev->irq = entry->irq;
return 0;
}
/**
* msix_capability_init - configure device's MSI-X capability
* @dev: pointer to the pci_dev data structure of MSI-X device function
* @entries: pointer to an array of struct msix_entry entries
* @nvec: number of @entries
*
* Setup the MSI-X capability structure of device function with a
* single MSI-X irq. A return of zero indicates the successful setup of
* requested MSI-X entries with allocated irqs or non-zero for otherwise.
**/
static int msix_capability_init(struct pci_dev *dev,
struct msix_entry *entries, int nvec)
{
struct msi_desc *entry;
int pos, i, j, nr_entries, ret;
unsigned long phys_addr;
u32 table_offset;
u16 control;
u8 bir;
void __iomem *base;
msix_set_enable(dev, 0);/* Ensure msix is disabled as I set it up */
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
/* Request & Map MSI-X table region */
pci_read_config_word(dev, msi_control_reg(pos), &control);
nr_entries = multi_msix_capable(control);
pci_read_config_dword(dev, msix_table_offset_reg(pos), &table_offset);
bir = (u8)(table_offset & PCI_MSIX_FLAGS_BIRMASK);
table_offset &= ~PCI_MSIX_FLAGS_BIRMASK;
phys_addr = pci_resource_start (dev, bir) + table_offset;
base = ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
if (base == NULL)
return -ENOMEM;
/* MSI-X Table Initialization */
for (i = 0; i < nvec; i++) {
entry = alloc_msi_entry();
if (!entry)
break;
j = entries[i].entry;
entry->msi_attrib.type = PCI_CAP_ID_MSIX;
entry->msi_attrib.is_64 = 1;
entry->msi_attrib.entry_nr = j;
entry->msi_attrib.maskbit = 1;
entry->msi_attrib.masked = 1;
entry->msi_attrib.default_irq = dev->irq;
entry->msi_attrib.pos = pos;
entry->dev = dev;
entry->mask_base = base;
list_add_tail(&entry->list, &dev->msi_list);
}
ret = arch_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
if (ret) {
int avail = 0;
list_for_each_entry(entry, &dev->msi_list, list) {
if (entry->irq != 0) {
avail++;
}
}
msi_free_irqs(dev);
/* If we had some success report the number of irqs
* we succeeded in setting up.
*/
if (avail == 0)
avail = ret;
return avail;
}
i = 0;
list_for_each_entry(entry, &dev->msi_list, list) {
entries[i].vector = entry->irq;
set_irq_msi(entry->irq, entry);
i++;
}
/* Set MSI-X enabled bits */
pci_intx_for_msi(dev, 0);
msix_set_enable(dev, 1);
dev->msix_enabled = 1;
return 0;
}
/**
* pci_msi_check_device - check whether MSI may be enabled on a device
* @dev: pointer to the pci_dev data structure of MSI device function
* @nvec: how many MSIs have been requested ?
* @type: are we checking for MSI or MSI-X ?
*
* Look at global flags, the device itself, and its parent busses
* to determine if MSI/-X are supported for the device. If MSI/-X is
* supported return 0, else return an error code.
**/
static int pci_msi_check_device(struct pci_dev* dev, int nvec, int type)
{
struct pci_bus *bus;
int ret;
/* MSI must be globally enabled and supported by the device */
if (!pci_msi_enable || !dev || dev->no_msi)
return -EINVAL;
/*
* You can't ask to have 0 or less MSIs configured.
* a) it's stupid ..
* b) the list manipulation code assumes nvec >= 1.
*/
if (nvec < 1)
return -ERANGE;
/* Any bridge which does NOT route MSI transactions from it's
* secondary bus to it's primary bus must set NO_MSI flag on
* the secondary pci_bus.
* We expect only arch-specific PCI host bus controller driver
* or quirks for specific PCI bridges to be setting NO_MSI.
*/
for (bus = dev->bus; bus; bus = bus->parent)
if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
return -EINVAL;
ret = arch_msi_check_device(dev, nvec, type);
if (ret)
return ret;
if (!pci_find_capability(dev, type))
return -EINVAL;
return 0;
}
/**
* pci_enable_msi - configure device's MSI capability structure
* @dev: pointer to the pci_dev data structure of MSI device function
*
* Setup the MSI capability structure of device function with
* a single MSI irq upon its software driver call to request for
* MSI mode enabled on its hardware device function. A return of zero
* indicates the successful setup of an entry zero with the new MSI
* irq or non-zero for otherwise.
