mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 20:51:44 +00:00
1fb9df5d30
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jeff Garzik <jeff@garzik.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2407 lines
79 KiB
C
2407 lines
79 KiB
C
/* drivers/net/eepro100.c: An Intel i82557-559 Ethernet driver for Linux. */
|
||
/*
|
||
Written 1996-1999 by Donald Becker.
|
||
|
||
The driver also contains updates by different kernel developers
|
||
(see incomplete list below).
|
||
Current maintainer is Andrey V. Savochkin <saw@saw.sw.com.sg>.
|
||
Please use this email address and linux-kernel mailing list for bug reports.
|
||
|
||
This software may be used and distributed according to the terms
|
||
of the GNU General Public License, incorporated herein by reference.
|
||
|
||
This driver is for the Intel EtherExpress Pro100 (Speedo3) design.
|
||
It should work with all i82557/558/559 boards.
|
||
|
||
Version history:
|
||
1998 Apr - 2000 Feb Andrey V. Savochkin <saw@saw.sw.com.sg>
|
||
Serious fixes for multicast filter list setting, TX timeout routine;
|
||
RX ring refilling logic; other stuff
|
||
2000 Feb Jeff Garzik <jgarzik@pobox.com>
|
||
Convert to new PCI driver interface
|
||
2000 Mar 24 Dragan Stancevic <visitor@valinux.com>
|
||
Disabled FC and ER, to avoid lockups when when we get FCP interrupts.
|
||
2000 Jul 17 Goutham Rao <goutham.rao@intel.com>
|
||
PCI DMA API fixes, adding pci_dma_sync_single calls where neccesary
|
||
2000 Aug 31 David Mosberger <davidm@hpl.hp.com>
|
||
rx_align support: enables rx DMA without causing unaligned accesses.
|
||
*/
|
||
|
||
static const char * const version =
|
||
"eepro100.c:v1.09j-t 9/29/99 Donald Becker http://www.scyld.com/network/eepro100.html\n"
|
||
"eepro100.c: $Revision: 1.36 $ 2000/11/17 Modified by Andrey V. Savochkin <saw@saw.sw.com.sg> and others\n";
|
||
|
||
/* A few user-configurable values that apply to all boards.
|
||
First set is undocumented and spelled per Intel recommendations. */
|
||
|
||
static int congenb /* = 0 */; /* Enable congestion control in the DP83840. */
|
||
static int txfifo = 8; /* Tx FIFO threshold in 4 byte units, 0-15 */
|
||
static int rxfifo = 8; /* Rx FIFO threshold, default 32 bytes. */
|
||
/* Tx/Rx DMA burst length, 0-127, 0 == no preemption, tx==128 -> disabled. */
|
||
static int txdmacount = 128;
|
||
static int rxdmacount /* = 0 */;
|
||
|
||
#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) || defined(__mips__) || \
|
||
defined(__arm__)
|
||
/* align rx buffers to 2 bytes so that IP header is aligned */
|
||
# define rx_align(skb) skb_reserve((skb), 2)
|
||
# define RxFD_ALIGNMENT __attribute__ ((aligned (2), packed))
|
||
#else
|
||
# define rx_align(skb)
|
||
# define RxFD_ALIGNMENT
|
||
#endif
|
||
|
||
/* Set the copy breakpoint for the copy-only-tiny-buffer Rx method.
|
||
Lower values use more memory, but are faster. */
|
||
static int rx_copybreak = 200;
|
||
|
||
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
|
||
static int max_interrupt_work = 20;
|
||
|
||
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast) */
|
||
static int multicast_filter_limit = 64;
|
||
|
||
/* 'options' is used to pass a transceiver override or full-duplex flag
|
||
e.g. "options=16" for FD, "options=32" for 100mbps-only. */
|
||
static int full_duplex[] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
||
static int options[] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
||
|
||
/* A few values that may be tweaked. */
|
||
/* The ring sizes should be a power of two for efficiency. */
|
||
#define TX_RING_SIZE 64
|
||
#define RX_RING_SIZE 64
|
||
/* How much slots multicast filter setup may take.
|
||
Do not descrease without changing set_rx_mode() implementaion. */
|
||
#define TX_MULTICAST_SIZE 2
|
||
#define TX_MULTICAST_RESERV (TX_MULTICAST_SIZE*2)
|
||
/* Actual number of TX packets queued, must be
|
||
<= TX_RING_SIZE-TX_MULTICAST_RESERV. */
|
||
#define TX_QUEUE_LIMIT (TX_RING_SIZE-TX_MULTICAST_RESERV)
|
||
/* Hysteresis marking queue as no longer full. */
|
||
#define TX_QUEUE_UNFULL (TX_QUEUE_LIMIT-4)
|
||
|
||
/* Operational parameters that usually are not changed. */
|
||
|
||
/* Time in jiffies before concluding the transmitter is hung. */
|
||
#define TX_TIMEOUT (2*HZ)
|
||
/* Size of an pre-allocated Rx buffer: <Ethernet MTU> + slack.*/
|
||
#define PKT_BUF_SZ 1536
|
||
|
||
#include <linux/module.h>
|
||
|
||
#include <linux/kernel.h>
|
||
#include <linux/string.h>
|
||
#include <linux/errno.h>
|
||
#include <linux/ioport.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/interrupt.h>
|
||
#include <linux/timer.h>
|
||
#include <linux/pci.h>
|
||
#include <linux/spinlock.h>
|
||
#include <linux/init.h>
|
||
#include <linux/mii.h>
|
||
#include <linux/delay.h>
|
||
#include <linux/bitops.h>
|
||
|
||
#include <asm/io.h>
|
||
#include <asm/uaccess.h>
|
||
#include <asm/irq.h>
|
||
|
||
#include <linux/netdevice.h>
|
||
#include <linux/etherdevice.h>
|
||
#include <linux/rtnetlink.h>
|
||
#include <linux/skbuff.h>
|
||
#include <linux/ethtool.h>
|
||
|
||
static int use_io;
|
||
static int debug = -1;
|
||
#define DEBUG_DEFAULT (NETIF_MSG_DRV | \
|
||
NETIF_MSG_HW | \
|
||
NETIF_MSG_RX_ERR | \
|
||
NETIF_MSG_TX_ERR)
|
||
#define DEBUG ((debug >= 0) ? (1<<debug)-1 : DEBUG_DEFAULT)
|
||
|
||
|
||
MODULE_AUTHOR("Maintainer: Andrey V. Savochkin <saw@saw.sw.com.sg>");
|
||
MODULE_DESCRIPTION("Intel i82557/i82558/i82559 PCI EtherExpressPro driver");
|
||
MODULE_LICENSE("GPL");
|
||
module_param(use_io, int, 0);
|
||
module_param(debug, int, 0);
|
||
module_param_array(options, int, NULL, 0);
|
||
module_param_array(full_duplex, int, NULL, 0);
|
||
module_param(congenb, int, 0);
|
||
module_param(txfifo, int, 0);
|
||
module_param(rxfifo, int, 0);
|
||
module_param(txdmacount, int, 0);
|
||
module_param(rxdmacount, int, 0);
|
||
module_param(rx_copybreak, int, 0);
|
||
module_param(max_interrupt_work, int, 0);
|
||
module_param(multicast_filter_limit, int, 0);
|
||
MODULE_PARM_DESC(debug, "debug level (0-6)");
|
||
MODULE_PARM_DESC(options, "Bits 0-3: transceiver type, bit 4: full duplex, bit 5: 100Mbps");
|
||
MODULE_PARM_DESC(full_duplex, "full duplex setting(s) (1)");
|
||
MODULE_PARM_DESC(congenb, "Enable congestion control (1)");
|
||
MODULE_PARM_DESC(txfifo, "Tx FIFO threshold in 4 byte units, (0-15)");
|
||
MODULE_PARM_DESC(rxfifo, "Rx FIFO threshold in 4 byte units, (0-15)");
|
||
MODULE_PARM_DESC(txdmacount, "Tx DMA burst length; 128 - disable (0-128)");
|
||
MODULE_PARM_DESC(rxdmacount, "Rx DMA burst length; 128 - disable (0-128)");
|
||
MODULE_PARM_DESC(rx_copybreak, "copy breakpoint for copy-only-tiny-frames");
|
||
MODULE_PARM_DESC(max_interrupt_work, "maximum events handled per interrupt");
|
||
MODULE_PARM_DESC(multicast_filter_limit, "maximum number of filtered multicast addresses");
|
||
|
||
#define RUN_AT(x) (jiffies + (x))
|
||
|
||
#define netdevice_start(dev)
|
||
#define netdevice_stop(dev)
|
||
#define netif_set_tx_timeout(dev, tf, tm) \
|
||
do { \
|
||
(dev)->tx_timeout = (tf); \
|
||
(dev)->watchdog_timeo = (tm); \
|
||
} while(0)
|
||
|
||
|
||
|
||
/*
|
||
Theory of Operation
|
||
|
||
I. Board Compatibility
|
||
|
||
This device driver is designed for the Intel i82557 "Speedo3" chip, Intel's
|
||
single-chip fast Ethernet controller for PCI, as used on the Intel
|
||
EtherExpress Pro 100 adapter.
|
||
|
||
II. Board-specific settings
|
||
|
||
PCI bus devices are configured by the system at boot time, so no jumpers
|
||
need to be set on the board. The system BIOS should be set to assign the
|
||
PCI INTA signal to an otherwise unused system IRQ line. While it's
|
||
possible to share PCI interrupt lines, it negatively impacts performance and
|
||
only recent kernels support it.
|
||
|
||
III. Driver operation
|
||
|
||
IIIA. General
|
||
The Speedo3 is very similar to other Intel network chips, that is to say
|
||
"apparently designed on a different planet". This chips retains the complex
|
||
Rx and Tx descriptors and multiple buffers pointers as previous chips, but
|
||
also has simplified Tx and Rx buffer modes. This driver uses the "flexible"
|
||
Tx mode, but in a simplified lower-overhead manner: it associates only a
|
||
single buffer descriptor with each frame descriptor.
|
||
|
||
Despite the extra space overhead in each receive skbuff, the driver must use
|
||
the simplified Rx buffer mode to assure that only a single data buffer is
|
||
associated with each RxFD. The driver implements this by reserving space
|
||
for the Rx descriptor at the head of each Rx skbuff.
|
||
|
||
The Speedo-3 has receive and command unit base addresses that are added to
|
||
almost all descriptor pointers. The driver sets these to zero, so that all
|
||
pointer fields are absolute addresses.
|
||
|
||
The System Control Block (SCB) of some previous Intel chips exists on the
|
||
chip in both PCI I/O and memory space. This driver uses the I/O space
|
||
registers, but might switch to memory mapped mode to better support non-x86
|
||
processors.
|
||
|
||
IIIB. Transmit structure
|
||
|
||
The driver must use the complex Tx command+descriptor mode in order to
|
||
have a indirect pointer to the skbuff data section. Each Tx command block
|
||
(TxCB) is associated with two immediately appended Tx Buffer Descriptor
|
||
(TxBD). A fixed ring of these TxCB+TxBD pairs are kept as part of the
|
||
speedo_private data structure for each adapter instance.
|
||
|
||
The newer i82558 explicitly supports this structure, and can read the two
|
||
TxBDs in the same PCI burst as the TxCB.
|
||
|
||
This ring structure is used for all normal transmit packets, but the
|
||
transmit packet descriptors aren't long enough for most non-Tx commands such
|
||
as CmdConfigure. This is complicated by the possibility that the chip has
|
||
already loaded the link address in the previous descriptor. So for these
|
||
commands we convert the next free descriptor on the ring to a NoOp, and point
|
||
that descriptor's link to the complex command.
|
||
|
||
An additional complexity of these non-transmit commands are that they may be
|
||
added asynchronous to the normal transmit queue, so we disable interrupts
|
||
whenever the Tx descriptor ring is manipulated.
|
||
|
||
A notable aspect of these special configure commands is that they do
|
||
work with the normal Tx ring entry scavenge method. The Tx ring scavenge
|
||
is done at interrupt time using the 'dirty_tx' index, and checking for the
|
||
command-complete bit. While the setup frames may have the NoOp command on the
|
||
Tx ring marked as complete, but not have completed the setup command, this
|
||
is not a problem. The tx_ring entry can be still safely reused, as the
|
||
tx_skbuff[] entry is always empty for config_cmd and mc_setup frames.
|
||
|
||
Commands may have bits set e.g. CmdSuspend in the command word to either
|
||
suspend or stop the transmit/command unit. This driver always flags the last
|
||
command with CmdSuspend, erases the CmdSuspend in the previous command, and
|
||
then issues a CU_RESUME.
|
||
Note: Watch out for the potential race condition here: imagine
|
||
erasing the previous suspend
|
||
the chip processes the previous command
|
||
the chip processes the final command, and suspends
|
||
doing the CU_RESUME
|
||
the chip processes the next-yet-valid post-final-command.
|
||
So blindly sending a CU_RESUME is only safe if we do it immediately after
|
||
after erasing the previous CmdSuspend, without the possibility of an
|
||
intervening delay. Thus the resume command is always within the
|
||
interrupts-disabled region. This is a timing dependence, but handling this
|
||
condition in a timing-independent way would considerably complicate the code.
|
||
|
||
Note: In previous generation Intel chips, restarting the command unit was a
|
||
notoriously slow process. This is presumably no longer true.
|
||
|
||
IIIC. Receive structure
|
||
|
||
Because of the bus-master support on the Speedo3 this driver uses the new
|
||
SKBUFF_RX_COPYBREAK scheme, rather than a fixed intermediate receive buffer.
