mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 19:41:54 +00:00
203a86613f
When the host controller fails to respond to an Enable Slot command, and
the host fails to respond to the register write to abort the command
ring, the xHCI driver will assume the host is dead, and call
usb_hc_died().
The USB device's slot_id is still set to zero, and the pointer stored at
xhci->devs[0] will always be NULL. The call to xhci_check_args in
xhci_free_dev should have caught the NULL virt_dev pointer.
However, xhci_free_dev is designed to free the xhci_virt_device
structures, even if the host is dead, so that we don't leak kernel
memory. xhci_free_dev checks the return value from the generic
xhci_check_args function. If the return value is -ENODEV, it carries on
trying to free the virtual device.
The issue is that xhci_check_args looks at the host controller state
before it looks at the xhci_virt_device pointer. It will return -ENIVAL
because the host is dead, and xhci_free_dev will ignore the return
value, and happily dereference the NULL xhci_virt_device pointer.
The fix is to make sure that xhci_check_args checks the xhci_virt_device
pointer before it checks the host state.
See https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1203453 for
further details. This patch doesn't solve the underlying issue, but
will ensure we don't see any more NULL pointer dereferences because of
the issue.
This patch should be backported to kernels as old as 3.1, that
contain the commit
|
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
chipidea | ||
class | ||
core | ||
dwc3 | ||
early | ||
gadget | ||
host | ||
image | ||
misc | ||
mon | ||
musb | ||
phy | ||
renesas_usbhs | ||
serial | ||
storage | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-common.c | ||
usb-skeleton.c |
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("khubd"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.