**/
int pci_enable_msi(struct pci_dev* dev)
{
int status;
status = pci_msi_check_device(dev, 1, PCI_CAP_ID_MSI);
if (status)
return status;
WARN_ON(!!dev->msi_enabled);
/* Check whether driver already requested for MSI-X irqs */
if (dev->msix_enabled) {
dev_info(&dev->dev, "can't enable MSI "
"(MSI-X already enabled)\n");
return -EINVAL;
}
status = msi_capability_init(dev);
return status;
}
EXPORT_SYMBOL(pci_enable_msi);
void pci_msi_shutdown(struct pci_dev* dev)
{
struct msi_desc *entry;
if (!pci_msi_enable || !dev || !dev->msi_enabled)
return;
msi_set_enable(dev, 0);
pci_intx_for_msi(dev, 1);
dev->msi_enabled = 0;
BUG_ON(list_empty(&dev->msi_list));
entry = list_entry(dev->msi_list.next, struct msi_desc, list);
/* Return the the pci reset with msi irqs unmasked */
if (entry->msi_attrib.maskbit) {
u32 mask = entry->msi_attrib.maskbits_mask;
struct irq_desc *desc = irq_to_desc(dev->irq);
msi_set_mask_bits(desc, mask, ~mask);
}
if (!entry->dev || entry->msi_attrib.type != PCI_CAP_ID_MSI)
return;
/* Restore dev->irq to its default pin-assertion irq */
dev->irq = entry->msi_attrib.default_irq;
}
void pci_disable_msi(struct pci_dev* dev)
{
struct msi_desc *entry;
if (!pci_msi_enable || !dev || !dev->msi_enabled)
return;
pci_msi_shutdown(dev);
entry = list_entry(dev->msi_list.next, struct msi_desc, list);
if (!entry->dev || entry->msi_attrib.type != PCI_CAP_ID_MSI)
return;
msi_free_irqs(dev);
}
EXPORT_SYMBOL(pci_disable_msi);
static int msi_free_irqs(struct pci_dev* dev)
{
struct msi_desc *entry, *tmp;
list_for_each_entry(entry, &dev->msi_list, list) {
if (entry->irq)
BUG_ON(irq_has_action(entry->irq));
}
arch_teardown_msi_irqs(dev);
list_for_each_entry_safe(entry, tmp, &dev->msi_list, list) {
if (entry->msi_attrib.type == PCI_CAP_ID_MSIX) {
writel(1, entry->mask_base + entry->msi_attrib.entry_nr
* PCI_MSIX_ENTRY_SIZE
+ PCI_MSIX_ENTRY_VECTOR_CTRL_OFFSET);
if (list_is_last(&entry->list, &dev->msi_list))
iounmap(entry->mask_base);
}
list_del(&entry->list);
kfree(entry);
}
return 0;
}
/**
* pci_enable_msix - configure device's MSI-X capability structure
* @dev: pointer to the pci_dev data structure of MSI-X device function
* @entries: pointer to an array of MSI-X entries
* @nvec: number of MSI-X irqs requested for allocation by device driver
*
* Setup the MSI-X capability structure of device function with the number
* of requested irqs upon its software driver call to request for
* MSI-X mode enabled on its hardware device function. A return of zero
* indicates the successful configuration of MSI-X capability structure
* with new allocated MSI-X irqs. A return of < 0 indicates a failure.
* Or a return of > 0 indicates that driver request is exceeding the number
* of irqs available. Driver should use the returned value to re-send
* its request.
**/
int pci_enable_msix(struct pci_dev* dev, struct msix_entry *entries, int nvec)
{
int status, pos, nr_entries;
int i, j;
u16 control;
if (!entries)
return -EINVAL;
status = pci_msi_check_device(dev, nvec, PCI_CAP_ID_MSIX);
if (status)
return status;
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
pci_read_config_word(dev, msi_control_reg(pos), &control);
nr_entries = multi_msix_capable(control);
if (nvec > nr_entries)
return -EINVAL;
/* Check for any invalid entries */
for (i = 0; i < nvec; i++) {
if (entries[i].entry >= nr_entries)
return -EINVAL; /* invalid entry */
for (j = i + 1; j < nvec; j++) {
if (entries[i].entry == entries[j].entry)
return -EINVAL; /* duplicate entry */
}
}
WARN_ON(!!dev->msix_enabled);
/* Check whether driver already requested for MSI irq */
if (dev->msi_enabled) {
dev_info(&dev->dev, "can't enable MSI-X "
"(MSI IRQ already assigned)\n");
return -EINVAL;
}
status = msix_capability_init(dev, entries, nvec);
return status;
}
EXPORT_SYMBOL(pci_enable_msix);
static void msix_free_all_irqs(struct pci_dev *dev)
{
msi_free_irqs(dev);
}
void pci_msix_shutdown(struct pci_dev* dev)
{
if (!pci_msi_enable || !dev || !dev->msix_enabled)
return;
msix_set_enable(dev, 0);
pci_intx_for_msi(dev, 1);
dev->msix_enabled = 0;
}
void pci_disable_msix(struct pci_dev* dev)
{
if (!pci_msi_enable || !dev || !dev->msix_enabled)
return;
pci_msix_shutdown(dev);
msix_free_all_irqs(dev);
}
EXPORT_SYMBOL(pci_disable_msix);
/**
* msi_remove_pci_irq_vectors - reclaim MSI(X) irqs to unused state
* @dev: pointer to the pci_dev data structure of MSI(X) device function
*
* Being called during hotplug remove, from which the device function
* is hot-removed. All previous assigned MSI/MSI-X irqs, if
* allocated for this device function, are reclaimed to unused state,
* which may be used later on.
**/
void msi_remove_pci_irq_vectors(struct pci_dev* dev)
{
if (!pci_msi_enable || !dev)
return;
if (dev->msi_enabled)
msi_free_irqs(dev);
if (dev->msix_enabled)
msix_free_all_irqs(dev);
}
void pci_no_msi(void)
{
pci_msi_enable = 0;
}
/**
* pci_msi_enabled - is MSI enabled?
*
* Returns true if MSI has not been disabled by the command-line option
* pci=nomsi.
**/
int pci_msi_enabled(void)
{
return pci_msi_enable;
}
EXPORT_SYMBOL(pci_msi_enabled);
void pci_msi_init_pci_dev(struct pci_dev *dev)
{
INIT_LIST_HEAD(&dev->msi_list);
}