|
||
This scheme allocates full-sized skbuffs as receive buffers. The value
|
||
SKBUFF_RX_COPYBREAK is used as the copying breakpoint: it is chosen to
|
||
trade-off the memory wasted by passing the full-sized skbuff to the queue
|
||
layer for all frames vs. the copying cost of copying a frame to a
|
||
correctly-sized skbuff.
|
||
|
||
For small frames the copying cost is negligible (esp. considering that we
|
||
are pre-loading the cache with immediately useful header information), so we
|
||
allocate a new, minimally-sized skbuff. For large frames the copying cost
|
||
is non-trivial, and the larger copy might flush the cache of useful data, so
|
||
we pass up the skbuff the packet was received into.
|
||
|
||
IV. Notes
|
||
|
||
Thanks to Steve Williams of Intel for arranging the non-disclosure agreement
|
||
that stated that I could disclose the information. But I still resent
|
||
having to sign an Intel NDA when I'm helping Intel sell their own product!
|
||
|
||
*/
|
||
|
||
static int speedo_found1(struct pci_dev *pdev, void __iomem *ioaddr, int fnd_cnt, int acpi_idle_state);
|
||
|
||
/* Offsets to the various registers.
|
||
All accesses need not be longword aligned. */
|
||
enum speedo_offsets {
|
||
SCBStatus = 0, SCBCmd = 2, /* Rx/Command Unit command and status. */
|
||
SCBIntmask = 3,
|
||
SCBPointer = 4, /* General purpose pointer. */
|
||
SCBPort = 8, /* Misc. commands and operands. */
|
||
SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
|
||
SCBCtrlMDI = 16, /* MDI interface control. */
|
||
SCBEarlyRx = 20, /* Early receive byte count. */
|
||
};
|
||
/* Commands that can be put in a command list entry. */
|
||
enum commands {
|
||
CmdNOp = 0, CmdIASetup = 0x10000, CmdConfigure = 0x20000,
|
||
CmdMulticastList = 0x30000, CmdTx = 0x40000, CmdTDR = 0x50000,
|
||
CmdDump = 0x60000, CmdDiagnose = 0x70000,
|
||
CmdSuspend = 0x40000000, /* Suspend after completion. */
|
||
CmdIntr = 0x20000000, /* Interrupt after completion. */
|
||
CmdTxFlex = 0x00080000, /* Use "Flexible mode" for CmdTx command. */
|
||
};
|
||
/* Clear CmdSuspend (1<<30) avoiding interference with the card access to the
|
||
status bits. Previous driver versions used separate 16 bit fields for
|
||
commands and statuses. --SAW
|
||
*/
|
||
#if defined(__alpha__)
|
||
# define clear_suspend(cmd) clear_bit(30, &(cmd)->cmd_status);
|
||
#else
|
||
# if defined(__LITTLE_ENDIAN)
|
||
# define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x4000
|
||
# elif defined(__BIG_ENDIAN)
|
||
# define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x0040
|
||
# else
|
||
# error Unsupported byteorder
|
||
# endif
|
||
#endif
|
||
|
||
enum SCBCmdBits {
|
||
SCBMaskCmdDone=0x8000, SCBMaskRxDone=0x4000, SCBMaskCmdIdle=0x2000,
|
||
SCBMaskRxSuspend=0x1000, SCBMaskEarlyRx=0x0800, SCBMaskFlowCtl=0x0400,
|
||
SCBTriggerIntr=0x0200, SCBMaskAll=0x0100,
|
||
/* The rest are Rx and Tx commands. */
|
||
CUStart=0x0010, CUResume=0x0020, CUStatsAddr=0x0040, CUShowStats=0x0050,
|
||
CUCmdBase=0x0060, /* CU Base address (set to zero) . */
|
||
CUDumpStats=0x0070, /* Dump then reset stats counters. */
|
||
RxStart=0x0001, RxResume=0x0002, RxAbort=0x0004, RxAddrLoad=0x0006,
|
||
RxResumeNoResources=0x0007,
|
||
};
|
||
|
||
enum SCBPort_cmds {
|
||
PortReset=0, PortSelfTest=1, PortPartialReset=2, PortDump=3,
|
||
};
|
||
|
||
/* The Speedo3 Rx and Tx frame/buffer descriptors. */
|
||
struct descriptor { /* A generic descriptor. */
|
||
volatile s32 cmd_status; /* All command and status fields. */
|
||
u32 link; /* struct descriptor * */
|
||
unsigned char params[0];
|
||
};
|
||
|
||
/* The Speedo3 Rx and Tx buffer descriptors. */
|
||
struct RxFD { /* Receive frame descriptor. */
|
||
volatile s32 status;
|
||
u32 link; /* struct RxFD * */
|
||
u32 rx_buf_addr; /* void * */
|
||
u32 count;
|
||
} RxFD_ALIGNMENT;
|
||
|
||
/* Selected elements of the Tx/RxFD.status word. */
|
||
enum RxFD_bits {
|
||
RxComplete=0x8000, RxOK=0x2000,
|
||
RxErrCRC=0x0800, RxErrAlign=0x0400, RxErrTooBig=0x0200, RxErrSymbol=0x0010,
|
||
RxEth2Type=0x0020, RxNoMatch=0x0004, RxNoIAMatch=0x0002,
|
||
TxUnderrun=0x1000, StatusComplete=0x8000,
|
||
};
|
||
|
||
#define CONFIG_DATA_SIZE 22
|
||
struct TxFD { /* Transmit frame descriptor set. */
|
||
s32 status;
|
||
u32 link; /* void * */
|
||
u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
|
||
s32 count; /* # of TBD (=1), Tx start thresh., etc. */
|
||
/* This constitutes two "TBD" entries -- we only use one. */
|
||
#define TX_DESCR_BUF_OFFSET 16
|
||
u32 tx_buf_addr0; /* void *, frame to be transmitted. */
|
||
s32 tx_buf_size0; /* Length of Tx frame. */
|
||
u32 tx_buf_addr1; /* void *, frame to be transmitted. */
|
||
s32 tx_buf_size1; /* Length of Tx frame. */
|
||
/* the structure must have space for at least CONFIG_DATA_SIZE starting
|
||
* from tx_desc_addr field */
|
||
};
|
||
|
||
/* Multicast filter setting block. --SAW */
|
||
struct speedo_mc_block {
|
||
struct speedo_mc_block *next;
|
||
unsigned int tx;
|
||
dma_addr_t frame_dma;
|
||
unsigned int len;
|
||
struct descriptor frame __attribute__ ((__aligned__(16)));
|
||
};
|
||
|
||
/* Elements of the dump_statistics block. This block must be lword aligned. */
|
||
struct speedo_stats {
|
||
u32 tx_good_frames;
|
||
u32 tx_coll16_errs;
|
||
u32 tx_late_colls;
|
||
u32 tx_underruns;
|
||
u32 tx_lost_carrier;
|
||
u32 tx_deferred;
|
||
u32 tx_one_colls;
|
||
u32 tx_multi_colls;
|
||
u32 tx_total_colls;
|
||
u32 rx_good_frames;
|
||
u32 rx_crc_errs;
|
||
u32 rx_align_errs;
|
||
u32 rx_resource_errs;
|
||
u32 rx_overrun_errs;
|
||
u32 rx_colls_errs;
|
||
u32 rx_runt_errs;
|
||
u32 done_marker;
|
||
};
|
||
|
||
enum Rx_ring_state_bits {
|
||
RrNoMem=1, RrPostponed=2, RrNoResources=4, RrOOMReported=8,
|
||
};
|
||
|
||
/* Do not change the position (alignment) of the first few elements!
|
||
The later elements are grouped for cache locality.
|
||
|
||
Unfortunately, all the positions have been shifted since there.
|
||
A new re-alignment is required. 2000/03/06 SAW */
|
||
struct speedo_private {
|
||
void __iomem *regs;
|
||
struct TxFD *tx_ring; /* Commands (usually CmdTxPacket). */
|
||
struct RxFD *rx_ringp[RX_RING_SIZE]; /* Rx descriptor, used as ring. */
|
||
/* The addresses of a Tx/Rx-in-place packets/buffers. */
|
||
struct sk_buff *tx_skbuff[TX_RING_SIZE];
|
||
struct sk_buff *rx_skbuff[RX_RING_SIZE];
|
||
/* Mapped addresses of the rings. */
|
||
dma_addr_t tx_ring_dma;
|
||
#define TX_RING_ELEM_DMA(sp, n) ((sp)->tx_ring_dma + (n)*sizeof(struct TxFD))
|
||
dma_addr_t rx_ring_dma[RX_RING_SIZE];
|
||
struct descriptor *last_cmd; /* Last command sent. */
|
||
unsigned int cur_tx, dirty_tx; /* The ring entries to be free()ed. */
|
||
spinlock_t lock; /* Group with Tx control cache line. */
|
||
u32 tx_threshold; /* The value for txdesc.count. */
|
||
struct RxFD *last_rxf; /* Last filled RX buffer. */
|
||
dma_addr_t last_rxf_dma;
|
||
unsigned int cur_rx, dirty_rx; /* The next free ring entry */
|
||
long last_rx_time; /* Last Rx, in jiffies, to handle Rx hang. */
|
||
struct net_device_stats stats;
|
||
struct speedo_stats *lstats;
|
||
dma_addr_t lstats_dma;
|
||
int chip_id;
|
||
struct pci_dev *pdev;
|
||
struct timer_list timer; /* Media selection timer. */
|
||
struct speedo_mc_block *mc_setup_head; /* Multicast setup frame list head. */
|
||
struct speedo_mc_block *mc_setup_tail; /* Multicast setup frame list tail. */
|
||
long in_interrupt; /* Word-aligned dev->interrupt */
|
||
unsigned char acpi_pwr;
|
||
signed char rx_mode; /* Current PROMISC/ALLMULTI setting. */
|
||
unsigned int tx_full:1; /* The Tx queue is full. */
|
||
unsigned int flow_ctrl:1; /* Use 802.3x flow control. */
|
||
unsigned int rx_bug:1; /* Work around receiver hang errata. */
|
||
unsigned char default_port:8; /* Last dev->if_port value. */
|
||
unsigned char rx_ring_state; /* RX ring status flags. */
|
||
unsigned short phy[2]; /* PHY media interfaces available. */
|
||
unsigned short partner; /* Link partner caps. */
|
||
struct mii_if_info mii_if; /* MII API hooks, info */
|
||
u32 msg_enable; /* debug message level */
|
||
};
|
||
|
||
/* The parameters for a CmdConfigure operation.
|
||
There are so many options that it would be difficult to document each bit.
|
||
We mostly use the default or recommended settings. */
|
||
static const char i82557_config_cmd[CONFIG_DATA_SIZE] = {
|
||
22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
|
||
0, 0x2E, 0, 0x60, 0,
|
||
0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
|
||
0x3f, 0x05, };
|
||
static const char i82558_config_cmd[CONFIG_DATA_SIZE] = {
|
||
22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
|
||
0, 0x2E, 0, 0x60, 0x08, 0x88,
|
||
0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
|
||
0x31, 0x05, };
|
||
|
||
/* PHY media interface chips. */
|
||
static const char * const phys[] = {
|
||
"None", "i82553-A/B", "i82553-C", "i82503",
|
||
"DP83840", "80c240", "80c24", "i82555",
|
||
"unknown-8", "unknown-9", "DP83840A", "unknown-11",
|
||
"unknown-12", "unknown-13", "unknown-14", "unknown-15", };
|
||
enum phy_chips { NonSuchPhy=0, I82553AB, I82553C, I82503, DP83840, S80C240,
|
||
S80C24, I82555, DP83840A=10, };
|
||
static const char is_mii[] = { 0, 1, 1, 0, 1, 1, 0, 1 };
|
||
#define EE_READ_CMD (6)
|
||
|
||
static int eepro100_init_one(struct pci_dev *pdev,
|
||
const struct pci_device_id *ent);
|
||
|
||
static int do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len);
|
||
static int mdio_read(struct net_device *dev, int phy_id, int location);
|
||
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
|
||
static int speedo_open(struct net_device *dev);
|
||
static void speedo_resume(struct net_device *dev);
|
||
static void speedo_timer(unsigned long data);
|
||
static void speedo_init_rx_ring(struct net_device *dev);
|
||
static void speedo_tx_timeout(struct net_device *dev);
|
||
static int speedo_start_xmit(struct sk_buff *skb, struct net_device *dev);
|
||
static void speedo_refill_rx_buffers(struct net_device *dev, int force);
|
||
static int speedo_rx(struct net_device *dev);
|
||
static void speedo_tx_buffer_gc(struct net_device *dev);
|
||
static irqreturn_t speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
|
||
static int speedo_close(struct net_device *dev);
|
||
static struct net_device_stats *speedo_get_stats(struct net_device *dev);
|
||
static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
|
||
static void set_rx_mode(struct net_device *dev);
|
||
static void speedo_show_state(struct net_device *dev);
|
||
static struct ethtool_ops ethtool_ops;
|
||
|
||
|
||
|
||
#ifdef honor_default_port
|
||
/* Optional driver feature to allow forcing the transceiver setting.
|
||
Not recommended. */
|
||
static int mii_ctrl[8] = { 0x3300, 0x3100, 0x0000, 0x0100,
|
||
0x2000, 0x2100, 0x0400, 0x3100};
|
||
#endif
|
||
|
||
/* How to wait for the command unit to accept a command.
