mirror of
https://github.com/torvalds/linux.git
synced 2024-12-25 04:11:49 +00:00
1f7563f743
This topic branch covers a fundamental change in how our sg lists are allocated to make mq more efficient by reducing the size of the preallocated sg list. This necessitates a large number of driver changes because the previous guarantee that if a driver specified SG_ALL as the size of its scatter list, it would get a non-chained list and didn't need to bother with scatterlist iterators is now broken and every driver *must* use scatterlist iterators. This was broken out as a separate topic because we need to convert all the drivers before pulling the trigger and unconverted drivers kept being found, necessitating a rebase. Signed-off-by: James E.J. Bottomley <jejb@linux.ibm.com> -----BEGIN PGP SIGNATURE----- iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCXSTzzCYcamFtZXMuYm90 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishZB+AP9I8j/s wWfg0Z3WNuf4D5I3rH4x1J3cQTqPJed+RjwgcQEA1gZvtOTg1ZEn/CYMVnaB92x0 t6MZSchIaFXeqfD+E7U= =cv8o -----END PGP SIGNATURE----- Merge tag 'scsi-sg' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi Pull SCSI scatter-gather list updates from James Bottomley: "This topic branch covers a fundamental change in how our sg lists are allocated to make mq more efficient by reducing the size of the preallocated sg list. This necessitates a large number of driver changes because the previous guarantee that if a driver specified SG_ALL as the size of its scatter list, it would get a non-chained list and didn't need to bother with scatterlist iterators is now broken and every driver *must* use scatterlist iterators. This was broken out as a separate topic because we need to convert all the drivers before pulling the trigger and unconverted drivers kept being found, necessitating a rebase" * tag 'scsi-sg' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (21 commits) scsi: core: don't preallocate small SGL in case of NO_SG_CHAIN scsi: lib/sg_pool.c: clear 'first_chunk' in case of no preallocation scsi: core: avoid preallocating big SGL for data scsi: core: avoid preallocating big SGL for protection information scsi: lib/sg_pool.c: improve APIs for allocating sg pool scsi: esp: use sg helper to iterate over scatterlist scsi: NCR5380: use sg helper to iterate over scatterlist scsi: wd33c93: use sg helper to iterate over scatterlist scsi: ppa: use sg helper to iterate over scatterlist scsi: pcmcia: nsp_cs: use sg helper to iterate over scatterlist scsi: imm: use sg helper to iterate over scatterlist scsi: aha152x: use sg helper to iterate over scatterlist scsi: s390: zfcp_fc: use sg helper to iterate over scatterlist scsi: staging: unisys: visorhba: use sg helper to iterate over scatterlist scsi: usb: image: microtek: use sg helper to iterate over scatterlist scsi: pmcraid: use sg helper to iterate over scatterlist scsi: ipr: use sg helper to iterate over scatterlist scsi: mvumi: use sg helper to iterate over scatterlist scsi: lpfc: use sg helper to iterate over scatterlist scsi: advansys: use sg helper to iterate over scatterlist ...
3480 lines
92 KiB
C
3480 lines
92 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2016 Avago Technologies. All rights reserved.
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
#include <linux/module.h>
|
|
#include <linux/parser.h>
|
|
#include <uapi/scsi/fc/fc_fs.h>
|
|
#include <uapi/scsi/fc/fc_els.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/overflow.h>
|
|
|
|
#include "nvme.h"
|
|
#include "fabrics.h"
|
|
#include <linux/nvme-fc-driver.h>
|
|
#include <linux/nvme-fc.h>
|
|
#include <scsi/scsi_transport_fc.h>
|
|
|
|
/* *************************** Data Structures/Defines ****************** */
|
|
|
|
|
|
enum nvme_fc_queue_flags {
|
|
NVME_FC_Q_CONNECTED = 0,
|
|
NVME_FC_Q_LIVE,
|
|
};
|
|
|
|
#define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
|
|
|
|
struct nvme_fc_queue {
|
|
struct nvme_fc_ctrl *ctrl;
|
|
struct device *dev;
|
|
struct blk_mq_hw_ctx *hctx;
|
|
void *lldd_handle;
|
|
size_t cmnd_capsule_len;
|
|
u32 qnum;
|
|
u32 rqcnt;
|
|
u32 seqno;
|
|
|
|
u64 connection_id;
|
|
atomic_t csn;
|
|
|
|
unsigned long flags;
|
|
} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
|
|
|
|
enum nvme_fcop_flags {
|
|
FCOP_FLAGS_TERMIO = (1 << 0),
|
|
FCOP_FLAGS_AEN = (1 << 1),
|
|
};
|
|
|
|
struct nvmefc_ls_req_op {
|
|
struct nvmefc_ls_req ls_req;
|
|
|
|
struct nvme_fc_rport *rport;
|
|
struct nvme_fc_queue *queue;
|
|
struct request *rq;
|
|
u32 flags;
|
|
|
|
int ls_error;
|
|
struct completion ls_done;
|
|
struct list_head lsreq_list; /* rport->ls_req_list */
|
|
bool req_queued;
|
|
};
|
|
|
|
enum nvme_fcpop_state {
|
|
FCPOP_STATE_UNINIT = 0,
|
|
FCPOP_STATE_IDLE = 1,
|
|
FCPOP_STATE_ACTIVE = 2,
|
|
FCPOP_STATE_ABORTED = 3,
|
|
FCPOP_STATE_COMPLETE = 4,
|
|
};
|
|
|
|
struct nvme_fc_fcp_op {
|
|
struct nvme_request nreq; /*
|
|
* nvme/host/core.c
|
|
* requires this to be
|
|
* the 1st element in the
|
|
* private structure
|
|
* associated with the
|
|
* request.
|
|
*/
|
|
struct nvmefc_fcp_req fcp_req;
|
|
|
|
struct nvme_fc_ctrl *ctrl;
|
|
struct nvme_fc_queue *queue;
|
|
struct request *rq;
|
|
|
|
atomic_t state;
|
|
u32 flags;
|
|
u32 rqno;
|
|
u32 nents;
|
|
|
|
struct nvme_fc_cmd_iu cmd_iu;
|
|
struct nvme_fc_ersp_iu rsp_iu;
|
|
};
|
|
|
|
struct nvme_fcp_op_w_sgl {
|
|
struct nvme_fc_fcp_op op;
|
|
struct scatterlist sgl[SG_CHUNK_SIZE];
|
|
uint8_t priv[0];
|
|
};
|
|
|
|
struct nvme_fc_lport {
|
|
struct nvme_fc_local_port localport;
|
|
|
|
struct ida endp_cnt;
|
|
struct list_head port_list; /* nvme_fc_port_list */
|
|
struct list_head endp_list;
|
|
struct device *dev; /* physical device for dma */
|
|
struct nvme_fc_port_template *ops;
|
|
struct kref ref;
|
|
atomic_t act_rport_cnt;
|
|
} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
|
|
|
|
struct nvme_fc_rport {
|
|
struct nvme_fc_remote_port remoteport;
|
|
|
|
struct list_head endp_list; /* for lport->endp_list */
|
|
struct list_head ctrl_list;
|
|
struct list_head ls_req_list;
|
|
struct list_head disc_list;
|
|
struct device *dev; /* physical device for dma */
|
|
struct nvme_fc_lport *lport;
|
|
spinlock_t lock;
|
|
struct kref ref;
|
|
atomic_t act_ctrl_cnt;
|
|
unsigned long dev_loss_end;
|
|
} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
|
|
|
|
enum nvme_fcctrl_flags {
|
|
FCCTRL_TERMIO = (1 << 0),
|
|
};
|
|
|
|
struct nvme_fc_ctrl {
|
|
spinlock_t lock;
|
|
struct nvme_fc_queue *queues;
|
|
struct device *dev;
|
|
struct nvme_fc_lport *lport;
|
|
struct nvme_fc_rport *rport;
|
|
u32 cnum;
|
|
|
|
bool ioq_live;
|
|
bool assoc_active;
|
|
atomic_t err_work_active;
|
|
u64 association_id;
|
|
|
|
struct list_head ctrl_list; /* rport->ctrl_list */
|
|
|
|
struct blk_mq_tag_set admin_tag_set;
|
|
struct blk_mq_tag_set tag_set;
|
|
|
|
struct delayed_work connect_work;
|
|
struct work_struct err_work;
|
|
|
|
struct kref ref;
|
|
u32 flags;
|
|
u32 iocnt;
|
|
wait_queue_head_t ioabort_wait;
|
|
|
|
struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
|
|
|
|
struct nvme_ctrl ctrl;
|
|
};
|
|
|
|
static inline struct nvme_fc_ctrl *
|
|
to_fc_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
|
|
}
|
|
|
|
static inline struct nvme_fc_lport *
|
|
localport_to_lport(struct nvme_fc_local_port *portptr)
|
|
{
|
|
return container_of(portptr, struct nvme_fc_lport, localport);
|
|
}
|
|
|
|
static inline struct nvme_fc_rport *
|
|
remoteport_to_rport(struct nvme_fc_remote_port *portptr)
|
|
{
|
|
return container_of(portptr, struct nvme_fc_rport, remoteport);
|
|
}
|
|
|
|
static inline struct nvmefc_ls_req_op *
|
|
ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
|
|
{
|
|
return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
|
|
}
|
|
|
|
static inline struct nvme_fc_fcp_op *
|
|
fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
|
|
{
|
|
return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
|
|
}
|
|
|
|
|
|
|
|
/* *************************** Globals **************************** */
|
|
|
|
|
|
static DEFINE_SPINLOCK(nvme_fc_lock);
|
|
|
|
static LIST_HEAD(nvme_fc_lport_list);
|
|
static DEFINE_IDA(nvme_fc_local_port_cnt);
|
|
static DEFINE_IDA(nvme_fc_ctrl_cnt);
|
|
|
|
static struct workqueue_struct *nvme_fc_wq;
|
|
|
|
/*
|
|
* These items are short-term. They will eventually be moved into
|
|
* a generic FC class. See comments in module init.