|
||
Typically this takes 0 ticks. */
|
||
static inline unsigned char wait_for_cmd_done(struct net_device *dev,
|
||
struct speedo_private *sp)
|
||
{
|
||
int wait = 1000;
|
||
void __iomem *cmd_ioaddr = sp->regs + SCBCmd;
|
||
unsigned char r;
|
||
|
||
do {
|
||
udelay(1);
|
||
r = ioread8(cmd_ioaddr);
|
||
} while(r && --wait >= 0);
|
||
|
||
if (wait < 0)
|
||
printk(KERN_ALERT "%s: wait_for_cmd_done timeout!\n", dev->name);
|
||
return r;
|
||
}
|
||
|
||
static int __devinit eepro100_init_one (struct pci_dev *pdev,
|
||
const struct pci_device_id *ent)
|
||
{
|
||
void __iomem *ioaddr;
|
||
int irq, pci_bar;
|
||
int acpi_idle_state = 0, pm;
|
||
static int cards_found /* = 0 */;
|
||
unsigned long pci_base;
|
||
|
||
#ifndef MODULE
|
||
/* when built-in, we only print version if device is found */
|
||
static int did_version;
|
||
if (did_version++ == 0)
|
||
printk(version);
|
||
#endif
|
||
|
||
/* save power state before pci_enable_device overwrites it */
|
||
pm = pci_find_capability(pdev, PCI_CAP_ID_PM);
|
||
if (pm) {
|
||
u16 pwr_command;
|
||
pci_read_config_word(pdev, pm + PCI_PM_CTRL, &pwr_command);
|
||
acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK;
|
||
}
|
||
|
||
if (pci_enable_device(pdev))
|
||
goto err_out_free_mmio_region;
|
||
|
||
pci_set_master(pdev);
|
||
|
||
if (!request_region(pci_resource_start(pdev, 1),
|
||
pci_resource_len(pdev, 1), "eepro100")) {
|
||
printk (KERN_ERR "eepro100: cannot reserve I/O ports\n");
|
||
goto err_out_none;
|
||
}
|
||
if (!request_mem_region(pci_resource_start(pdev, 0),
|
||
pci_resource_len(pdev, 0), "eepro100")) {
|
||
printk (KERN_ERR "eepro100: cannot reserve MMIO region\n");
|
||
goto err_out_free_pio_region;
|
||
}
|
||
|
||
irq = pdev->irq;
|
||
pci_bar = use_io ? 1 : 0;
|
||
pci_base = pci_resource_start(pdev, pci_bar);
|
||
if (DEBUG & NETIF_MSG_PROBE)
|
||
printk("Found Intel i82557 PCI Speedo at %#lx, IRQ %d.\n",
|
||
pci_base, irq);
|
||
|
||
ioaddr = pci_iomap(pdev, pci_bar, 0);
|
||
if (!ioaddr) {
|
||
printk (KERN_ERR "eepro100: cannot remap IO\n");
|
||
goto err_out_free_mmio_region;
|
||
}
|
||
|
||
if (speedo_found1(pdev, ioaddr, cards_found, acpi_idle_state) == 0)
|
||
cards_found++;
|
||
else
|
||
goto err_out_iounmap;
|
||
|
||
return 0;
|
||
|
||
err_out_iounmap: ;
|
||
pci_iounmap(pdev, ioaddr);
|
||
err_out_free_mmio_region:
|
||
release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
|
||
err_out_free_pio_region:
|
||
release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
|
||
err_out_none:
|
||
return -ENODEV;
|
||
}
|
||
|
||
#ifdef CONFIG_NET_POLL_CONTROLLER
|
||
/*
|
||
* Polling 'interrupt' - used by things like netconsole to send skbs
|
||
* without having to re-enable interrupts. It's not called while
|
||
* the interrupt routine is executing.
|
||
*/
|
||
|
||
static void poll_speedo (struct net_device *dev)
|
||
{
|
||
/* disable_irq is not very nice, but with the funny lockless design
|
||
we have no other choice. */
|
||
disable_irq(dev->irq);
|
||
speedo_interrupt (dev->irq, dev, NULL);
|
||
enable_irq(dev->irq);
|
||
}
|
||
#endif
|
||
|
||
static int __devinit speedo_found1(struct pci_dev *pdev,
|
||
void __iomem *ioaddr, int card_idx, int acpi_idle_state)
|
||
{
|
||
struct net_device *dev;
|
||
struct speedo_private *sp;
|
||
const char *product;
|
||
int i, option;
|
||
u16 eeprom[0x100];
|
||
int size;
|
||
void *tx_ring_space;
|
||
dma_addr_t tx_ring_dma;
|
||
|
||
size = TX_RING_SIZE * sizeof(struct TxFD) + sizeof(struct speedo_stats);
|
||
tx_ring_space = pci_alloc_consistent(pdev, size, &tx_ring_dma);
|
||
if (tx_ring_space == NULL)
|
||
return -1;
|
||
|
||
dev = alloc_etherdev(sizeof(struct speedo_private));
|
||
if (dev == NULL) {
|
||
printk(KERN_ERR "eepro100: Could not allocate ethernet device.\n");
|
||
pci_free_consistent(pdev, size, tx_ring_space, tx_ring_dma);
|
||
return -1;
|
||
}
|
||
|
||
SET_MODULE_OWNER(dev);
|
||
SET_NETDEV_DEV(dev, &pdev->dev);
|
||
|
||
if (dev->mem_start > 0)
|
||
option = dev->mem_start;
|
||
else if (card_idx >= 0 && options[card_idx] >= 0)
|
||
option = options[card_idx];
|
||
else
|
||
option = 0;
|
||
|
||
rtnl_lock();
|
||
if (dev_alloc_name(dev, dev->name) < 0)
|
||
goto err_free_unlock;
|
||
|
||
/* Read the station address EEPROM before doing the reset.
|
||
Nominally his should even be done before accepting the device, but
|
||
then we wouldn't have a device name with which to report the error.
|
||
The size test is for 6 bit vs. 8 bit address serial EEPROMs.
|
||
*/
|
||
{
|
||
void __iomem *iobase;
|
||
int read_cmd, ee_size;
|
||
u16 sum;
|
||
int j;
|
||
|
||
/* Use IO only to avoid postponed writes and satisfy EEPROM timing
|
||
requirements. */
|
||
iobase = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
|
||
if (!iobase)
|
||
goto err_free_unlock;
|
||
if ((do_eeprom_cmd(iobase, EE_READ_CMD << 24, 27) & 0xffe0000)
|
||
== 0xffe0000) {
|
||
ee_size = 0x100;
|
||
read_cmd = EE_READ_CMD << 24;
|
||
} else {
|
||
ee_size = 0x40;
|
||
read_cmd = EE_READ_CMD << 22;
|
||
}
|
||
|
||
for (j = 0, i = 0, sum = 0; i < ee_size; i++) {
|
||
u16 value = do_eeprom_cmd(iobase, read_cmd | (i << 16), 27);
|
||
eeprom[i] = value;
|
||
sum += value;
|
||
if (i < 3) {
|
||
dev->dev_addr[j++] = value;
|
||
dev->dev_addr[j++] = value >> 8;
|
||
}
|
||
}
|
||
if (sum != 0xBABA)
|
||
printk(KERN_WARNING "%s: Invalid EEPROM checksum %#4.4x, "
|
||
"check settings before activating this device!\n",
|
||
dev->name, sum);
|
||
/* Don't unregister_netdev(dev); as the EEPro may actually be
|
||
usable, especially if the MAC address is set later.
|
||
On the other hand, it may be unusable if MDI data is corrupted. */
|
||
|
||
pci_iounmap(pdev, iobase);
|
||
}
|
||
|
||
/* Reset the chip: stop Tx and Rx processes and clear counters.
|
||
This takes less than 10usec and will easily finish before the next
|
||
action. */
|
||
iowrite32(PortReset, ioaddr + SCBPort);
|
||
ioread32(ioaddr + SCBPort);
|
||
udelay(10);
|
||
|
||
if (eeprom[3] & 0x0100)
|
||
product = "OEM i82557/i82558 10/100 Ethernet";
|
||
else
|
||
product = pci_name(pdev);
|
||
|
||
printk(KERN_INFO "%s: %s, ", dev->name, product);
|
||
|
||
for (i = 0; i < 5; i++)
|
||
printk("%2.2X:", dev->dev_addr[i]);
|
||
printk("%2.2X, ", dev->dev_addr[i]);
|
||
printk("IRQ %d.\n", pdev->irq);
|
||
|
||
sp = netdev_priv(dev);
|
||
|
||
/* we must initialize this early, for mdio_{read,write} */
|
||
sp->regs = ioaddr;
|
||
|
||
#if 1 || defined(kernel_bloat)
|
||
/* OK, this is pure kernel bloat. I don't like it when other drivers
|
||
waste non-pageable kernel space to emit similar messages, but I need
|
||
them for bug reports. */
|
||
{
|
||
const char *connectors[] = {" RJ45", " BNC", " AUI", " MII"};
|
||
/* The self-test results must be paragraph aligned. */
|
||
volatile s32 *self_test_results;
|
||
int boguscnt = 16000; /* Timeout for set-test. */
|
||
if ((eeprom[3] & 0x03) != 0x03)
|
||
printk(KERN_INFO " Receiver lock-up bug exists -- enabling"
|
||
" work-around.\n");
|
||
printk(KERN_INFO " Board assembly %4.4x%2.2x-%3.3d, Physical"
|
||
" connectors present:",
|
||
eeprom[8], eeprom[9]>>8, eeprom[9] & 0xff);
|
||
for (i = 0; i < 4; i++)
|
||
if (eeprom[5] & (1<<i))
|
||
printk(connectors[i]);
|
||
printk("\n"KERN_INFO" Primary interface chip %s PHY #%d.\n",
|
||
phys[(eeprom[6]>>8)&15], eeprom[6] & 0x1f);
|
||
if (eeprom[7] & 0x0700)
|
||
printk(KERN_INFO " Secondary interface chip %s.\n",
|
||
phys[(eeprom[7]>>8)&7]);
|
||
if (((eeprom[6]>>8) & 0x3f) == DP83840
|
||
|| ((eeprom[6]>>8) & 0x3f) == DP83840A) {
|
||
int mdi_reg23 = mdio_read(dev, eeprom[6] & 0x1f, 23) | 0x0422;
|
||
if (congenb)
|
||
mdi_reg23 |= 0x0100;
|
||
printk(KERN_INFO" DP83840 specific setup, setting register 23 to %4.4x.\n",
|
||
mdi_reg23);
|
||
mdio_write(dev, eeprom[6] & 0x1f, 23, mdi_reg23);
|
||
}
|
||
if ((option >= 0) && (option & 0x70)) {
|
||
printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n",
|
||
(option & 0x20 ? 100 : 10),
|
||
(option & 0x10 ? "full" : "half"));
|
||
mdio_write(dev, eeprom[6] & 0x1f, MII_BMCR,
|
||
((option & 0x20) ? 0x2000 : 0) | /* 100mbps? */
|
||
((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */
|
||
}
|
||
|
||
/* Perform a system self-test. */
|
||
self_test_results = (s32*) ((((long) tx_ring_space) + 15) & ~0xf);
|
||
self_test_results[0] = 0;
|
||
self_test_results[1] = -1;
|
||
iowrite32(tx_ring_dma | PortSelfTest, ioaddr + SCBPort);
|
||
do {
|
||
udelay(10);
|
||
} while (self_test_results[1] == -1 && --boguscnt >= 0);
|
||
|
||
if (boguscnt < 0) { /* Test optimized out. */
|
||
printk(KERN_ERR "Self test failed, status %8.8x:\n"
|
||
KERN_ERR " Failure to initialize the i82557.\n"
|
||
KERN_ERR " Verify that the card is a bus-master"
|
||
" capable slot.\n",
|
||
self_test_results[1]);
|
||
} else
|
||
printk(KERN_INFO " General self-test: %s.\n"
|
||
KERN_INFO " Serial sub-system self-test: %s.\n"
|
||
KERN_INFO " Internal registers self-test: %s.\n"
|
||
KERN_INFO " ROM checksum self-test: %s (%#8.8x).\n",
|
||
self_test_results[1] & 0x1000 ? "failed" : "passed",
|
||
self_test_results[1] & 0x0020 ? "failed" : "passed",
|
||
self_test_results[1] & 0x0008 ? "failed" : "passed",
|
||
self_test_results[1] & 0x0004 ? "failed" : "passed",
|
||
self_test_results[0]);
|
||
}
|
||
#endif /* kernel_bloat */
|
||
|
||
iowrite32(PortReset, ioaddr + SCBPort);
|
||
ioread32(ioaddr + SCBPort);
|
||
udelay(10);
|
||
|
||
/* Return the chip to its original power state. */
|
||
pci_set_power_state(pdev, acpi_idle_state);
|
||
|
||
pci_set_drvdata (pdev, dev);
|
||
SET_NETDEV_DEV(dev, &pdev->dev);
|
||
|
||
dev->irq = pdev->irq;
|
||
|
||
sp->pdev = pdev;
|
||
sp->msg_enable = DEBUG;
|
||
sp->acpi_pwr = acpi_idle_state;
|
||
sp->tx_ring = tx_ring_space;
|
||
sp->tx_ring_dma = tx_ring_dma;
|
||
sp->lstats = (struct speedo_stats *)(sp->tx_ring + TX_RING_SIZE);
|
||
sp->lstats_dma = TX_RING_ELEM_DMA(sp, TX_RING_SIZE);
|
||
init_timer(&sp->timer); /* used in ioctl() */
|
||
spin_lock_init(&sp->lock);
|
||
|
||
sp->mii_if.full_duplex = option >= 0 && (option & 0x10) ? 1 : 0;
|
||
if (card_idx >= 0) {
|
||
if (full_duplex[card_idx] >= 0)
|
||
sp->mii_if.full_duplex = full_duplex[card_idx];
|
||
}
|
||
sp->default_port = option >= 0 ? (option & 0x0f) : 0;
|
||
|
||
sp->phy[0] = eeprom[6];
|
||
sp->phy[1] = eeprom[7];
|
||
|
||
sp->mii_if.phy_id = eeprom[6] & 0x1f;
|
||
sp->mii_if.phy_id_mask = 0x1f;
|
||
sp->mii_if.reg_num_mask = 0x1f;
|
||
sp->mii_if.dev = dev;
|
||
sp->mii_if.mdio_read = mdio_read;
|
||
sp->mii_if.mdio_write = mdio_write;
|
||
|
||
sp->rx_bug = (eeprom[3] & 0x03) == 3 ? 0 : 1;
|
||
if (((pdev->device > 0x1030 && (pdev->device < 0x103F)))
|
||
|| (pdev->device == 0x2449) || (pdev->device == 0x2459)
|
||
|| (pdev->device == 0x245D)) {
|
||
sp->chip_id = 1;
|
||
}
|
||
|
||
if (sp->rx_bug)
|
||
printk(KERN_INFO " Receiver lock-up workaround activated.\n");
|
||
|
||
/* The Speedo-specific entries in the device structure. */
|
||
dev->open = &speedo_open;
|
||
dev->hard_start_xmit = &speedo_start_xmit;
|
||
netif_set_tx_timeout(dev, &speedo_tx_timeout, TX_TIMEOUT);
|
||
dev->stop = &speedo_close;
|
||
dev->get_stats = &speedo_get_stats;
|
||
dev->set_multicast_list = &set_rx_mode;
|
||
dev->do_ioctl = &speedo_ioctl;
|
||
SET_ETHTOOL_OPS(dev, ðtool_ops);
|
||
#ifdef CONFIG_NET_POLL_CONTROLLER
|
||
dev->poll_controller = &poll_speedo;
|
||
#endif
|
||
|
||
if (register_netdevice(dev))
|
||
goto err_free_unlock;
|
||
rtnl_unlock();
|
||
|
||
return 0;
|
||
|
||
err_free_unlock:
|
||
rtnl_unlock();
|
||
free_netdev(dev);
|
||
return -1;
|
||
}
|
||
|
||
static void do_slow_command(struct net_device *dev, struct speedo_private *sp, int cmd)
|
||
{
|
||
void __iomem *cmd_ioaddr = sp->regs + SCBCmd;
|
||
int wait = 0;
|
||
do
|
||
if (ioread8(cmd_ioaddr) == 0) break;
|
||
while(++wait <= 200);
|
||
if (wait > 100)
|
||
printk(KERN_ERR "Command %4.4x never accepted (%d polls)!\n",
|
||
ioread8(cmd_ioaddr), wait);
|
||
|
||
iowrite8(cmd, cmd_ioaddr);
|
||
|
||
for (wait = 0; wait <= 100; wait++)
|
||
if (ioread8(cmd_ioaddr) == 0) return;
|
||
for (; wait <= 20000; wait++)
|
||
if (ioread8(cmd_ioaddr) == 0) return;
|
||
else udelay(1);
|
||
printk(KERN_ERR "Command %4.4x was not accepted after %d polls!"
|
||
" Current status %8.8x.\n",
|
||
cmd, wait, ioread32(sp->regs + SCBStatus));
|
||
}
|
||
|
||
/* Serial EEPROM section.
|
||
A "bit" grungy, but we work our way through bit-by-bit :->. */
|
||
/* EEPROM_Ctrl bits. */
|
||
#define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
|
||
#define EE_CS 0x02 /* EEPROM chip select. */
|
||
#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
|
||
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
|
||
#define EE_ENB (0x4800 | EE_CS)
|
||
#define EE_WRITE_0 0x4802
|
||
#define EE_WRITE_1 0x4806
|
||
#define EE_OFFSET SCBeeprom
|
||
|
||
/* The fixes for the code were kindly provided by Dragan Stancevic
|
||
<visitor@valinux.com> to strictly follow Intel specifications of EEPROM
|
||
access timing.
|
||
The publicly available sheet 64486302 (sec. 3.1) specifies 1us access
|
||
interval for serial EEPROM. However, it looks like that there is an
|
||
additional requirement dictating larger udelay's in the code below.
|
||
2000/05/24 SAW */
|
||
static int __devinit do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len)
|
||
{
|
||
unsigned retval = 0;
|
||
void __iomem *ee_addr = ioaddr + SCBeeprom;
|
||
|
||
iowrite16(EE_ENB, ee_addr); udelay(2);
|
||
iowrite16(EE_ENB | EE_SHIFT_CLK, ee_addr); udelay(2);
|
||
|
||
/* Shift the command bits out. */
|
||
do {
|
||
short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
|
||
iowrite16(dataval, ee_addr); udelay(2);
|
||
iowrite16(dataval | EE_SHIFT_CLK, ee_addr); udelay(2);
|
||
retval = (retval << 1) | ((ioread16(ee_addr) & EE_DATA_READ) ? 1 : 0);
|
||
} while (--cmd_len >= 0);
|
||
iowrite16(EE_ENB, ee_addr); udelay(2);
|
||
|
||
/* Terminate the EEPROM access. */
|
||
iowrite16(EE_ENB & ~EE_CS, ee_addr);
|
||
return retval;
|
||
}
|
||
|
||
static int mdio_read(struct net_device *dev, int phy_id, int location)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
|
||
iowrite32(0x08000000 | (location<<16) | (phy_id<<21), ioaddr + SCBCtrlMDI);
|
||
do {
|
||
val = ioread32(ioaddr + SCBCtrlMDI);
|
||
if (--boguscnt < 0) {
|
||
printk(KERN_ERR " mdio_read() timed out with val = %8.8x.\n", val);
|
||
break;
|
||
}
|
||
} while (! (val & 0x10000000));
|
||
return val & 0xffff;
|
||
}
|
||
|
||
static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
|
||
iowrite32(0x04000000 | (location<<16) | (phy_id<<21) | value,
|
||
ioaddr + SCBCtrlMDI);
|
||
do {
|
||
val = ioread32(ioaddr + SCBCtrlMDI);
|
||
if (--boguscnt < 0) {
|
||
printk(KERN_ERR" mdio_write() timed out with val = %8.8x.\n", val);
|
||
break;
|
||
}
|
||
} while (! (val & 0x10000000));
|
||
}
|
||
|
||
static int
|
||
speedo_open(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
int retval;
|
||
|
||
if (netif_msg_ifup(sp))
|
||
printk(KERN_DEBUG "%s: speedo_open() irq %d.\n", dev->name, dev->irq);
|
||
|
||
pci_set_power_state(sp->pdev, PCI_D0);
|
||
|
||
/* Set up the Tx queue early.. */
|
||
sp->cur_tx = 0;
|
||
sp->dirty_tx = 0;
|
||
sp->last_cmd = NULL;
|
||
sp->tx_full = 0;
|
||
sp->in_interrupt = 0;
|
||
|
||
/* .. we can safely take handler calls during init. */
|
||
retval = request_irq(dev->irq, &speedo_interrupt, IRQF_SHARED, dev->name, dev);
|
||
if (retval) {
|
||
return retval;
|
||
}
|
||
|
||
dev->if_port = sp->default_port;
|
||
|
||
#ifdef oh_no_you_dont_unless_you_honour_the_options_passed_in_to_us
|
||
/* Retrigger negotiation to reset previous errors. */
|
||
if ((sp->phy[0] & 0x8000) == 0) {
|
||
int phy_addr = sp->phy[0] & 0x1f ;
|
||
/* Use 0x3300 for restarting NWay, other values to force xcvr:
|
||
0x0000 10-HD
|
||
0x0100 10-FD
|
||
0x2000 100-HD
|
||
0x2100 100-FD
|
||
*/
|
||
#ifdef honor_default_port
|
||
mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]);
|
||
#else
|
||
mdio_write(dev, phy_addr, MII_BMCR, 0x3300);
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
speedo_init_rx_ring(dev);
|
||
|
||
/* Fire up the hardware. */
|
||
iowrite16(SCBMaskAll, ioaddr + SCBCmd);
|
||
speedo_resume(dev);
|
||
|
||
netdevice_start(dev);
|
||
netif_start_queue(dev);
|
||
|
||
/* Setup the chip and configure the multicast list. */
|
||
sp->mc_setup_head = NULL;
|
||
sp->mc_setup_tail = NULL;
|
||
sp->flow_ctrl = sp->partner = 0;
|
||
sp->rx_mode = -1; /* Invalid -> always reset the mode. */
|
||
set_rx_mode(dev);
|
||
if ((sp->phy[0] & 0x8000) == 0)
|
||
sp->mii_if.advertising = mdio_read(dev, sp->phy[0] & 0x1f, MII_ADVERTISE);
|
||
|
||
mii_check_link(&sp->mii_if);
|
||
|
||
if (netif_msg_ifup(sp)) {
|
||
printk(KERN_DEBUG "%s: Done speedo_open(), status %8.8x.\n",
|
||
dev->name, ioread16(ioaddr + SCBStatus));
|
||
}
|
||
|
||
/* Set the timer. The timer serves a dual purpose:
|
||
1) to monitor the media interface (e.g. link beat) and perhaps switch
|
||
to an alternate media type
|
||
2) to monitor Rx activity, and restart the Rx process if the receiver
|
||
hangs. */
|
||
sp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */
|
||
sp->timer.data = (unsigned long)dev;
|
||
sp->timer.function = &speedo_timer; /* timer handler */
|
||
add_timer(&sp->timer);
|
||
|
||
/* No need to wait for the command unit to accept here. */
|
||
if ((sp->phy[0] & 0x8000) == 0)
|
||
mdio_read(dev, sp->phy[0] & 0x1f, MII_BMCR);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Start the chip hardware after a full reset. */
|
||
static void speedo_resume(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
|
||
/* Start with a Tx threshold of 256 (0x..20.... 8 byte units). */
|
||
sp->tx_threshold = 0x01208000;
|
||
|
||
/* Set the segment registers to '0'. */
|
||
if (wait_for_cmd_done(dev, sp) != 0) {
|
||
iowrite32(PortPartialReset, ioaddr + SCBPort);
|
||
udelay(10);
|
||
}
|
||
|
||
iowrite32(0, ioaddr + SCBPointer);
|
||
ioread32(ioaddr + SCBPointer); /* Flush to PCI. */
|
||
udelay(10); /* Bogus, but it avoids the bug. */
|
||
|
||
/* Note: these next two operations can take a while. */
|
||
do_slow_command(dev, sp, RxAddrLoad);
|
||
do_slow_command(dev, sp, CUCmdBase);
|
||
|
||
/* Load the statistics block and rx ring addresses. */
|
||
iowrite32(sp->lstats_dma, ioaddr + SCBPointer);
|
||
ioread32(ioaddr + SCBPointer); /* Flush to PCI */
|
||
|
||
iowrite8(CUStatsAddr, ioaddr + SCBCmd);
|
||
sp->lstats->done_marker = 0;
|
||
wait_for_cmd_done(dev, sp);
|
||
|
||
if (sp->rx_ringp[sp->cur_rx % RX_RING_SIZE] == NULL) {
|
||
if (netif_msg_rx_err(sp))
|
||
printk(KERN_DEBUG "%s: NULL cur_rx in speedo_resume().\n",
|
||
dev->name);
|
||
} else {
|
||
iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
|
||
ioaddr + SCBPointer);
|
||
ioread32(ioaddr + SCBPointer); /* Flush to PCI */
|
||
}
|
||
|
||
/* Note: RxStart should complete instantly. */
|
||
do_slow_command(dev, sp, RxStart);
|
||
do_slow_command(dev, sp, CUDumpStats);
|
||
|
||
/* Fill the first command with our physical address. */
|
||
{
|
||
struct descriptor *ias_cmd;
|
||
|
||
ias_cmd =
|
||
(struct descriptor *)&sp->tx_ring[sp->cur_tx++ % TX_RING_SIZE];
|
||
/* Avoid a bug(?!) here by marking the command already completed. */
|
||
ias_cmd->cmd_status = cpu_to_le32((CmdSuspend | CmdIASetup) | 0xa000);
|
||
ias_cmd->link =
|
||
cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
|
||
memcpy(ias_cmd->params, dev->dev_addr, 6);
|
||
if (sp->last_cmd)
|
||
clear_suspend(sp->last_cmd);
|
||
sp->last_cmd = ias_cmd;
|
||
}
|
||
|
||
/* Start the chip's Tx process and unmask interrupts. */
|
||
iowrite32(TX_RING_ELEM_DMA(sp, sp->dirty_tx % TX_RING_SIZE),
|
||
ioaddr + SCBPointer);
|
||
/* We are not ACK-ing FCP and ER in the interrupt handler yet so they should
|
||
remain masked --Dragan */
|
||
iowrite16(CUStart | SCBMaskEarlyRx | SCBMaskFlowCtl, ioaddr + SCBCmd);
|
||
}
|
||
|
||
/*
|
||
* Sometimes the receiver stops making progress. This routine knows how to
|
||
* get it going again, without losing packets or being otherwise nasty like
|
||
* a chip reset would be. Previously the driver had a whole sequence
|
||
* of if RxSuspended, if it's no buffers do one thing, if it's no resources,
|
||
* do another, etc. But those things don't really matter. Separate logic
|
||
* in the ISR provides for allocating buffers--the other half of operation
|
||
* is just making sure the receiver is active. speedo_rx_soft_reset does that.