|
|
*/
|
|
static struct device *fc_udev_device;
|
|
|
|
|
|
/* *********************** FC-NVME Port Management ************************ */
|
|
|
|
static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
|
|
struct nvme_fc_queue *, unsigned int);
|
|
|
|
static void
|
|
nvme_fc_free_lport(struct kref *ref)
|
|
{
|
|
struct nvme_fc_lport *lport =
|
|
container_of(ref, struct nvme_fc_lport, ref);
|
|
unsigned long flags;
|
|
|
|
WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
|
|
WARN_ON(!list_empty(&lport->endp_list));
|
|
|
|
/* remove from transport list */
|
|
spin_lock_irqsave(&nvme_fc_lock, flags);
|
|
list_del(&lport->port_list);
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
|
|
ida_destroy(&lport->endp_cnt);
|
|
|
|
put_device(lport->dev);
|
|
|
|
kfree(lport);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_lport_put(struct nvme_fc_lport *lport)
|
|
{
|
|
kref_put(&lport->ref, nvme_fc_free_lport);
|
|
}
|
|
|
|
static int
|
|
nvme_fc_lport_get(struct nvme_fc_lport *lport)
|
|
{
|
|
return kref_get_unless_zero(&lport->ref);
|
|
}
|
|
|
|
|
|
static struct nvme_fc_lport *
|
|
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
|
|
struct nvme_fc_port_template *ops,
|
|
struct device *dev)
|
|
{
|
|
struct nvme_fc_lport *lport;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&nvme_fc_lock, flags);
|
|
|
|
list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
|
|
if (lport->localport.node_name != pinfo->node_name ||
|
|
lport->localport.port_name != pinfo->port_name)
|
|
continue;
|
|
|
|
if (lport->dev != dev) {
|
|
lport = ERR_PTR(-EXDEV);
|
|
goto out_done;
|
|
}
|
|
|
|
if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
|
|
lport = ERR_PTR(-EEXIST);
|
|
goto out_done;
|
|
}
|
|
|
|
if (!nvme_fc_lport_get(lport)) {
|
|
/*
|
|
* fails if ref cnt already 0. If so,
|
|
* act as if lport already deleted
|
|
*/
|
|
lport = NULL;
|
|
goto out_done;
|
|
}
|
|
|
|
/* resume the lport */
|
|
|
|
lport->ops = ops;
|
|
lport->localport.port_role = pinfo->port_role;
|
|
lport->localport.port_id = pinfo->port_id;
|
|
lport->localport.port_state = FC_OBJSTATE_ONLINE;
|
|
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
return lport;
|
|
}
|
|
|
|
lport = NULL;
|
|
|
|
out_done:
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
return lport;
|
|
}
|
|
|
|
/**
|
|
* nvme_fc_register_localport - transport entry point called by an
|
|
* LLDD to register the existence of a NVME
|
|
* host FC port.
|
|
* @pinfo: pointer to information about the port to be registered
|
|
* @template: LLDD entrypoints and operational parameters for the port
|
|
* @dev: physical hardware device node port corresponds to. Will be
|
|
* used for DMA mappings
|
|
* @portptr: pointer to a local port pointer. Upon success, the routine
|
|
* will allocate a nvme_fc_local_port structure and place its
|
|
* address in the local port pointer. Upon failure, local port
|
|
* pointer will be set to 0.
|
|
*
|
|
* Returns:
|
|
* a completion status. Must be 0 upon success; a negative errno
|
|
* (ex: -ENXIO) upon failure.
|
|
*/
|
|
int
|
|
nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
|
|
struct nvme_fc_port_template *template,
|
|
struct device *dev,
|
|
struct nvme_fc_local_port **portptr)
|
|
{
|
|
struct nvme_fc_lport *newrec;
|
|
unsigned long flags;
|
|
int ret, idx;
|
|
|
|
if (!template->localport_delete || !template->remoteport_delete ||
|
|
!template->ls_req || !template->fcp_io ||
|
|
!template->ls_abort || !template->fcp_abort ||
|
|
!template->max_hw_queues || !template->max_sgl_segments ||
|
|
!template->max_dif_sgl_segments || !template->dma_boundary) {
|
|
ret = -EINVAL;
|
|
goto out_reghost_failed;
|
|
}
|
|
|
|
/*
|
|
* look to see if there is already a localport that had been
|
|
* deregistered and in the process of waiting for all the
|
|
* references to fully be removed. If the references haven't
|
|
* expired, we can simply re-enable the localport. Remoteports
|
|
* and controller reconnections should resume naturally.
|
|
*/
|
|
newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
|
|
|
|
/* found an lport, but something about its state is bad */
|
|
if (IS_ERR(newrec)) {
|
|
ret = PTR_ERR(newrec);
|
|
goto out_reghost_failed;
|
|
|
|
/* found existing lport, which was resumed */
|
|
} else if (newrec) {
|
|
*portptr = &newrec->localport;
|
|
return 0;
|
|
}
|
|
|
|
/* nothing found - allocate a new localport struct */
|
|
|
|
newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
|
|
GFP_KERNEL);
|
|
if (!newrec) {
|
|
ret = -ENOMEM;
|
|
goto out_reghost_failed;
|
|
}
|
|
|
|
idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
|
|
if (idx < 0) {
|
|
ret = -ENOSPC;
|
|
goto out_fail_kfree;
|
|
}
|
|
|
|
if (!get_device(dev) && dev) {
|
|
ret = -ENODEV;
|
|
goto out_ida_put;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&newrec->port_list);
|
|
INIT_LIST_HEAD(&newrec->endp_list);
|
|
kref_init(&newrec->ref);
|
|
atomic_set(&newrec->act_rport_cnt, 0);
|
|
newrec->ops = template;
|
|
newrec->dev = dev;
|
|
ida_init(&newrec->endp_cnt);
|
|
newrec->localport.private = &newrec[1];
|
|
newrec->localport.node_name = pinfo->node_name;
|
|
newrec->localport.port_name = pinfo->port_name;
|
|
newrec->localport.port_role = pinfo->port_role;
|
|
newrec->localport.port_id = pinfo->port_id;
|
|
newrec->localport.port_state = FC_OBJSTATE_ONLINE;
|
|
newrec->localport.port_num = idx;
|
|
|
|
spin_lock_irqsave(&nvme_fc_lock, flags);
|
|
list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
if (dev)
|
|
dma_set_seg_boundary(dev, template->dma_boundary);
|
|
|
|
*portptr = &newrec->localport;
|
|
return 0;
|
|
|
|
out_ida_put:
|
|
ida_simple_remove(&nvme_fc_local_port_cnt, idx);
|
|
out_fail_kfree:
|
|
kfree(newrec);
|
|
out_reghost_failed:
|
|
*portptr = NULL;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
|
|
|
|
/**
|
|
* nvme_fc_unregister_localport - transport entry point called by an
|
|
* LLDD to deregister/remove a previously
|
|
* registered a NVME host FC port.