|
||
* This problem with the old, more involved algorithm is shown up under
|
||
* ping floods on the order of 60K packets/second on a 100Mbps fdx network.
|
||
*/
|
||
static void
|
||
speedo_rx_soft_reset(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
struct RxFD *rfd;
|
||
void __iomem *ioaddr;
|
||
|
||
ioaddr = sp->regs;
|
||
if (wait_for_cmd_done(dev, sp) != 0) {
|
||
printk("%s: previous command stalled\n", dev->name);
|
||
return;
|
||
}
|
||
/*
|
||
* Put the hardware into a known state.
|
||
*/
|
||
iowrite8(RxAbort, ioaddr + SCBCmd);
|
||
|
||
rfd = sp->rx_ringp[sp->cur_rx % RX_RING_SIZE];
|
||
|
||
rfd->rx_buf_addr = 0xffffffff;
|
||
|
||
if (wait_for_cmd_done(dev, sp) != 0) {
|
||
printk("%s: RxAbort command stalled\n", dev->name);
|
||
return;
|
||
}
|
||
iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
|
||
ioaddr + SCBPointer);
|
||
iowrite8(RxStart, ioaddr + SCBCmd);
|
||
}
|
||
|
||
|
||
/* Media monitoring and control. */
|
||
static void speedo_timer(unsigned long data)
|
||
{
|
||
struct net_device *dev = (struct net_device *)data;
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
int phy_num = sp->phy[0] & 0x1f;
|
||
|
||
/* We have MII and lost link beat. */
|
||
if ((sp->phy[0] & 0x8000) == 0) {
|
||
int partner = mdio_read(dev, phy_num, MII_LPA);
|
||
if (partner != sp->partner) {
|
||
int flow_ctrl = sp->mii_if.advertising & partner & 0x0400 ? 1 : 0;
|
||
if (netif_msg_link(sp)) {
|
||
printk(KERN_DEBUG "%s: Link status change.\n", dev->name);
|
||
printk(KERN_DEBUG "%s: Old partner %x, new %x, adv %x.\n",
|
||
dev->name, sp->partner, partner, sp->mii_if.advertising);
|
||
}
|
||
sp->partner = partner;
|
||
if (flow_ctrl != sp->flow_ctrl) {
|
||
sp->flow_ctrl = flow_ctrl;
|
||
sp->rx_mode = -1; /* Trigger a reload. */
|
||
}
|
||
}
|
||
}
|
||
mii_check_link(&sp->mii_if);
|
||
if (netif_msg_timer(sp)) {
|
||
printk(KERN_DEBUG "%s: Media control tick, status %4.4x.\n",
|
||
dev->name, ioread16(ioaddr + SCBStatus));
|
||
}
|
||
if (sp->rx_mode < 0 ||
|
||
(sp->rx_bug && jiffies - sp->last_rx_time > 2*HZ)) {
|
||
/* We haven't received a packet in a Long Time. We might have been
|
||
bitten by the receiver hang bug. This can be cleared by sending
|
||
a set multicast list command. */
|
||
if (netif_msg_timer(sp))
|
||
printk(KERN_DEBUG "%s: Sending a multicast list set command"
|
||
" from a timer routine,"
|
||
" m=%d, j=%ld, l=%ld.\n",
|
||
dev->name, sp->rx_mode, jiffies, sp->last_rx_time);
|
||
set_rx_mode(dev);
|
||
}
|
||
/* We must continue to monitor the media. */
|
||
sp->timer.expires = RUN_AT(2*HZ); /* 2.0 sec. */
|
||
add_timer(&sp->timer);
|
||
}
|
||
|
||
static void speedo_show_state(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
int i;
|
||
|
||
if (netif_msg_pktdata(sp)) {
|
||
printk(KERN_DEBUG "%s: Tx ring dump, Tx queue %u / %u:\n",
|
||
dev->name, sp->cur_tx, sp->dirty_tx);
|
||
for (i = 0; i < TX_RING_SIZE; i++)
|
||
printk(KERN_DEBUG "%s: %c%c%2d %8.8x.\n", dev->name,
|
||
i == sp->dirty_tx % TX_RING_SIZE ? '*' : ' ',
|
||
i == sp->cur_tx % TX_RING_SIZE ? '=' : ' ',
|
||
i, sp->tx_ring[i].status);
|
||
|
||
printk(KERN_DEBUG "%s: Printing Rx ring"
|
||
" (next to receive into %u, dirty index %u).\n",
|
||
dev->name, sp->cur_rx, sp->dirty_rx);
|
||
for (i = 0; i < RX_RING_SIZE; i++)
|
||
printk(KERN_DEBUG "%s: %c%c%c%2d %8.8x.\n", dev->name,
|
||
sp->rx_ringp[i] == sp->last_rxf ? 'l' : ' ',
|
||
i == sp->dirty_rx % RX_RING_SIZE ? '*' : ' ',
|
||
i == sp->cur_rx % RX_RING_SIZE ? '=' : ' ',
|
||
i, (sp->rx_ringp[i] != NULL) ?
|
||
(unsigned)sp->rx_ringp[i]->status : 0);
|
||
}
|
||
|
||
#if 0
|
||
{
|
||
void __iomem *ioaddr = sp->regs;
|
||
int phy_num = sp->phy[0] & 0x1f;
|
||
for (i = 0; i < 16; i++) {
|
||
/* FIXME: what does it mean? --SAW */
|
||
if (i == 6) i = 21;
|
||
printk(KERN_DEBUG "%s: PHY index %d register %d is %4.4x.\n",
|
||
dev->name, phy_num, i, mdio_read(dev, phy_num, i));
|
||
}
|
||
}
|
||
#endif
|
||
|
||
}
|
||
|
||
/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
|
||
static void
|
||
speedo_init_rx_ring(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
struct RxFD *rxf, *last_rxf = NULL;
|
||
dma_addr_t last_rxf_dma = 0 /* to shut up the compiler */;
|
||
int i;
|
||
|
||
sp->cur_rx = 0;
|
||
|
||
for (i = 0; i < RX_RING_SIZE; i++) {
|
||
struct sk_buff *skb;
|
||
skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
|
||
if (skb)
|
||
rx_align(skb); /* Align IP on 16 byte boundary */
|
||
sp->rx_skbuff[i] = skb;
|
||
if (skb == NULL)
|
||
break; /* OK. Just initially short of Rx bufs. */
|
||
skb->dev = dev; /* Mark as being used by this device. */
|
||
rxf = (struct RxFD *)skb->data;
|
||
sp->rx_ringp[i] = rxf;
|
||
sp->rx_ring_dma[i] =
|
||
pci_map_single(sp->pdev, rxf,
|
||
PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_BIDIRECTIONAL);
|
||
skb_reserve(skb, sizeof(struct RxFD));
|
||
if (last_rxf) {
|
||
last_rxf->link = cpu_to_le32(sp->rx_ring_dma[i]);
|
||
pci_dma_sync_single_for_device(sp->pdev, last_rxf_dma,
|
||
sizeof(struct RxFD), PCI_DMA_TODEVICE);
|
||
}
|
||
last_rxf = rxf;
|
||
last_rxf_dma = sp->rx_ring_dma[i];
|
||
rxf->status = cpu_to_le32(0x00000001); /* '1' is flag value only. */
|
||
rxf->link = 0; /* None yet. */
|
||
/* This field unused by i82557. */
|
||
rxf->rx_buf_addr = 0xffffffff;
|
||
rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
|
||
pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[i],
|
||
sizeof(struct RxFD), PCI_DMA_TODEVICE);
|
||
}
|
||
sp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
|
||
/* Mark the last entry as end-of-list. */
|
||
last_rxf->status = cpu_to_le32(0xC0000002); /* '2' is flag value only. */
|
||
pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[RX_RING_SIZE-1],
|
||
sizeof(struct RxFD), PCI_DMA_TODEVICE);
|
||
sp->last_rxf = last_rxf;
|
||
sp->last_rxf_dma = last_rxf_dma;
|
||
}
|
||
|
||
static void speedo_purge_tx(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
int entry;
|
||
|
||
while ((int)(sp->cur_tx - sp->dirty_tx) > 0) {
|
||
entry = sp->dirty_tx % TX_RING_SIZE;
|
||
if (sp->tx_skbuff[entry]) {
|
||
sp->stats.tx_errors++;
|
||
pci_unmap_single(sp->pdev,
|
||
le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
|
||
sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
|
||
dev_kfree_skb_irq(sp->tx_skbuff[entry]);
|
||
sp->tx_skbuff[entry] = NULL;
|
||
}
|
||
sp->dirty_tx++;
|
||
}
|
||
while (sp->mc_setup_head != NULL) {
|
||
struct speedo_mc_block *t;
|
||
if (netif_msg_tx_err(sp))
|
||
printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
|
||
pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
|
||
sp->mc_setup_head->len, PCI_DMA_TODEVICE);
|
||
t = sp->mc_setup_head->next;
|
||
kfree(sp->mc_setup_head);
|
||
sp->mc_setup_head = t;
|
||
}
|
||
sp->mc_setup_tail = NULL;
|
||
sp->tx_full = 0;
|
||
netif_wake_queue(dev);
|
||
}
|
||
|
||
static void reset_mii(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
|
||
/* Reset the MII transceiver, suggested by Fred Young @ scalable.com. */
|
||
if ((sp->phy[0] & 0x8000) == 0) {
|
||
int phy_addr = sp->phy[0] & 0x1f;
|
||
int advertising = mdio_read(dev, phy_addr, MII_ADVERTISE);
|
||
int mii_bmcr = mdio_read(dev, phy_addr, MII_BMCR);
|
||
mdio_write(dev, phy_addr, MII_BMCR, 0x0400);
|
||
mdio_write(dev, phy_addr, MII_BMSR, 0x0000);
|
||
mdio_write(dev, phy_addr, MII_ADVERTISE, 0x0000);
|
||
mdio_write(dev, phy_addr, MII_BMCR, 0x8000);
|
||
#ifdef honor_default_port
|
||
mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]);
|
||
#else
|
||
mdio_read(dev, phy_addr, MII_BMCR);
|
||
mdio_write(dev, phy_addr, MII_BMCR, mii_bmcr);
|
||
mdio_write(dev, phy_addr, MII_ADVERTISE, advertising);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
static void speedo_tx_timeout(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
int status = ioread16(ioaddr + SCBStatus);
|
||
unsigned long flags;
|
||
|
||
if (netif_msg_tx_err(sp)) {
|
||
printk(KERN_WARNING "%s: Transmit timed out: status %4.4x "
|
||
" %4.4x at %d/%d command %8.8x.\n",
|
||
dev->name, status, ioread16(ioaddr + SCBCmd),
|
||
sp->dirty_tx, sp->cur_tx,
|
||
sp->tx_ring[sp->dirty_tx % TX_RING_SIZE].status);
|
||
|
||
}
|
||
speedo_show_state(dev);
|
||
#if 0
|
||
if ((status & 0x00C0) != 0x0080
|
||
&& (status & 0x003C) == 0x0010) {
|
||
/* Only the command unit has stopped. */
|
||
printk(KERN_WARNING "%s: Trying to restart the transmitter...\n",
|
||
dev->name);
|
||
iowrite32(TX_RING_ELEM_DMA(sp, dirty_tx % TX_RING_SIZE]),
|
||
ioaddr + SCBPointer);
|
||
iowrite16(CUStart, ioaddr + SCBCmd);
|
||
reset_mii(dev);
|
||
} else {
|
||
#else
|
||
{
|
||
#endif
|
||
del_timer_sync(&sp->timer);
|
||
/* Reset the Tx and Rx units. */
|
||
iowrite32(PortReset, ioaddr + SCBPort);
|
||
/* We may get spurious interrupts here. But I don't think that they
|
||
may do much harm. 1999/12/09 SAW */
|
||
udelay(10);
|
||
/* Disable interrupts. */
|
||
iowrite16(SCBMaskAll, ioaddr + SCBCmd);
|
||
synchronize_irq(dev->irq);
|
||
speedo_tx_buffer_gc(dev);
|
||
/* Free as much as possible.
|
||
It helps to recover from a hang because of out-of-memory.
|
||
It also simplifies speedo_resume() in case TX ring is full or
|
||
close-to-be full. */
|
||
speedo_purge_tx(dev);
|
||
speedo_refill_rx_buffers(dev, 1);
|
||
spin_lock_irqsave(&sp->lock, flags);
|
||
speedo_resume(dev);
|
||
sp->rx_mode = -1;
|
||
dev->trans_start = jiffies;
|
||
spin_unlock_irqrestore(&sp->lock, flags);
|
||
set_rx_mode(dev); /* it takes the spinlock itself --SAW */
|
||
/* Reset MII transceiver. Do it before starting the timer to serialize
|
||
mdio_xxx operations. Yes, it's a paranoya :-) 2000/05/09 SAW */
|
||
reset_mii(dev);
|
||
sp->timer.expires = RUN_AT(2*HZ);
|
||
add_timer(&sp->timer);
|
||
}
|
||
return;
|
||
}
|
||
|
||
static int
|
||
speedo_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
int entry;
|
||
|
||
/* Prevent interrupts from changing the Tx ring from underneath us. */
|
||
unsigned long flags;
|
||
|
||
spin_lock_irqsave(&sp->lock, flags);
|
||
|
||
/* Check if there are enough space. */
|
||
if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
|
||
printk(KERN_ERR "%s: incorrect tbusy state, fixed.\n", dev->name);
|
||
netif_stop_queue(dev);
|
||
sp->tx_full = 1;
|
||
spin_unlock_irqrestore(&sp->lock, flags);
|
||
return 1;
|
||
}
|
||
|
||
/* Calculate the Tx descriptor entry. */
|
||
entry = sp->cur_tx++ % TX_RING_SIZE;
|
||
|
||
sp->tx_skbuff[entry] = skb;
|
||
sp->tx_ring[entry].status =
|
||
cpu_to_le32(CmdSuspend | CmdTx | CmdTxFlex);
|
||
if (!(entry & ((TX_RING_SIZE>>2)-1)))
|
||
sp->tx_ring[entry].status |= cpu_to_le32(CmdIntr);
|
||
sp->tx_ring[entry].link =
|
||
cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
|
||
sp->tx_ring[entry].tx_desc_addr =
|
||
cpu_to_le32(TX_RING_ELEM_DMA(sp, entry) + TX_DESCR_BUF_OFFSET);
|
||
/* The data region is always in one buffer descriptor. */
|
||
sp->tx_ring[entry].count = cpu_to_le32(sp->tx_threshold);
|
||
sp->tx_ring[entry].tx_buf_addr0 =
|
||
cpu_to_le32(pci_map_single(sp->pdev, skb->data,
|
||
skb->len, PCI_DMA_TODEVICE));
|
||
sp->tx_ring[entry].tx_buf_size0 = cpu_to_le32(skb->len);
|
||
|
||
/* workaround for hardware bug on 10 mbit half duplex */
|
||
|
||
if ((sp->partner == 0) && (sp->chip_id == 1)) {
|
||
wait_for_cmd_done(dev, sp);
|
||
iowrite8(0 , ioaddr + SCBCmd);
|
||
udelay(1);
|
||
}
|
||
|
||
/* Trigger the command unit resume. */
|
||
wait_for_cmd_done(dev, sp);
|
||
clear_suspend(sp->last_cmd);
|
||
/* We want the time window between clearing suspend flag on the previous
|
||
command and resuming CU to be as small as possible.
|
||
Interrupts in between are very undesired. --SAW */
|
||
iowrite8(CUResume, ioaddr + SCBCmd);
|
||
sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
|
||
|
||
/* Leave room for set_rx_mode(). If there is no more space than reserved
|
||
for multicast filter mark the ring as full. */
|
||
if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
|
||
netif_stop_queue(dev);
|
||
sp->tx_full = 1;
|
||
}
|
||
|
||
spin_unlock_irqrestore(&sp->lock, flags);
|
||
|
||
dev->trans_start = jiffies;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void speedo_tx_buffer_gc(struct net_device *dev)
|
||
{
|
||
unsigned int dirty_tx;
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
|
||
dirty_tx = sp->dirty_tx;
|
||
while ((int)(sp->cur_tx - dirty_tx) > 0) {
|
||
int entry = dirty_tx % TX_RING_SIZE;
|
||
int status = le32_to_cpu(sp->tx_ring[entry].status);
|
||
|
||
if (netif_msg_tx_done(sp))
|
||
printk(KERN_DEBUG " scavenge candidate %d status %4.4x.\n",
|
||
entry, status);
|
||
if ((status & StatusComplete) == 0)
|
||
break; /* It still hasn't been processed. */
|
||
if (status & TxUnderrun)
|
||
if (sp->tx_threshold < 0x01e08000) {
|
||
if (netif_msg_tx_err(sp))
|
||
printk(KERN_DEBUG "%s: TX underrun, threshold adjusted.\n",
|
||
dev->name);
|
||
sp->tx_threshold += 0x00040000;
|
||
}
|
||
/* Free the original skb. */
|
||
if (sp->tx_skbuff[entry]) {
|
||
sp->stats.tx_packets++; /* Count only user packets. */
|
||
sp->stats.tx_bytes += sp->tx_skbuff[entry]->len;
|
||
pci_unmap_single(sp->pdev,
|
||
le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
|
||
sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
|
||
dev_kfree_skb_irq(sp->tx_skbuff[entry]);
|
||
sp->tx_skbuff[entry] = NULL;
|
||
}
|
||
dirty_tx++;
|
||
}
|
||
|
||
if (netif_msg_tx_err(sp) && (int)(sp->cur_tx - dirty_tx) > TX_RING_SIZE) {
|
||
printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d,"
|
||
" full=%d.\n",
|
||
dirty_tx, sp->cur_tx, sp->tx_full);
|
||
dirty_tx += TX_RING_SIZE;
|
||
}
|
||
|
||
while (sp->mc_setup_head != NULL
|
||
&& (int)(dirty_tx - sp->mc_setup_head->tx - 1) > 0) {
|
||
struct speedo_mc_block *t;
|
||
if (netif_msg_tx_err(sp))
|
||
printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
|
||
pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
|
||
sp->mc_setup_head->len, PCI_DMA_TODEVICE);
|
||
t = sp->mc_setup_head->next;
|
||
kfree(sp->mc_setup_head);
|
||
sp->mc_setup_head = t;
|
||
}
|
||
if (sp->mc_setup_head == NULL)
|
||
sp->mc_setup_tail = NULL;
|
||
|
||
sp->dirty_tx = dirty_tx;
|
||
}
|
||
|
||
/* The interrupt handler does all of the Rx thread work and cleans up
|
||
after the Tx thread. */
|
||
static irqreturn_t speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
|
||
{
|
||
struct net_device *dev = (struct net_device *)dev_instance;
|
||
struct speedo_private *sp;
|
||
void __iomem *ioaddr;
|
||
long boguscnt = max_interrupt_work;
|
||
unsigned short status;
|
||
unsigned int handled = 0;
|
||
|
||
sp = netdev_priv(dev);
|
||
ioaddr = sp->regs;
|
||
|
||
#ifndef final_version
|
||
/* A lock to prevent simultaneous entry on SMP machines. */
|
||
if (test_and_set_bit(0, (void*)&sp->in_interrupt)) {
|
||
printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n",
|
||
dev->name);
|
||
sp->in_interrupt = 0; /* Avoid halting machine. */
|
||
return IRQ_NONE;
|
||
}
|
||
#endif
|
||
|
||
do {
|
||
status = ioread16(ioaddr + SCBStatus);
|
||
/* Acknowledge all of the current interrupt sources ASAP. */
|
||
/* Will change from 0xfc00 to 0xff00 when we start handling
|
||
FCP and ER interrupts --Dragan */
|
||
iowrite16(status & 0xfc00, ioaddr + SCBStatus);
|
||
|
||
if (netif_msg_intr(sp))
|
||
printk(KERN_DEBUG "%s: interrupt status=%#4.4x.\n",
|
||
dev->name, status);
|
||
|
||
if ((status & 0xfc00) == 0)
|
||
break;
|
||
handled = 1;
|
||
|
||
|
||
if ((status & 0x5000) || /* Packet received, or Rx error. */
|
||
(sp->rx_ring_state&(RrNoMem|RrPostponed)) == RrPostponed)
|
||
/* Need to gather the postponed packet. */
|
||
speedo_rx(dev);
|
||
|
||
/* Always check if all rx buffers are allocated. --SAW */
|
||
speedo_refill_rx_buffers(dev, 0);
|
||
|
||
spin_lock(&sp->lock);
|
||
/*
|
||
* The chip may have suspended reception for various reasons.
|
||
* Check for that, and re-prime it should this be the case.
|
||
*/
|
||
switch ((status >> 2) & 0xf) {
|
||
case 0: /* Idle */
|
||
break;
|
||
case 1: /* Suspended */
|
||
case 2: /* No resources (RxFDs) */
|
||
case 9: /* Suspended with no more RBDs */
|
||
case 10: /* No resources due to no RBDs */
|
||
case 12: /* Ready with no RBDs */
|
||
speedo_rx_soft_reset(dev);
|
||
break;
|
||
case 3: case 5: case 6: case 7: case 8:
|
||
case 11: case 13: case 14: case 15:
|
||
/* these are all reserved values */
|
||
break;
|
||
}
|
||
|
||
|
||
/* User interrupt, Command/Tx unit interrupt or CU not active. */
|
||
if (status & 0xA400) {
|
||
speedo_tx_buffer_gc(dev);
|
||
if (sp->tx_full
|
||
&& (int)(sp->cur_tx - sp->dirty_tx) < TX_QUEUE_UNFULL) {
|
||
/* The ring is no longer full. */
|
||
sp->tx_full = 0;
|
||
netif_wake_queue(dev); /* Attention: under a spinlock. --SAW */
|
||
}
|
||
}
|
||
|
||
spin_unlock(&sp->lock);
|
||
|
||
if (--boguscnt < 0) {
|
||
printk(KERN_ERR "%s: Too much work at interrupt, status=0x%4.4x.\n",
|
||
dev->name, status);
|
||
/* Clear all interrupt sources. */
|
||
/* Will change from 0xfc00 to 0xff00 when we start handling
|
||
FCP and ER interrupts --Dragan */
|
||
iowrite16(0xfc00, ioaddr + SCBStatus);
|
||
break;
|
||
}
|
||
} while (1);
|
||
|
||
if (netif_msg_intr(sp))
|
||
printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
|
||
dev->name, ioread16(ioaddr + SCBStatus));
|
||
|
||
clear_bit(0, (void*)&sp->in_interrupt);
|
||
return IRQ_RETVAL(handled);
|
||
}
|
||
|
||
static inline struct RxFD *speedo_rx_alloc(struct net_device *dev, int entry)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
struct RxFD *rxf;
|
||
struct sk_buff *skb;
|
||
/* Get a fresh skbuff to replace the consumed one. */
|
||
skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
|
||
if (skb)
|
||
rx_align(skb); /* Align IP on 16 byte boundary */
|
||
sp->rx_skbuff[entry] = skb;
|
||
if (skb == NULL) {
|
||
sp->rx_ringp[entry] = NULL;
|
||
return NULL;
|
||
}
|
||
rxf = sp->rx_ringp[entry] = (struct RxFD *)skb->data;
|
||
sp->rx_ring_dma[entry] =
|
||
pci_map_single(sp->pdev, rxf,
|
||
PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
|
||
skb->dev = dev;
|
||
skb_reserve(skb, sizeof(struct RxFD));
|
||
rxf->rx_buf_addr = 0xffffffff;
|
||
pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry],
|
||
sizeof(struct RxFD), PCI_DMA_TODEVICE);
|
||
return rxf;
|
||
}
|
||
|
||
static inline void speedo_rx_link(struct net_device *dev, int entry,
|
||
struct RxFD *rxf, dma_addr_t rxf_dma)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
rxf->status = cpu_to_le32(0xC0000001); /* '1' for driver use only. */
|
||
rxf->link = 0; /* None yet. */
|
||
rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
|
||
sp->last_rxf->link = cpu_to_le32(rxf_dma);
|
||
sp->last_rxf->status &= cpu_to_le32(~0xC0000000);
|
||
pci_dma_sync_single_for_device(sp->pdev, sp->last_rxf_dma,
|
||
sizeof(struct RxFD), PCI_DMA_TODEVICE);
|
||
sp->last_rxf = rxf;
|
||
sp->last_rxf_dma = rxf_dma;
|
||
}
|
||
|
||
static int speedo_refill_rx_buf(struct net_device *dev, int force)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
int entry;
|
||
struct RxFD *rxf;
|
||
|
||
entry = sp->dirty_rx % RX_RING_SIZE;
|
||
if (sp->rx_skbuff[entry] == NULL) {
|
||
rxf = speedo_rx_alloc(dev, entry);
|
||
if (rxf == NULL) {
|
||
unsigned int forw;
|
||
int forw_entry;
|
||
if (netif_msg_rx_err(sp) || !(sp->rx_ring_state & RrOOMReported)) {
|
||
printk(KERN_WARNING "%s: can't fill rx buffer (force %d)!\n",
|
||
dev->name, force);
|
||
sp->rx_ring_state |= RrOOMReported;
|
||
}
|
||
speedo_show_state(dev);
|
||
if (!force)
|
||
return -1; /* Better luck next time! */
|
||
/* Borrow an skb from one of next entries. */
|
||
for (forw = sp->dirty_rx + 1; forw != sp->cur_rx; forw++)
|
||
if (sp->rx_skbuff[forw % RX_RING_SIZE] != NULL)
|
||
break;
|
||
if (forw == sp->cur_rx)
|
||
return -1;
|
||
forw_entry = forw % RX_RING_SIZE;
|
||
sp->rx_skbuff[entry] = sp->rx_skbuff[forw_entry];
|
||
sp->rx_skbuff[forw_entry] = NULL;
|
||
rxf = sp->rx_ringp[forw_entry];
|
||
sp->rx_ringp[forw_entry] = NULL;
|
||
sp->rx_ringp[entry] = rxf;
|
||
}
|
||
} else {
|
||
rxf = sp->rx_ringp[entry];
|
||
}
|
||
speedo_rx_link(dev, entry, rxf, sp->rx_ring_dma[entry]);
|
||
sp->dirty_rx++;
|
||
sp->rx_ring_state &= ~(RrNoMem|RrOOMReported); /* Mark the progress. */
|
||
return 0;
|
||
}
|
||
|
||