|
|
* @portptr: pointer to the (registered) local port that is to be deregistered.
|
|
*
|
|
* Returns:
|
|
* a completion status. Must be 0 upon success; a negative errno
|
|
* (ex: -ENXIO) upon failure.
|
|
*/
|
|
int
|
|
nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
|
|
{
|
|
struct nvme_fc_lport *lport = localport_to_lport(portptr);
|
|
unsigned long flags;
|
|
|
|
if (!portptr)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&nvme_fc_lock, flags);
|
|
|
|
if (portptr->port_state != FC_OBJSTATE_ONLINE) {
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
return -EINVAL;
|
|
}
|
|
portptr->port_state = FC_OBJSTATE_DELETED;
|
|
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
if (atomic_read(&lport->act_rport_cnt) == 0)
|
|
lport->ops->localport_delete(&lport->localport);
|
|
|
|
nvme_fc_lport_put(lport);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
|
|
|
|
/*
|
|
* TRADDR strings, per FC-NVME are fixed format:
|
|
* "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
|
|
* udev event will only differ by prefix of what field is
|
|
* being specified:
|
|
* "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
|
|
* 19 + 43 + null_fudge = 64 characters
|
|
*/
|
|
#define FCNVME_TRADDR_LENGTH 64
|
|
|
|
static void
|
|
nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
|
|
struct nvme_fc_rport *rport)
|
|
{
|
|
char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
|
|
char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
|
|
char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
|
|
|
|
if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
|
|
return;
|
|
|
|
snprintf(hostaddr, sizeof(hostaddr),
|
|
"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
|
|
lport->localport.node_name, lport->localport.port_name);
|
|
snprintf(tgtaddr, sizeof(tgtaddr),
|
|
"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
|
|
rport->remoteport.node_name, rport->remoteport.port_name);
|
|
kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_free_rport(struct kref *ref)
|
|
{
|
|
struct nvme_fc_rport *rport =
|
|
container_of(ref, struct nvme_fc_rport, ref);
|
|
struct nvme_fc_lport *lport =
|
|
localport_to_lport(rport->remoteport.localport);
|
|
unsigned long flags;
|
|
|
|
WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
|
|
WARN_ON(!list_empty(&rport->ctrl_list));
|
|
|
|
/* remove from lport list */
|
|
spin_lock_irqsave(&nvme_fc_lock, flags);
|
|
list_del(&rport->endp_list);
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
WARN_ON(!list_empty(&rport->disc_list));
|
|
ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
|
|
|
|
kfree(rport);
|
|
|
|
nvme_fc_lport_put(lport);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_rport_put(struct nvme_fc_rport *rport)
|
|
{
|
|
kref_put(&rport->ref, nvme_fc_free_rport);
|
|
}
|
|
|
|
static int
|
|
nvme_fc_rport_get(struct nvme_fc_rport *rport)
|
|
{
|
|
return kref_get_unless_zero(&rport->ref);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
switch (ctrl->ctrl.state) {
|
|
case NVME_CTRL_NEW:
|
|
case NVME_CTRL_CONNECTING:
|
|
/*
|
|
* As all reconnects were suppressed, schedule a
|
|
* connect.
|
|
*/
|
|
dev_info(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: connectivity re-established. "
|
|
"Attempting reconnect\n", ctrl->cnum);
|
|
|
|
queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
|
|
break;
|
|
|
|
case NVME_CTRL_RESETTING:
|
|
/*
|
|
* Controller is already in the process of terminating the
|
|
* association. No need to do anything further. The reconnect
|
|
* step will naturally occur after the reset completes.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
/* no action to take - let it delete */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static struct nvme_fc_rport *
|
|
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
|
|
struct nvme_fc_port_info *pinfo)
|
|
{
|
|
struct nvme_fc_rport *rport;
|
|
struct nvme_fc_ctrl *ctrl;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&nvme_fc_lock, flags);
|
|
|
|
list_for_each_entry(rport, &lport->endp_list, endp_list) {
|
|
if (rport->remoteport.node_name != pinfo->node_name ||
|
|
rport->remoteport.port_name != pinfo->port_name)
|
|
continue;
|
|
|
|
if (!nvme_fc_rport_get(rport)) {
|
|
rport = ERR_PTR(-ENOLCK);
|
|
goto out_done;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
spin_lock_irqsave(&rport->lock, flags);
|
|
|
|
/* has it been unregistered */
|
|
if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
|
|
/* means lldd called us twice */
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
nvme_fc_rport_put(rport);
|
|
return ERR_PTR(-ESTALE);
|
|
}
|
|
|
|
rport->remoteport.port_role = pinfo->port_role;
|
|
rport->remoteport.port_id = pinfo->port_id;
|
|
rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
|
|
rport->dev_loss_end = 0;
|
|
|
|
/*
|
|
* kick off a reconnect attempt on all associations to the
|
|
* remote port. A successful reconnects will resume i/o.
|
|
*/
|
|
list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
|
|
nvme_fc_resume_controller(ctrl);
|
|
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
|
|
return rport;
|
|
}
|
|
|
|
rport = NULL;
|
|
|
|
out_done:
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
return rport;
|
|
}
|
|
|
|
static inline void
|
|
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
|
|
struct nvme_fc_port_info *pinfo)
|
|
{
|
|
if (pinfo->dev_loss_tmo)
|
|
rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
|
|
else
|
|
rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
|
|
}
|
|
|
|
/**
|
|
* nvme_fc_register_remoteport - transport entry point called by an
|
|
* LLDD to register the existence of a NVME
|
|
* subsystem FC port on its fabric.
|
|
* @localport: pointer to the (registered) local port that the remote
|
|
* subsystem port is connected to.
|
|
* @pinfo: pointer to information about the port to be registered
|
|
* @portptr: pointer to a remote port pointer. Upon success, the routine
|
|
* will allocate a nvme_fc_remote_port structure and place its
|
|
* address in the remote port pointer. Upon failure, remote port
|
|
* pointer will be set to 0.
|
|
*
|
|
* Returns:
|
|
* a completion status. Must be 0 upon success; a negative errno
|
|
* (ex: -ENXIO) upon failure.
|
|
*/
|
|
int
|
|
nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
|
|
struct nvme_fc_port_info *pinfo,
|
|
struct nvme_fc_remote_port **portptr)
|
|
{
|
|
struct nvme_fc_lport *lport = localport_to_lport(localport);
|
|
struct nvme_fc_rport *newrec;
|
|
unsigned long flags;
|
|
int ret, idx;
|
|
|
|
if (!nvme_fc_lport_get(lport)) {
|
|
ret = -ESHUTDOWN;
|
|
goto out_reghost_failed;
|
|
}
|
|
|
|
/*
|
|
* look to see if there is already a remoteport that is waiting
|
|
* for a reconnect (within dev_loss_tmo) with the same WWN's.
|
|
* If so, transition to it and reconnect.
|
|
*/
|
|
newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
|
|
|
|
/* found an rport, but something about its state is bad */
|
|
if (IS_ERR(newrec)) {
|
|
ret = PTR_ERR(newrec);
|
|
goto out_lport_put;
|
|
|
|
/* found existing rport, which was resumed */
|
|
} else if (newrec) {
|
|
nvme_fc_lport_put(lport);
|
|
__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
|
|
nvme_fc_signal_discovery_scan(lport, newrec);
|
|
*portptr = &newrec->remoteport;
|
|
return 0;
|
|
}
|
|
|
|
/* nothing found - allocate a new remoteport struct */
|
|
|
|
newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
|
|
GFP_KERNEL);
|
|
if (!newrec) {
|
|
ret = -ENOMEM;
|
|
goto out_lport_put;
|
|
}
|
|
|
|
idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
|
|
if (idx < 0) {
|
|
ret = -ENOSPC;
|
|
goto out_kfree_rport;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&newrec->endp_list);
|
|
INIT_LIST_HEAD(&newrec->ctrl_list);
|
|
INIT_LIST_HEAD(&newrec->ls_req_list);
|
|
INIT_LIST_HEAD(&newrec->disc_list);
|
|
kref_init(&newrec->ref);
|
|
atomic_set(&newrec->act_ctrl_cnt, 0);
|
|
spin_lock_init(&newrec->lock);
|
|
newrec->remoteport.localport = &lport->localport;
|
|
newrec->dev = lport->dev;
|
|
newrec->lport = lport;
|
|
newrec->remoteport.private = &newrec[1];
|
|
newrec->remoteport.port_role = pinfo->port_role;
|
|
newrec->remoteport.node_name = pinfo->node_name;
|
|
newrec->remoteport.port_name = pinfo->port_name;
|
|
newrec->remoteport.port_id = pinfo->port_id;
|
|
newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
|
|
newrec->remoteport.port_num = idx;
|
|
__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
|
|
|
|
spin_lock_irqsave(&nvme_fc_lock, flags);
|
|
list_add_tail(&newrec->endp_list, &lport->endp_list);
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
nvme_fc_signal_discovery_scan(lport, newrec);
|
|
|
|
*portptr = &newrec->remoteport;
|
|
return 0;
|
|
|
|
out_kfree_rport:
|
|
kfree(newrec);
|
|
out_lport_put:
|
|
nvme_fc_lport_put(lport);
|
|
out_reghost_failed:
|
|
*portptr = NULL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
|
|
|
|
static int
|
|
nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
|
|
{
|
|
struct nvmefc_ls_req_op *lsop;
|
|
unsigned long flags;
|
|
|
|
restart:
|
|
spin_lock_irqsave(&rport->lock, flags);
|
|
|
|
list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
|
|
if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
|
|
lsop->flags |= FCOP_FLAGS_TERMIO;
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
rport->lport->ops->ls_abort(&rport->lport->localport,
|
|
&rport->remoteport,
|
|
&lsop->ls_req);
|
|
goto restart;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
dev_info(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: controller connectivity lost. Awaiting "
|
|
"Reconnect", ctrl->cnum);
|
|
|
|
switch (ctrl->ctrl.state) {
|
|
case NVME_CTRL_NEW:
|
|
case NVME_CTRL_LIVE:
|
|
/*
|
|
* Schedule a controller reset. The reset will terminate the
|
|
* association and schedule the reconnect timer. Reconnects
|
|
* will be attempted until either the ctlr_loss_tmo
|
|
* (max_retries * connect_delay) expires or the remoteport's
|
|
* dev_loss_tmo expires.
|
|
*/
|
|
if (nvme_reset_ctrl(&ctrl->ctrl)) {
|
|
dev_warn(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: Couldn't schedule reset.\n",
|
|
ctrl->cnum);
|
|
nvme_delete_ctrl(&ctrl->ctrl);
|
|
}
|
|
break;
|
|
|
|
case NVME_CTRL_CONNECTING:
|
|
/*
|
|
* The association has already been terminated and the
|
|
* controller is attempting reconnects. No need to do anything
|
|
* futher. Reconnects will be attempted until either the
|
|
* ctlr_loss_tmo (max_retries * connect_delay) expires or the
|
|
* remoteport's dev_loss_tmo expires.
|
|
*/
|
|
break;
|
|
|
|
case NVME_CTRL_RESETTING:
|
|
/*
|
|
* Controller is already in the process of terminating the
|
|
* association. No need to do anything further. The reconnect
|
|
* step will kick in naturally after the association is
|
|
* terminated.
|
|
*/
|
|
break;
|
|
|
|
case NVME_CTRL_DELETING:
|
|
default:
|
|
/* no action to take - let it delete */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nvme_fc_unregister_remoteport - transport entry point called by an
|
|
* LLDD to deregister/remove a previously
|
|
* registered a NVME subsystem FC port.
|
|
* @portptr: pointer to the (registered) remote port that is to be
|
|
* deregistered.
|
|
*
|
|
* Returns:
|
|
* a completion status. Must be 0 upon success; a negative errno
|
|
* (ex: -ENXIO) upon failure.
|
|
*/
|
|
int
|
|
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
|
|
{
|
|
struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
|
|
struct nvme_fc_ctrl *ctrl;
|
|
unsigned long flags;
|
|
|
|
if (!portptr)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&rport->lock, flags);
|
|
|
|
if (portptr->port_state != FC_OBJSTATE_ONLINE) {
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
return -EINVAL;
|
|
}
|
|
portptr->port_state = FC_OBJSTATE_DELETED;
|
|
|
|
rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
|
|
|
|
list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
|
|
/* if dev_loss_tmo==0, dev loss is immediate */
|
|
if (!portptr->dev_loss_tmo) {
|
|
dev_warn(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: controller connectivity lost.\n",
|
|
ctrl->cnum);
|
|
nvme_delete_ctrl(&ctrl->ctrl);
|
|
} else
|
|
nvme_fc_ctrl_connectivity_loss(ctrl);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
|
|
nvme_fc_abort_lsops(rport);
|
|
|
|
if (atomic_read(&rport->act_ctrl_cnt) == 0)
|
|
rport->lport->ops->remoteport_delete(portptr);
|
|
|
|
/*
|
|
* release the reference, which will allow, if all controllers
|
|
* go away, which should only occur after dev_loss_tmo occurs,
|
|
* for the rport to be torn down.
|
|
*/
|
|
nvme_fc_rport_put(rport);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
|
|
|
|
/**
|
|
* nvme_fc_rescan_remoteport - transport entry point called by an
|
|
* LLDD to request a nvme device rescan.
|
|
* @remoteport: pointer to the (registered) remote port that is to be
|
|
* rescanned.
|
|
*
|
|
* Returns: N/A
|
|
*/
|
|
void
|
|
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
|
|
{
|
|
struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
|
|
|
|
nvme_fc_signal_discovery_scan(rport->lport, rport);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
|
|
|
|
int
|
|
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
|
|
u32 dev_loss_tmo)
|
|
{
|
|
struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rport->lock, flags);
|
|
|
|
if (portptr->port_state != FC_OBJSTATE_ONLINE) {
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
|
|
rport->remoteport.dev_loss_tmo = dev_loss_tmo;
|
|
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
|
|
|
|
|
|
/* *********************** FC-NVME DMA Handling **************************** */
|
|
|
|
/*
|
|
* The fcloop device passes in a NULL device pointer. Real LLD's will
|
|
* pass in a valid device pointer. If NULL is passed to the dma mapping
|
|
* routines, depending on the platform, it may or may not succeed, and
|
|
* may crash.
|
|
*
|
|
* As such:
|
|
* Wrapper all the dma routines and check the dev pointer.
|
|
*
|
|
* If simple mappings (return just a dma address, we'll noop them,
|
|
* returning a dma address of 0.
|
|
*
|
|
* On more complex mappings (dma_map_sg), a pseudo routine fills
|
|
* in the scatter list, setting all dma addresses to 0.