static void speedo_refill_rx_buffers(struct net_device *dev, int force)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
|
||
/* Refill the RX ring. */
|
||
while ((int)(sp->cur_rx - sp->dirty_rx) > 0 &&
|
||
speedo_refill_rx_buf(dev, force) != -1);
|
||
}
|
||
|
||
static int
|
||
speedo_rx(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
int entry = sp->cur_rx % RX_RING_SIZE;
|
||
int rx_work_limit = sp->dirty_rx + RX_RING_SIZE - sp->cur_rx;
|
||
int alloc_ok = 1;
|
||
int npkts = 0;
|
||
|
||
if (netif_msg_intr(sp))
|
||
printk(KERN_DEBUG " In speedo_rx().\n");
|
||
/* If we own the next entry, it's a new packet. Send it up. */
|
||
while (sp->rx_ringp[entry] != NULL) {
|
||
int status;
|
||
int pkt_len;
|
||
|
||
pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry],
|
||
sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
|
||
status = le32_to_cpu(sp->rx_ringp[entry]->status);
|
||
pkt_len = le32_to_cpu(sp->rx_ringp[entry]->count) & 0x3fff;
|
||
|
||
if (!(status & RxComplete))
|
||
break;
|
||
|
||
if (--rx_work_limit < 0)
|
||
break;
|
||
|
||
/* Check for a rare out-of-memory case: the current buffer is
|
||
the last buffer allocated in the RX ring. --SAW */
|
||
if (sp->last_rxf == sp->rx_ringp[entry]) {
|
||
/* Postpone the packet. It'll be reaped at an interrupt when this
|
||
packet is no longer the last packet in the ring. */
|
||
if (netif_msg_rx_err(sp))
|
||
printk(KERN_DEBUG "%s: RX packet postponed!\n",
|
||
dev->name);
|
||
sp->rx_ring_state |= RrPostponed;
|
||
break;
|
||
}
|
||
|
||
if (netif_msg_rx_status(sp))
|
||
printk(KERN_DEBUG " speedo_rx() status %8.8x len %d.\n", status,
|
||
pkt_len);
|
||
if ((status & (RxErrTooBig|RxOK|0x0f90)) != RxOK) {
|
||
if (status & RxErrTooBig)
|
||
printk(KERN_ERR "%s: Ethernet frame overran the Rx buffer, "
|
||
"status %8.8x!\n", dev->name, status);
|
||
else if (! (status & RxOK)) {
|
||
/* There was a fatal error. This *should* be impossible. */
|
||
sp->stats.rx_errors++;
|
||
printk(KERN_ERR "%s: Anomalous event in speedo_rx(), "
|
||
"status %8.8x.\n",
|
||
dev->name, status);
|
||
}
|
||
} else {
|
||
struct sk_buff *skb;
|
||
|
||
/* Check if the packet is long enough to just accept without
|
||
copying to a properly sized skbuff. */
|
||
if (pkt_len < rx_copybreak
|
||
&& (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
|
||
skb->dev = dev;
|
||
skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
|
||
/* 'skb_put()' points to the start of sk_buff data area. */
|
||
pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry],
|
||
sizeof(struct RxFD) + pkt_len,
|
||
PCI_DMA_FROMDEVICE);
|
||
|
||
#if 1 || USE_IP_CSUM
|
||
/* Packet is in one chunk -- we can copy + cksum. */
|
||
eth_copy_and_sum(skb, sp->rx_skbuff[entry]->data, pkt_len, 0);
|
||
skb_put(skb, pkt_len);
|
||
#else
|
||
memcpy(skb_put(skb, pkt_len), sp->rx_skbuff[entry]->data,
|
||
pkt_len);
|
||
#endif
|
||
pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry],
|
||
sizeof(struct RxFD) + pkt_len,
|
||
PCI_DMA_FROMDEVICE);
|
||
npkts++;
|
||
} else {
|
||
/* Pass up the already-filled skbuff. */
|
||
skb = sp->rx_skbuff[entry];
|
||
if (skb == NULL) {
|
||
printk(KERN_ERR "%s: Inconsistent Rx descriptor chain.\n",
|
||
dev->name);
|
||
break;
|
||
}
|
||
sp->rx_skbuff[entry] = NULL;
|
||
skb_put(skb, pkt_len);
|
||
npkts++;
|
||
sp->rx_ringp[entry] = NULL;
|
||
pci_unmap_single(sp->pdev, sp->rx_ring_dma[entry],
|
||
PKT_BUF_SZ + sizeof(struct RxFD),
|
||
PCI_DMA_FROMDEVICE);
|
||
}
|
||
skb->protocol = eth_type_trans(skb, dev);
|
||
netif_rx(skb);
|
||
dev->last_rx = jiffies;
|
||
sp->stats.rx_packets++;
|
||
sp->stats.rx_bytes += pkt_len;
|
||
}
|
||
entry = (++sp->cur_rx) % RX_RING_SIZE;
|
||
sp->rx_ring_state &= ~RrPostponed;
|
||
/* Refill the recently taken buffers.
|
||
Do it one-by-one to handle traffic bursts better. */
|
||
if (alloc_ok && speedo_refill_rx_buf(dev, 0) == -1)
|
||
alloc_ok = 0;
|
||
}
|
||
|
||
/* Try hard to refill the recently taken buffers. */
|
||
speedo_refill_rx_buffers(dev, 1);
|
||
|
||
if (npkts)
|
||
sp->last_rx_time = jiffies;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
speedo_close(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
int i;
|
||
|
||
netdevice_stop(dev);
|
||
netif_stop_queue(dev);
|
||
|
||
if (netif_msg_ifdown(sp))
|
||
printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n",
|
||
dev->name, ioread16(ioaddr + SCBStatus));
|
||
|
||
/* Shut off the media monitoring timer. */
|
||
del_timer_sync(&sp->timer);
|
||
|
||
iowrite16(SCBMaskAll, ioaddr + SCBCmd);
|
||
|
||
/* Shutting down the chip nicely fails to disable flow control. So.. */
|
||
iowrite32(PortPartialReset, ioaddr + SCBPort);
|
||
ioread32(ioaddr + SCBPort); /* flush posted write */
|
||
/*
|
||
* The chip requires a 10 microsecond quiet period. Wait here!
|
||
*/
|
||
udelay(10);
|
||
|
||
free_irq(dev->irq, dev);
|
||
speedo_show_state(dev);
|
||
|
||
/* Free all the skbuffs in the Rx and Tx queues. */
|
||
for (i = 0; i < RX_RING_SIZE; i++) {
|
||
struct sk_buff *skb = sp->rx_skbuff[i];
|
||
sp->rx_skbuff[i] = NULL;
|
||
/* Clear the Rx descriptors. */
|
||
if (skb) {
|
||
pci_unmap_single(sp->pdev,
|
||
sp->rx_ring_dma[i],
|
||
PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
|
||
dev_kfree_skb(skb);
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < TX_RING_SIZE; i++) {
|
||
struct sk_buff *skb = sp->tx_skbuff[i];
|
||
sp->tx_skbuff[i] = NULL;
|
||
/* Clear the Tx descriptors. */
|
||
if (skb) {
|
||
pci_unmap_single(sp->pdev,
|
||
le32_to_cpu(sp->tx_ring[i].tx_buf_addr0),
|
||
skb->len, PCI_DMA_TODEVICE);
|
||
dev_kfree_skb(skb);
|
||
}
|
||
}
|
||
|
||
/* Free multicast setting blocks. */
|
||
for (i = 0; sp->mc_setup_head != NULL; i++) {
|
||
struct speedo_mc_block *t;
|
||
t = sp->mc_setup_head->next;
|
||
kfree(sp->mc_setup_head);
|
||
sp->mc_setup_head = t;
|
||
}
|
||
sp->mc_setup_tail = NULL;
|
||
if (netif_msg_ifdown(sp))
|
||
printk(KERN_DEBUG "%s: %d multicast blocks dropped.\n", dev->name, i);
|
||
|
||
pci_set_power_state(sp->pdev, PCI_D2);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* The Speedo-3 has an especially awkward and unusable method of getting
|
||
statistics out of the chip. It takes an unpredictable length of time
|
||
for the dump-stats command to complete. To avoid a busy-wait loop we
|
||
update the stats with the previous dump results, and then trigger a
|
||
new dump.
|
||
|
||
Oh, and incoming frames are dropped while executing dump-stats!
|
||
*/
|
||
static struct net_device_stats *
|
||
speedo_get_stats(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
|
||
/* Update only if the previous dump finished. */
|
||
if (sp->lstats->done_marker == le32_to_cpu(0xA007)) {
|
||
sp->stats.tx_aborted_errors += le32_to_cpu(sp->lstats->tx_coll16_errs);
|
||
sp->stats.tx_window_errors += le32_to_cpu(sp->lstats->tx_late_colls);
|
||
sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_underruns);
|
||
sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_lost_carrier);
|
||
/*sp->stats.tx_deferred += le32_to_cpu(sp->lstats->tx_deferred);*/
|
||
sp->stats.collisions += le32_to_cpu(sp->lstats->tx_total_colls);
|
||
sp->stats.rx_crc_errors += le32_to_cpu(sp->lstats->rx_crc_errs);
|
||
sp->stats.rx_frame_errors += le32_to_cpu(sp->lstats->rx_align_errs);
|
||
sp->stats.rx_over_errors += le32_to_cpu(sp->lstats->rx_resource_errs);
|
||
sp->stats.rx_fifo_errors += le32_to_cpu(sp->lstats->rx_overrun_errs);
|
||
sp->stats.rx_length_errors += le32_to_cpu(sp->lstats->rx_runt_errs);
|
||
sp->lstats->done_marker = 0x0000;
|
||
if (netif_running(dev)) {
|
||
unsigned long flags;
|
||
/* Take a spinlock to make wait_for_cmd_done and sending the
|
||
command atomic. --SAW */
|
||
spin_lock_irqsave(&sp->lock, flags);
|
||
wait_for_cmd_done(dev, sp);
|
||
iowrite8(CUDumpStats, ioaddr + SCBCmd);
|
||
spin_unlock_irqrestore(&sp->lock, flags);
|
||
}
|
||
}
|
||
return &sp->stats;
|
||
}
|
||
|
||
static void speedo_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
strncpy(info->driver, "eepro100", sizeof(info->driver)-1);
|
||
strncpy(info->version, version, sizeof(info->version)-1);
|
||
if (sp->pdev)
|
||
strcpy(info->bus_info, pci_name(sp->pdev));
|
||
}
|
||
|
||
static int speedo_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
spin_lock_irq(&sp->lock);
|
||
mii_ethtool_gset(&sp->mii_if, ecmd);
|
||
spin_unlock_irq(&sp->lock);
|
||
return 0;
|
||
}
|
||
|
||
static int speedo_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
int res;
|
||
spin_lock_irq(&sp->lock);
|
||
res = mii_ethtool_sset(&sp->mii_if, ecmd);
|
||
spin_unlock_irq(&sp->lock);
|
||
return res;
|
||
}
|
||
|
||
static int speedo_nway_reset(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
return mii_nway_restart(&sp->mii_if);
|
||
}
|
||
|
||
static u32 speedo_get_link(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
return mii_link_ok(&sp->mii_if);
|
||
}
|
||
|
||
static u32 speedo_get_msglevel(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
return sp->msg_enable;
|
||
}
|
||
|
||
static void speedo_set_msglevel(struct net_device *dev, u32 v)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
sp->msg_enable = v;
|
||
}
|
||
|
||
static struct ethtool_ops ethtool_ops = {
|
||
.get_drvinfo = speedo_get_drvinfo,
|
||
.get_settings = speedo_get_settings,
|
||
.set_settings = speedo_set_settings,
|
||
.nway_reset = speedo_nway_reset,
|
||
.get_link = speedo_get_link,
|
||
.get_msglevel = speedo_get_msglevel,
|
||
.set_msglevel = speedo_set_msglevel,
|
||
};
|
||
|
||
static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
struct mii_ioctl_data *data = if_mii(rq);
|
||
int phy = sp->phy[0] & 0x1f;
|
||
int saved_acpi;
|
||
int t;
|
||
|
||
switch(cmd) {
|
||
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
|
||
data->phy_id = phy;
|
||
|
||
case SIOCGMIIREG: /* Read MII PHY register. */
|
||
/* FIXME: these operations need to be serialized with MDIO
|
||
access from the timeout handler.
|
||
They are currently serialized only with MDIO access from the
|
||
timer routine. 2000/05/09 SAW */
|
||
saved_acpi = pci_set_power_state(sp->pdev, PCI_D0);
|
||
t = del_timer_sync(&sp->timer);
|
||
data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
|
||
if (t)
|
||
add_timer(&sp->timer); /* may be set to the past --SAW */
|
||
pci_set_power_state(sp->pdev, saved_acpi);
|
||
return 0;
|
||
|
||
case SIOCSMIIREG: /* Write MII PHY register. */
|
||
if (!capable(CAP_NET_ADMIN))
|
||
return -EPERM;
|
||
saved_acpi = pci_set_power_state(sp->pdev, PCI_D0);
|
||
t = del_timer_sync(&sp->timer);
|
||
mdio_write(dev, data->phy_id, data->reg_num, data->val_in);
|
||
if (t)
|
||
add_timer(&sp->timer); /* may be set to the past --SAW */
|
||
pci_set_power_state(sp->pdev, saved_acpi);
|
||
return 0;
|
||
default:
|
||
return -EOPNOTSUPP;
|
||
}
|
||
}
|
||
|
||
/* Set or clear the multicast filter for this adaptor.
|
||
This is very ugly with Intel chips -- we usually have to execute an
|
||
entire configuration command, plus process a multicast command.
|
||
This is complicated. We must put a large configuration command and
|
||
an arbitrarily-sized multicast command in the transmit list.