|
|
*/
|
|
|
|
static inline dma_addr_t
|
|
fc_dma_map_single(struct device *dev, void *ptr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
|
|
}
|
|
|
|
static inline int
|
|
fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
return dev ? dma_mapping_error(dev, dma_addr) : 0;
|
|
}
|
|
|
|
static inline void
|
|
fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (dev)
|
|
dma_unmap_single(dev, addr, size, dir);
|
|
}
|
|
|
|
static inline void
|
|
fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (dev)
|
|
dma_sync_single_for_cpu(dev, addr, size, dir);
|
|
}
|
|
|
|
static inline void
|
|
fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (dev)
|
|
dma_sync_single_for_device(dev, addr, size, dir);
|
|
}
|
|
|
|
/* pseudo dma_map_sg call */
|
|
static int
|
|
fc_map_sg(struct scatterlist *sg, int nents)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
WARN_ON(nents == 0 || sg[0].length == 0);
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
s->dma_address = 0L;
|
|
#ifdef CONFIG_NEED_SG_DMA_LENGTH
|
|
s->dma_length = s->length;
|
|
#endif
|
|
}
|
|
return nents;
|
|
}
|
|
|
|
static inline int
|
|
fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
|
|
}
|
|
|
|
static inline void
|
|
fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (dev)
|
|
dma_unmap_sg(dev, sg, nents, dir);
|
|
}
|
|
|
|
/* *********************** FC-NVME LS Handling **************************** */
|
|
|
|
static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
|
|
static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
|
|
|
|
|
|
static void
|
|
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
|
|
{
|
|
struct nvme_fc_rport *rport = lsop->rport;
|
|
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rport->lock, flags);
|
|
|
|
if (!lsop->req_queued) {
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
return;
|
|
}
|
|
|
|
list_del(&lsop->lsreq_list);
|
|
|
|
lsop->req_queued = false;
|
|
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
|
|
fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
|
|
(lsreq->rqstlen + lsreq->rsplen),
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
nvme_fc_rport_put(rport);
|
|
}
|
|
|
|
static int
|
|
__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
|
|
struct nvmefc_ls_req_op *lsop,
|
|
void (*done)(struct nvmefc_ls_req *req, int status))
|
|
{
|
|
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
|
|
return -ECONNREFUSED;
|
|
|
|
if (!nvme_fc_rport_get(rport))
|
|
return -ESHUTDOWN;
|
|
|
|
lsreq->done = done;
|
|
lsop->rport = rport;
|
|
lsop->req_queued = false;
|
|
INIT_LIST_HEAD(&lsop->lsreq_list);
|
|
init_completion(&lsop->ls_done);
|
|
|
|
lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
|
|
lsreq->rqstlen + lsreq->rsplen,
|
|
DMA_BIDIRECTIONAL);
|
|
if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
|
|
ret = -EFAULT;
|
|
goto out_putrport;
|
|
}
|
|
lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
|
|
|
|
spin_lock_irqsave(&rport->lock, flags);
|
|
|
|
list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
|
|
|
|
lsop->req_queued = true;
|
|
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
|
|
ret = rport->lport->ops->ls_req(&rport->lport->localport,
|
|
&rport->remoteport, lsreq);
|
|
if (ret)
|
|
goto out_unlink;
|
|
|
|
return 0;
|
|
|
|
out_unlink:
|
|
lsop->ls_error = ret;
|
|
spin_lock_irqsave(&rport->lock, flags);
|
|
lsop->req_queued = false;
|
|
list_del(&lsop->lsreq_list);
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
|
|
(lsreq->rqstlen + lsreq->rsplen),
|
|
DMA_BIDIRECTIONAL);
|
|
out_putrport:
|
|
nvme_fc_rport_put(rport);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
|
|
{
|
|
struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
|
|
|
|
lsop->ls_error = status;
|
|
complete(&lsop->ls_done);
|
|
}
|
|
|
|
static int
|
|
nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
|
|
{
|
|
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
|
|
struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
|
|
int ret;
|
|
|
|
ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
|
|
|
|
if (!ret) {
|
|
/*
|
|
* No timeout/not interruptible as we need the struct
|
|
* to exist until the lldd calls us back. Thus mandate
|
|
* wait until driver calls back. lldd responsible for
|
|
* the timeout action
|
|
*/
|
|
wait_for_completion(&lsop->ls_done);
|
|
|
|
__nvme_fc_finish_ls_req(lsop);
|
|
|
|
ret = lsop->ls_error;
|
|
}
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* ACC or RJT payload ? */
|
|
if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
|
|
return -ENXIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
|
|
struct nvmefc_ls_req_op *lsop,
|
|
void (*done)(struct nvmefc_ls_req *req, int status))
|
|
{
|
|
/* don't wait for completion */
|
|
|
|
return __nvme_fc_send_ls_req(rport, lsop, done);
|
|
}
|
|
|
|
/* Validation Error indexes into the string table below */
|
|
enum {
|
|
VERR_NO_ERROR = 0,
|
|
VERR_LSACC = 1,
|
|
VERR_LSDESC_RQST = 2,
|
|
VERR_LSDESC_RQST_LEN = 3,
|
|
VERR_ASSOC_ID = 4,
|
|
VERR_ASSOC_ID_LEN = 5,
|
|
VERR_CONN_ID = 6,
|
|
VERR_CONN_ID_LEN = 7,
|
|
VERR_CR_ASSOC = 8,
|
|
VERR_CR_ASSOC_ACC_LEN = 9,
|
|
VERR_CR_CONN = 10,
|
|
VERR_CR_CONN_ACC_LEN = 11,
|
|
VERR_DISCONN = 12,
|
|
VERR_DISCONN_ACC_LEN = 13,
|
|
};
|
|
|
|
static char *validation_errors[] = {
|
|
"OK",
|
|
"Not LS_ACC",
|
|
"Not LSDESC_RQST",
|
|
"Bad LSDESC_RQST Length",
|
|
"Not Association ID",
|
|
"Bad Association ID Length",
|
|
"Not Connection ID",
|
|
"Bad Connection ID Length",
|
|
"Not CR_ASSOC Rqst",
|
|
"Bad CR_ASSOC ACC Length",
|
|
"Not CR_CONN Rqst",
|
|
"Bad CR_CONN ACC Length",
|
|
"Not Disconnect Rqst",
|
|
"Bad Disconnect ACC Length",
|
|
};
|
|
|
|
static int
|
|
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
|
|
struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
|
|
{
|
|
struct nvmefc_ls_req_op *lsop;
|
|
struct nvmefc_ls_req *lsreq;
|
|
struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
|
|
struct fcnvme_ls_cr_assoc_acc *assoc_acc;
|
|
int ret, fcret = 0;
|
|
|
|
lsop = kzalloc((sizeof(*lsop) +
|
|
ctrl->lport->ops->lsrqst_priv_sz +
|
|
sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
|
|
if (!lsop) {
|
|
ret = -ENOMEM;
|
|
goto out_no_memory;
|
|
}
|
|
lsreq = &lsop->ls_req;
|
|
|
|
lsreq->private = (void *)&lsop[1];
|
|
assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
|
|
(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
|
|
assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
|
|
|
|
assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
|
|
assoc_rqst->desc_list_len =
|
|
cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
|
|
|
|
assoc_rqst->assoc_cmd.desc_tag =
|
|
cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
|
|
assoc_rqst->assoc_cmd.desc_len =
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
|
|
|
|
assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
|
|
assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
|
|
/* Linux supports only Dynamic controllers */
|
|
assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
|
|
uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
|
|
strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
|
|
min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
|
|
strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
|
|
min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
|
|
|
|
lsop->queue = queue;
|
|
lsreq->rqstaddr = assoc_rqst;
|
|
lsreq->rqstlen = sizeof(*assoc_rqst);
|
|
lsreq->rspaddr = assoc_acc;
|
|
lsreq->rsplen = sizeof(*assoc_acc);
|
|
lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
|
|
|
|
ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
|
|
if (ret)
|
|
goto out_free_buffer;
|
|
|
|
/* process connect LS completion */
|
|
|
|
/* validate the ACC response */
|
|
if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
|
|
fcret = VERR_LSACC;
|
|
else if (assoc_acc->hdr.desc_list_len !=
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_ls_cr_assoc_acc)))
|
|
fcret = VERR_CR_ASSOC_ACC_LEN;
|
|
else if (assoc_acc->hdr.rqst.desc_tag !=
|
|
cpu_to_be32(FCNVME_LSDESC_RQST))
|
|
fcret = VERR_LSDESC_RQST;
|
|
else if (assoc_acc->hdr.rqst.desc_len !=
|
|
fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
|
|
fcret = VERR_LSDESC_RQST_LEN;
|
|
else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
|
|
fcret = VERR_CR_ASSOC;
|
|
else if (assoc_acc->associd.desc_tag !=
|
|
cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
|
|
fcret = VERR_ASSOC_ID;
|
|
else if (assoc_acc->associd.desc_len !=
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_assoc_id)))
|
|
fcret = VERR_ASSOC_ID_LEN;
|
|
else if (assoc_acc->connectid.desc_tag !=
|
|
cpu_to_be32(FCNVME_LSDESC_CONN_ID))
|
|
fcret = VERR_CONN_ID;
|
|
else if (assoc_acc->connectid.desc_len !=
|
|
fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
|
|
fcret = VERR_CONN_ID_LEN;
|
|
|
|
if (fcret) {
|
|
ret = -EBADF;
|
|
dev_err(ctrl->dev,
|
|
"q %d connect failed: %s\n",
|
|
queue->qnum, validation_errors[fcret]);
|
|
} else {
|
|
ctrl->association_id =
|
|
be64_to_cpu(assoc_acc->associd.association_id);
|
|
queue->connection_id =
|
|
be64_to_cpu(assoc_acc->connectid.connection_id);
|
|
set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
|
|
}
|
|
|
|
out_free_buffer:
|
|
kfree(lsop);
|
|
out_no_memory:
|
|
if (ret)
|
|
dev_err(ctrl->dev,
|
|
"queue %d connect admin queue failed (%d).\n",
|
|
queue->qnum, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
|
|
u16 qsize, u16 ersp_ratio)
|
|
{
|
|
struct nvmefc_ls_req_op *lsop;
|
|
struct nvmefc_ls_req *lsreq;
|
|
struct fcnvme_ls_cr_conn_rqst *conn_rqst;
|
|
struct fcnvme_ls_cr_conn_acc *conn_acc;
|
|
int ret, fcret = 0;
|
|
|
|
lsop = kzalloc((sizeof(*lsop) +
|
|
ctrl->lport->ops->lsrqst_priv_sz +
|
|
sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
|
|
if (!lsop) {
|
|
ret = -ENOMEM;
|
|
goto out_no_memory;
|
|
}
|
|
lsreq = &lsop->ls_req;
|
|
|
|
lsreq->private = (void *)&lsop[1];
|
|
conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
|
|
(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
|
|
conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
|
|
|
|
conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
|
|
conn_rqst->desc_list_len = cpu_to_be32(
|
|
sizeof(struct fcnvme_lsdesc_assoc_id) +
|
|
sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
|
|
|
|
conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
|
|
conn_rqst->associd.desc_len =
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_assoc_id));
|
|
conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
|
|
conn_rqst->connect_cmd.desc_tag =
|
|
cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
|
|
conn_rqst->connect_cmd.desc_len =
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
|
|
conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
|
|
conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
|
|
conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
|
|
|
|
lsop->queue = queue;
|
|
lsreq->rqstaddr = conn_rqst;
|
|
lsreq->rqstlen = sizeof(*conn_rqst);
|
|
lsreq->rspaddr = conn_acc;
|
|
lsreq->rsplen = sizeof(*conn_acc);
|
|
lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
|
|
|
|
ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
|
|
if (ret)
|
|
goto out_free_buffer;
|
|
|
|
/* process connect LS completion */
|
|
|
|
/* validate the ACC response */
|
|
if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
|
|
fcret = VERR_LSACC;
|
|
else if (conn_acc->hdr.desc_list_len !=
|
|
fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
|
|
fcret = VERR_CR_CONN_ACC_LEN;
|
|
else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
|
|
fcret = VERR_LSDESC_RQST;
|
|
else if (conn_acc->hdr.rqst.desc_len !=
|
|
fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
|
|
fcret = VERR_LSDESC_RQST_LEN;
|
|
else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
|
|
fcret = VERR_CR_CONN;
|
|
else if (conn_acc->connectid.desc_tag !=
|
|
cpu_to_be32(FCNVME_LSDESC_CONN_ID))
|
|
fcret = VERR_CONN_ID;
|
|
else if (conn_acc->connectid.desc_len !=
|
|
fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
|
|
fcret = VERR_CONN_ID_LEN;
|
|
|
|
if (fcret) {
|
|
ret = -EBADF;
|
|
dev_err(ctrl->dev,
|
|
"q %d connect failed: %s\n",
|
|
queue->qnum, validation_errors[fcret]);
|
|
} else {
|
|
queue->connection_id =
|
|
be64_to_cpu(conn_acc->connectid.connection_id);
|
|
set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
|
|
}
|
|
|
|
out_free_buffer:
|
|
kfree(lsop);
|
|
out_no_memory:
|
|
if (ret)
|
|
dev_err(ctrl->dev,
|
|
"queue %d connect command failed (%d).\n",
|
|
queue->qnum, ret);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
|
|
{
|
|
struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
|
|
|
|
__nvme_fc_finish_ls_req(lsop);
|
|
|
|
/* fc-nvme initiator doesn't care about success or failure of cmd */
|
|
|
|
kfree(lsop);
|
|
}
|
|
|
|
/*
|
|
* This routine sends a FC-NVME LS to disconnect (aka terminate)
|
|
* the FC-NVME Association. Terminating the association also
|
|
* terminates the FC-NVME connections (per queue, both admin and io
|
|
* queues) that are part of the association. E.g. things are torn
|
|
* down, and the related FC-NVME Association ID and Connection IDs
|
|
* become invalid.
|
|
*
|
|
* The behavior of the fc-nvme initiator is such that it's
|
|
* understanding of the association and connections will implicitly
|
|
* be torn down. The action is implicit as it may be due to a loss of
|
|
* connectivity with the fc-nvme target, so you may never get a
|
|
* response even if you tried. As such, the action of this routine
|
|
* is to asynchronously send the LS, ignore any results of the LS, and
|
|
* continue on with terminating the association. If the fc-nvme target
|
|
* is present and receives the LS, it too can tear down.
|
|
*/
|
|
static void
|
|
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
struct fcnvme_ls_disconnect_rqst *discon_rqst;
|
|
struct fcnvme_ls_disconnect_acc *discon_acc;
|
|
struct nvmefc_ls_req_op *lsop;
|
|
struct nvmefc_ls_req *lsreq;
|
|
int ret;
|
|
|
|
lsop = kzalloc((sizeof(*lsop) +
|
|
ctrl->lport->ops->lsrqst_priv_sz +
|
|
sizeof(*discon_rqst) + sizeof(*discon_acc)),
|
|
GFP_KERNEL);
|
|
if (!lsop)
|
|
/* couldn't sent it... too bad */
|
|
return;
|
|
|
|
lsreq = &lsop->ls_req;
|
|
|
|
lsreq->private = (void *)&lsop[1];
|
|
discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
|
|
(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
|
|
discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
|
|
|
|
discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
|
|
discon_rqst->desc_list_len = cpu_to_be32(
|
|
sizeof(struct fcnvme_lsdesc_assoc_id) +
|
|
sizeof(struct fcnvme_lsdesc_disconn_cmd));
|
|
|
|
discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
|
|
discon_rqst->associd.desc_len =
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_assoc_id));
|
|
|
|
discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
|
|
|
|
discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
|
|
FCNVME_LSDESC_DISCONN_CMD);
|
|
discon_rqst->discon_cmd.desc_len =
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_disconn_cmd));
|
|
discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
|
|
discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
|
|
|
|
lsreq->rqstaddr = discon_rqst;
|
|
lsreq->rqstlen = sizeof(*discon_rqst);
|
|
lsreq->rspaddr = discon_acc;
|
|
lsreq->rsplen = sizeof(*discon_acc);
|
|
lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
|
|
|
|
ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
|
|
nvme_fc_disconnect_assoc_done);
|
|
if (ret)
|
|
kfree(lsop);
|
|
|
|
/* only meaningful part to terminating the association */
|
|
ctrl->association_id = 0;
|
|
}
|
|
|
|
|
|
/* *********************** NVME Ctrl Routines **************************** */
|
|
|
|
static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
|
|
|
|
static void
|
|
__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
|
|
struct nvme_fc_fcp_op *op)
|
|
{
|
|
fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
|
|
sizeof(op->rsp_iu), DMA_FROM_DEVICE);
|
|
fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
|
|
sizeof(op->cmd_iu), DMA_TO_DEVICE);
|
|
|
|
atomic_set(&op->state, FCPOP_STATE_UNINIT);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
|
|
|
|
return __nvme_fc_exit_request(set->driver_data, op);
|
|
}
|
|
|
|
static int
|
|
__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
|
|
{
|
|
unsigned long flags;
|
|
int opstate;
|
|
|
|
spin_lock_irqsave(&ctrl->lock, flags);
|
|
opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
|
|
if (opstate != FCPOP_STATE_ACTIVE)
|
|
atomic_set(&op->state, opstate);
|
|
else if (ctrl->flags & FCCTRL_TERMIO)
|
|
ctrl->iocnt++;
|
|
spin_unlock_irqrestore(&ctrl->lock, flags);
|
|
|
|
if (opstate != FCPOP_STATE_ACTIVE)
|
|
return -ECANCELED;
|
|
|
|
ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
|
|
&ctrl->rport->remoteport,
|
|
op->queue->lldd_handle,
|
|
&op->fcp_req);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
|
|
int i;
|
|
|
|
/* ensure we've initialized the ops once */
|
|
if (!(aen_op->flags & FCOP_FLAGS_AEN))
|
|
return;
|
|
|
|
for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
|
|
__nvme_fc_abort_op(ctrl, aen_op);
|
|
}
|
|
|
|
static inline void
|
|
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
|
|
struct nvme_fc_fcp_op *op, int opstate)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (opstate == FCPOP_STATE_ABORTED) {
|
|
spin_lock_irqsave(&ctrl->lock, flags);
|
|
if (ctrl->flags & FCCTRL_TERMIO) {
|
|
if (!--ctrl->iocnt)
|
|
wake_up(&ctrl->ioabort_wait);
|
|
}
|
|
spin_unlock_irqrestore(&ctrl->lock, flags);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
|
|
{
|
|
struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
|
|
struct request *rq = op->rq;
|
|
struct nvmefc_fcp_req *freq = &op->fcp_req;
|
|
struct nvme_fc_ctrl *ctrl = op->ctrl;
|
|
struct nvme_fc_queue *queue = op->queue;
|
|
struct nvme_completion *cqe = &op->rsp_iu.cqe;
|
|
struct nvme_command *sqe = &op->cmd_iu.sqe;
|
|
__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
|
|
union nvme_result result;
|
|
bool terminate_assoc = true;
|
|
int opstate;
|
|
|
|
/*
|
|
* WARNING:
|
|
* The current linux implementation of a nvme controller
|
|
* allocates a single tag set for all io queues and sizes
|
|
* the io queues to fully hold all possible tags. Thus, the
|
|
* implementation does not reference or care about the sqhd
|
|
* value as it never needs to use the sqhd/sqtail pointers
|
|
* for submission pacing.