|
||
To minimize the disruption -- the previous command might have already
|
||
loaded the link -- we convert the current command block, normally a Tx
|
||
command, into a no-op and link it to the new command.
|
||
*/
|
||
static void set_rx_mode(struct net_device *dev)
|
||
{
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
struct descriptor *last_cmd;
|
||
char new_rx_mode;
|
||
unsigned long flags;
|
||
int entry, i;
|
||
|
||
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
|
||
new_rx_mode = 3;
|
||
} else if ((dev->flags & IFF_ALLMULTI) ||
|
||
dev->mc_count > multicast_filter_limit) {
|
||
new_rx_mode = 1;
|
||
} else
|
||
new_rx_mode = 0;
|
||
|
||
if (netif_msg_rx_status(sp))
|
||
printk(KERN_DEBUG "%s: set_rx_mode %d -> %d\n", dev->name,
|
||
sp->rx_mode, new_rx_mode);
|
||
|
||
if ((int)(sp->cur_tx - sp->dirty_tx) > TX_RING_SIZE - TX_MULTICAST_SIZE) {
|
||
/* The Tx ring is full -- don't add anything! Hope the mode will be
|
||
* set again later. */
|
||
sp->rx_mode = -1;
|
||
return;
|
||
}
|
||
|
||
if (new_rx_mode != sp->rx_mode) {
|
||
u8 *config_cmd_data;
|
||
|
||
spin_lock_irqsave(&sp->lock, flags);
|
||
entry = sp->cur_tx++ % TX_RING_SIZE;
|
||
last_cmd = sp->last_cmd;
|
||
sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
|
||
|
||
sp->tx_skbuff[entry] = NULL; /* Redundant. */
|
||
sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdConfigure);
|
||
sp->tx_ring[entry].link =
|
||
cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
|
||
config_cmd_data = (void *)&sp->tx_ring[entry].tx_desc_addr;
|
||
/* Construct a full CmdConfig frame. */
|
||
memcpy(config_cmd_data, i82558_config_cmd, CONFIG_DATA_SIZE);
|
||
config_cmd_data[1] = (txfifo << 4) | rxfifo;
|
||
config_cmd_data[4] = rxdmacount;
|
||
config_cmd_data[5] = txdmacount + 0x80;
|
||
config_cmd_data[15] |= (new_rx_mode & 2) ? 1 : 0;
|
||
/* 0x80 doesn't disable FC 0x84 does.
|
||
Disable Flow control since we are not ACK-ing any FC interrupts
|
||
for now. --Dragan */
|
||
config_cmd_data[19] = 0x84;
|
||
config_cmd_data[19] |= sp->mii_if.full_duplex ? 0x40 : 0;
|
||
config_cmd_data[21] = (new_rx_mode & 1) ? 0x0D : 0x05;
|
||
if (sp->phy[0] & 0x8000) { /* Use the AUI port instead. */
|
||
config_cmd_data[15] |= 0x80;
|
||
config_cmd_data[8] = 0;
|
||
}
|
||
/* Trigger the command unit resume. */
|
||
wait_for_cmd_done(dev, sp);
|
||
clear_suspend(last_cmd);
|
||
iowrite8(CUResume, ioaddr + SCBCmd);
|
||
if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
|
||
netif_stop_queue(dev);
|
||
sp->tx_full = 1;
|
||
}
|
||
spin_unlock_irqrestore(&sp->lock, flags);
|
||
}
|
||
|
||
if (new_rx_mode == 0 && dev->mc_count < 4) {
|
||
/* The simple case of 0-3 multicast list entries occurs often, and
|
||
fits within one tx_ring[] entry. */
|
||
struct dev_mc_list *mclist;
|
||
u16 *setup_params, *eaddrs;
|
||
|
||
spin_lock_irqsave(&sp->lock, flags);
|
||
entry = sp->cur_tx++ % TX_RING_SIZE;
|
||
last_cmd = sp->last_cmd;
|
||
sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
|
||
|
||
sp->tx_skbuff[entry] = NULL;
|
||
sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdMulticastList);
|
||
sp->tx_ring[entry].link =
|
||
cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
|
||
sp->tx_ring[entry].tx_desc_addr = 0; /* Really MC list count. */
|
||
setup_params = (u16 *)&sp->tx_ring[entry].tx_desc_addr;
|
||
*setup_params++ = cpu_to_le16(dev->mc_count*6);
|
||
/* Fill in the multicast addresses. */
|
||
for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
|
||
i++, mclist = mclist->next) {
|
||
eaddrs = (u16 *)mclist->dmi_addr;
|
||
*setup_params++ = *eaddrs++;
|
||
*setup_params++ = *eaddrs++;
|
||
*setup_params++ = *eaddrs++;
|
||
}
|
||
|
||
wait_for_cmd_done(dev, sp);
|
||
clear_suspend(last_cmd);
|
||
/* Immediately trigger the command unit resume. */
|
||
iowrite8(CUResume, ioaddr + SCBCmd);
|
||
|
||
if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
|
||
netif_stop_queue(dev);
|
||
sp->tx_full = 1;
|
||
}
|
||
spin_unlock_irqrestore(&sp->lock, flags);
|
||
} else if (new_rx_mode == 0) {
|
||
struct dev_mc_list *mclist;
|
||
u16 *setup_params, *eaddrs;
|
||
struct speedo_mc_block *mc_blk;
|
||
struct descriptor *mc_setup_frm;
|
||
int i;
|
||
|
||
mc_blk = kmalloc(sizeof(*mc_blk) + 2 + multicast_filter_limit*6,
|
||
GFP_ATOMIC);
|
||
if (mc_blk == NULL) {
|
||
printk(KERN_ERR "%s: Failed to allocate a setup frame.\n",
|
||
dev->name);
|
||
sp->rx_mode = -1; /* We failed, try again. */
|
||
return;
|
||
}
|
||
mc_blk->next = NULL;
|
||
mc_blk->len = 2 + multicast_filter_limit*6;
|
||
mc_blk->frame_dma =
|
||
pci_map_single(sp->pdev, &mc_blk->frame, mc_blk->len,
|
||
PCI_DMA_TODEVICE);
|
||
mc_setup_frm = &mc_blk->frame;
|
||
|
||
/* Fill the setup frame. */
|
||
if (netif_msg_ifup(sp))
|
||
printk(KERN_DEBUG "%s: Constructing a setup frame at %p.\n",
|
||
dev->name, mc_setup_frm);
|
||
mc_setup_frm->cmd_status =
|
||
cpu_to_le32(CmdSuspend | CmdIntr | CmdMulticastList);
|
||
/* Link set below. */
|
||
setup_params = (u16 *)&mc_setup_frm->params;
|
||
*setup_params++ = cpu_to_le16(dev->mc_count*6);
|
||
/* Fill in the multicast addresses. */
|
||
for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
|
||
i++, mclist = mclist->next) {
|
||
eaddrs = (u16 *)mclist->dmi_addr;
|
||
*setup_params++ = *eaddrs++;
|
||
*setup_params++ = *eaddrs++;
|
||
*setup_params++ = *eaddrs++;
|
||
}
|
||
|
||
/* Disable interrupts while playing with the Tx Cmd list. */
|
||
spin_lock_irqsave(&sp->lock, flags);
|
||
|
||
if (sp->mc_setup_tail)
|
||
sp->mc_setup_tail->next = mc_blk;
|
||
else
|
||
sp->mc_setup_head = mc_blk;
|
||
sp->mc_setup_tail = mc_blk;
|
||
mc_blk->tx = sp->cur_tx;
|
||
|
||
entry = sp->cur_tx++ % TX_RING_SIZE;
|
||
last_cmd = sp->last_cmd;
|
||
sp->last_cmd = mc_setup_frm;
|
||
|
||
/* Change the command to a NoOp, pointing to the CmdMulti command. */
|
||
sp->tx_skbuff[entry] = NULL;
|
||
sp->tx_ring[entry].status = cpu_to_le32(CmdNOp);
|
||
sp->tx_ring[entry].link = cpu_to_le32(mc_blk->frame_dma);
|
||
|
||
/* Set the link in the setup frame. */
|
||
mc_setup_frm->link =
|
||
cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
|
||
|
||
pci_dma_sync_single_for_device(sp->pdev, mc_blk->frame_dma,
|
||
mc_blk->len, PCI_DMA_TODEVICE);
|
||
|
||
wait_for_cmd_done(dev, sp);
|
||
clear_suspend(last_cmd);
|
||
/* Immediately trigger the command unit resume. */
|
||
iowrite8(CUResume, ioaddr + SCBCmd);
|
||
|
||
if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
|
||
netif_stop_queue(dev);
|
||
sp->tx_full = 1;
|
||
}
|
||
spin_unlock_irqrestore(&sp->lock, flags);
|
||
|
||
if (netif_msg_rx_status(sp))
|
||
printk(" CmdMCSetup frame length %d in entry %d.\n",
|
||
dev->mc_count, entry);
|
||
}
|
||
|
||
sp->rx_mode = new_rx_mode;
|
||
}
|
||
|
||
#ifdef CONFIG_PM
|
||
static int eepro100_suspend(struct pci_dev *pdev, pm_message_t state)
|
||
{
|
||
struct net_device *dev = pci_get_drvdata (pdev);
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
|
||
pci_save_state(pdev);
|
||
|
||
if (!netif_running(dev))
|
||
return 0;
|
||
|
||
del_timer_sync(&sp->timer);
|
||
|
||
netif_device_detach(dev);
|
||
iowrite32(PortPartialReset, ioaddr + SCBPort);
|
||
|
||
/* XXX call pci_set_power_state ()? */
|
||
pci_disable_device(pdev);
|
||
pci_set_power_state (pdev, PCI_D3hot);
|
||
return 0;
|
||
}
|
||
|
||
static int eepro100_resume(struct pci_dev *pdev)
|
||
{
|
||
struct net_device *dev = pci_get_drvdata (pdev);
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
void __iomem *ioaddr = sp->regs;
|
||
|
||
pci_set_power_state(pdev, PCI_D0);
|
||
pci_restore_state(pdev);
|
||
pci_enable_device(pdev);
|
||
pci_set_master(pdev);
|
||
|
||
if (!netif_running(dev))
|
||
return 0;
|
||
|
||
/* I'm absolutely uncertain if this part of code may work.
|
||
The problems are:
|
||
- correct hardware reinitialization;
|
||
- correct driver behavior between different steps of the
|
||
reinitialization;
|
||
- serialization with other driver calls.
|
||
2000/03/08 SAW */
|
||
iowrite16(SCBMaskAll, ioaddr + SCBCmd);
|
||
speedo_resume(dev);
|
||
netif_device_attach(dev);
|
||
sp->rx_mode = -1;
|
||
sp->flow_ctrl = sp->partner = 0;
|
||
set_rx_mode(dev);
|
||
sp->timer.expires = RUN_AT(2*HZ);
|
||
add_timer(&sp->timer);
|
||
return 0;
|
||
}
|
||
#endif /* CONFIG_PM */
|
||
|
||
static void __devexit eepro100_remove_one (struct pci_dev *pdev)
|
||
{
|
||
struct net_device *dev = pci_get_drvdata (pdev);
|
||
struct speedo_private *sp = netdev_priv(dev);
|
||
|
||
unregister_netdev(dev);
|
||
|
||
release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
|
||
release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
|
||
|
||
pci_iounmap(pdev, sp->regs);
|
||
pci_free_consistent(pdev, TX_RING_SIZE * sizeof(struct TxFD)
|
||
+ sizeof(struct speedo_stats),
|
||
sp->tx_ring, sp->tx_ring_dma);
|
||
pci_disable_device(pdev);
|
||
free_netdev(dev);
|
||
}
|
||
|
||
static struct pci_device_id eepro100_pci_tbl[] = {
|
||
{ PCI_VENDOR_ID_INTEL, 0x1229, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1209, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1029, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1030, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1031, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1032, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1033, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1034, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1035, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1036, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1037, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1038, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1039, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x103A, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x103B, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x103C, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x103D, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x103E, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1050, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1059, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x1227, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x2449, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x2459, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x245D, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x5200, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ PCI_VENDOR_ID_INTEL, 0x5201, PCI_ANY_ID, PCI_ANY_ID, },
|
||
{ 0,}
|
||
};
|
||
MODULE_DEVICE_TABLE(pci, eepro100_pci_tbl);
|
||
|
||
static struct pci_driver eepro100_driver = {
|
||
.name = "eepro100",
|
||
.id_table = eepro100_pci_tbl,
|
||
.probe = eepro100_init_one,
|
||
.remove = __devexit_p(eepro100_remove_one),
|
||
#ifdef CONFIG_PM
|
||
.suspend = eepro100_suspend,
|
||
.resume = eepro100_resume,
|
||
#endif /* CONFIG_PM */
|
||
};
|
||
|
||
static int __init eepro100_init_module(void)
|
||
{
|
||
#ifdef MODULE
|
||
printk(version);
|
||
#endif
|
||
return pci_module_init(&eepro100_driver);
|
||
}
|
||
|
||
static void __exit eepro100_cleanup_module(void)
|
||
{
|
||
pci_unregister_driver(&eepro100_driver);
|
||
}
|
||
|
||
module_init(eepro100_init_module);
|
||
module_exit(eepro100_cleanup_module);
|
||
|
||
/*
|
||
* Local variables:
|
||
* compile-command: "gcc -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c eepro100.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"
|
||
* c-indent-level: 4
|
||
* c-basic-offset: 4
|
||
* tab-width: 4
|
||
* End:
|
||
*/
|