|
|
*
|
|
* This affects the FC-NVME implementation in two ways:
|
|
* 1) As the value doesn't matter, we don't need to waste
|
|
* cycles extracting it from ERSPs and stamping it in the
|
|
* cases where the transport fabricates CQEs on successful
|
|
* completions.
|
|
* 2) The FC-NVME implementation requires that delivery of
|
|
* ERSP completions are to go back to the nvme layer in order
|
|
* relative to the rsn, such that the sqhd value will always
|
|
* be "in order" for the nvme layer. As the nvme layer in
|
|
* linux doesn't care about sqhd, there's no need to return
|
|
* them in order.
|
|
*
|
|
* Additionally:
|
|
* As the core nvme layer in linux currently does not look at
|
|
* every field in the cqe - in cases where the FC transport must
|
|
* fabricate a CQE, the following fields will not be set as they
|
|
* are not referenced:
|
|
* cqe.sqid, cqe.sqhd, cqe.command_id
|
|
*
|
|
* Failure or error of an individual i/o, in a transport
|
|
* detected fashion unrelated to the nvme completion status,
|
|
* potentially cause the initiator and target sides to get out
|
|
* of sync on SQ head/tail (aka outstanding io count allowed).
|
|
* Per FC-NVME spec, failure of an individual command requires
|
|
* the connection to be terminated, which in turn requires the
|
|
* association to be terminated.
|
|
*/
|
|
|
|
opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
|
|
|
|
fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
|
|
sizeof(op->rsp_iu), DMA_FROM_DEVICE);
|
|
|
|
if (opstate == FCPOP_STATE_ABORTED)
|
|
status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
|
|
else if (freq->status)
|
|
status = cpu_to_le16(NVME_SC_INTERNAL << 1);
|
|
|
|
/*
|
|
* For the linux implementation, if we have an unsuccesful
|
|
* status, they blk-mq layer can typically be called with the
|
|
* non-zero status and the content of the cqe isn't important.
|
|
*/
|
|
if (status)
|
|
goto done;
|
|
|
|
/*
|
|
* command completed successfully relative to the wire
|
|
* protocol. However, validate anything received and
|
|
* extract the status and result from the cqe (create it
|
|
* where necessary).
|
|
*/
|
|
|
|
switch (freq->rcv_rsplen) {
|
|
|
|
case 0:
|
|
case NVME_FC_SIZEOF_ZEROS_RSP:
|
|
/*
|
|
* No response payload or 12 bytes of payload (which
|
|
* should all be zeros) are considered successful and
|
|
* no payload in the CQE by the transport.
|
|
*/
|
|
if (freq->transferred_length !=
|
|
be32_to_cpu(op->cmd_iu.data_len)) {
|
|
status = cpu_to_le16(NVME_SC_INTERNAL << 1);
|
|
goto done;
|
|
}
|
|
result.u64 = 0;
|
|
break;
|
|
|
|
case sizeof(struct nvme_fc_ersp_iu):
|
|
/*
|
|
* The ERSP IU contains a full completion with CQE.
|
|
* Validate ERSP IU and look at cqe.
|
|
*/
|
|
if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
|
|
(freq->rcv_rsplen / 4) ||
|
|
be32_to_cpu(op->rsp_iu.xfrd_len) !=
|
|
freq->transferred_length ||
|
|
op->rsp_iu.status_code ||
|
|
sqe->common.command_id != cqe->command_id)) {
|
|
status = cpu_to_le16(NVME_SC_INTERNAL << 1);
|
|
goto done;
|
|
}
|
|
result = cqe->result;
|
|
status = cqe->status;
|
|
break;
|
|
|
|
default:
|
|
status = cpu_to_le16(NVME_SC_INTERNAL << 1);
|
|
goto done;
|
|
}
|
|
|
|
terminate_assoc = false;
|
|
|
|
done:
|
|
if (op->flags & FCOP_FLAGS_AEN) {
|
|
nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
|
|
__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
|
|
atomic_set(&op->state, FCPOP_STATE_IDLE);
|
|
op->flags = FCOP_FLAGS_AEN; /* clear other flags */
|
|
nvme_fc_ctrl_put(ctrl);
|
|
goto check_error;
|
|
}
|
|
|
|
__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
|
|
nvme_end_request(rq, status, result);
|
|
|
|
check_error:
|
|
if (terminate_assoc)
|
|
nvme_fc_error_recovery(ctrl, "transport detected io error");
|
|
}
|
|
|
|
static int
|
|
__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
|
|
struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
|
|
struct request *rq, u32 rqno)
|
|
{
|
|
struct nvme_fcp_op_w_sgl *op_w_sgl =
|
|
container_of(op, typeof(*op_w_sgl), op);
|
|
struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
|
|
int ret = 0;
|
|
|
|
memset(op, 0, sizeof(*op));
|
|
op->fcp_req.cmdaddr = &op->cmd_iu;
|
|
op->fcp_req.cmdlen = sizeof(op->cmd_iu);
|
|
op->fcp_req.rspaddr = &op->rsp_iu;
|
|
op->fcp_req.rsplen = sizeof(op->rsp_iu);
|
|
op->fcp_req.done = nvme_fc_fcpio_done;
|
|
op->ctrl = ctrl;
|
|
op->queue = queue;
|
|
op->rq = rq;
|
|
op->rqno = rqno;
|
|
|
|
cmdiu->scsi_id = NVME_CMD_SCSI_ID;
|
|
cmdiu->fc_id = NVME_CMD_FC_ID;
|
|
cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
|
|
|
|
op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
|
|
&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
|
|
if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
|
|
dev_err(ctrl->dev,
|
|
"FCP Op failed - cmdiu dma mapping failed.\n");
|
|
ret = EFAULT;
|
|
goto out_on_error;
|
|
}
|
|
|
|
op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
|
|
&op->rsp_iu, sizeof(op->rsp_iu),
|
|
DMA_FROM_DEVICE);
|
|
if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
|
|
dev_err(ctrl->dev,
|
|
"FCP Op failed - rspiu dma mapping failed.\n");
|
|
ret = EFAULT;
|
|
}
|
|
|
|
atomic_set(&op->state, FCPOP_STATE_IDLE);
|
|
out_on_error:
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
|
|
unsigned int hctx_idx, unsigned int numa_node)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl = set->driver_data;
|
|
struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
|
|
int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
|
|
struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
|
|
int res;
|
|
|
|
res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
|
|
if (res)
|
|
return res;
|
|
op->op.fcp_req.first_sgl = &op->sgl[0];
|
|
op->op.fcp_req.private = &op->priv[0];
|
|
nvme_req(rq)->ctrl = &ctrl->ctrl;
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
struct nvme_fc_fcp_op *aen_op;
|
|
struct nvme_fc_cmd_iu *cmdiu;
|
|
struct nvme_command *sqe;
|
|
void *private;
|
|
int i, ret;
|
|
|
|
aen_op = ctrl->aen_ops;
|
|
for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
|
|
private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
|
|
GFP_KERNEL);
|
|
if (!private)
|
|
return -ENOMEM;
|
|
|
|
cmdiu = &aen_op->cmd_iu;
|
|
sqe = &cmdiu->sqe;
|
|
ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
|
|
aen_op, (struct request *)NULL,
|
|
(NVME_AQ_BLK_MQ_DEPTH + i));
|
|
if (ret) {
|
|
kfree(private);
|
|
return ret;
|
|
}
|
|
|
|
aen_op->flags = FCOP_FLAGS_AEN;
|
|
aen_op->fcp_req.private = private;
|
|
|
|
memset(sqe, 0, sizeof(*sqe));
|
|
sqe->common.opcode = nvme_admin_async_event;
|
|
/* Note: core layer may overwrite the sqe.command_id value */
|
|
sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
struct nvme_fc_fcp_op *aen_op;
|
|
int i;
|
|
|
|
aen_op = ctrl->aen_ops;
|
|
for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
|
|
if (!aen_op->fcp_req.private)
|
|
continue;
|
|
|
|
__nvme_fc_exit_request(ctrl, aen_op);
|
|
|
|
kfree(aen_op->fcp_req.private);
|
|
aen_op->fcp_req.private = NULL;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
|
|
unsigned int qidx)
|
|
{
|
|
struct nvme_fc_queue *queue = &ctrl->queues[qidx];
|
|
|
|
hctx->driver_data = queue;
|
|
queue->hctx = hctx;
|
|
}
|
|
|
|
static int
|
|
nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl = data;
|
|
|
|
__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl = data;
|
|
|
|
__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
|
|
{
|
|
struct nvme_fc_queue *queue;
|
|
|
|
queue = &ctrl->queues[idx];
|
|
memset(queue, 0, sizeof(*queue));
|
|
queue->ctrl = ctrl;
|
|
queue->qnum = idx;
|
|
atomic_set(&queue->csn, 0);
|
|
queue->dev = ctrl->dev;
|
|
|
|
if (idx > 0)
|
|
queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
|
|
else
|
|
queue->cmnd_capsule_len = sizeof(struct nvme_command);
|
|
|
|
/*
|
|
* Considered whether we should allocate buffers for all SQEs
|
|
* and CQEs and dma map them - mapping their respective entries
|
|
* into the request structures (kernel vm addr and dma address)
|
|
* thus the driver could use the buffers/mappings directly.
|
|
* It only makes sense if the LLDD would use them for its
|
|
* messaging api. It's very unlikely most adapter api's would use
|
|
* a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
|
|
* structures were used instead.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* This routine terminates a queue at the transport level.
|
|
* The transport has already ensured that all outstanding ios on
|
|
* the queue have been terminated.
|
|
* The transport will send a Disconnect LS request to terminate
|
|
* the queue's connection. Termination of the admin queue will also
|
|
* terminate the association at the target.
|
|
*/
|
|
static void
|
|
nvme_fc_free_queue(struct nvme_fc_queue *queue)
|
|
{
|
|
if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
|
|
return;
|
|
|
|
clear_bit(NVME_FC_Q_LIVE, &queue->flags);
|
|
/*
|
|
* Current implementation never disconnects a single queue.
|
|
* It always terminates a whole association. So there is never
|
|
* a disconnect(queue) LS sent to the target.
|
|
*/
|
|
|
|
queue->connection_id = 0;
|
|
atomic_set(&queue->csn, 0);
|
|
}
|
|
|
|
static void
|
|
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
|
|
struct nvme_fc_queue *queue, unsigned int qidx)
|
|
{
|
|
if (ctrl->lport->ops->delete_queue)
|
|
ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
|
|
queue->lldd_handle);
|
|
queue->lldd_handle = NULL;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < ctrl->ctrl.queue_count; i++)
|
|
nvme_fc_free_queue(&ctrl->queues[i]);
|
|
}
|
|
|
|
static int
|
|
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
|
|
struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
|
|
{
|
|
int ret = 0;
|
|
|
|
queue->lldd_handle = NULL;
|
|
if (ctrl->lport->ops->create_queue)
|
|
ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
|
|
qidx, qsize, &queue->lldd_handle);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
|
|
int i;
|
|
|
|
for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
|
|
__nvme_fc_delete_hw_queue(ctrl, queue, i);
|
|
}
|
|
|
|
static int
|
|
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
|
|
{
|
|
struct nvme_fc_queue *queue = &ctrl->queues[1];
|
|
int i, ret;
|
|
|
|
for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
|
|
ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
|
|
if (ret)
|
|
goto delete_queues;
|
|
}
|
|
|
|
return 0;
|
|
|
|
delete_queues:
|
|
for (; i >= 0; i--)
|
|
__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
for (i = 1; i < ctrl->ctrl.queue_count; i++) {
|
|
ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
|
|
(qsize / 5));
|
|
if (ret)
|
|
break;
|
|
ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
|
|
if (ret)
|
|
break;
|
|
|
|
set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < ctrl->ctrl.queue_count; i++)
|
|
nvme_fc_init_queue(ctrl, i);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_ctrl_free(struct kref *ref)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl =
|
|
container_of(ref, struct nvme_fc_ctrl, ref);
|
|
unsigned long flags;
|
|
|
|
if (ctrl->ctrl.tagset) {
|
|
blk_cleanup_queue(ctrl->ctrl.connect_q);
|
|
blk_mq_free_tag_set(&ctrl->tag_set);
|
|
}
|
|
|
|
/* remove from rport list */
|
|
spin_lock_irqsave(&ctrl->rport->lock, flags);
|
|
list_del(&ctrl->ctrl_list);
|
|
spin_unlock_irqrestore(&ctrl->rport->lock, flags);
|
|
|
|
blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
|
|
blk_cleanup_queue(ctrl->ctrl.admin_q);
|
|
blk_mq_free_tag_set(&ctrl->admin_tag_set);
|
|
|
|
kfree(ctrl->queues);
|
|
|
|
put_device(ctrl->dev);
|
|
nvme_fc_rport_put(ctrl->rport);
|
|
|
|
ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
|
|
if (ctrl->ctrl.opts)
|
|
nvmf_free_options(ctrl->ctrl.opts);
|
|
kfree(ctrl);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
kref_put(&ctrl->ref, nvme_fc_ctrl_free);
|
|
}
|
|
|
|
static int
|
|
nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
return kref_get_unless_zero(&ctrl->ref);
|
|
}
|
|
|
|
/*
|
|
* All accesses from nvme core layer done - can now free the
|
|
* controller. Called after last nvme_put_ctrl() call
|
|
*/
|
|
static void
|
|
nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
|
|
|
|
WARN_ON(nctrl != &ctrl->ctrl);
|
|
|
|
nvme_fc_ctrl_put(ctrl);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
|
|
{
|
|
int active;
|
|
|
|
/*
|
|
* if an error (io timeout, etc) while (re)connecting,
|
|
* it's an error on creating the new association.
|
|
* Start the error recovery thread if it hasn't already
|
|
* been started. It is expected there could be multiple
|
|
* ios hitting this path before things are cleaned up.
|
|
*/
|
|
if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
|
|
active = atomic_xchg(&ctrl->err_work_active, 1);
|
|
if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
|
|
atomic_set(&ctrl->err_work_active, 0);
|
|
WARN_ON(1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Otherwise, only proceed if in LIVE state - e.g. on first error */
|
|
if (ctrl->ctrl.state != NVME_CTRL_LIVE)
|
|
return;
|
|
|
|
dev_warn(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: transport association error detected: %s\n",
|
|
ctrl->cnum, errmsg);
|
|
dev_warn(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
|
|
|
|
nvme_reset_ctrl(&ctrl->ctrl);
|
|
}
|
|
|
|
static enum blk_eh_timer_return
|
|
nvme_fc_timeout(struct request *rq, bool reserved)
|
|
{
|
|
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_fc_ctrl *ctrl = op->ctrl;
|
|
|
|
/*
|
|
* we can't individually ABTS an io without affecting the queue,
|
|
* thus killing the queue, and thus the association.
|
|
* So resolve by performing a controller reset, which will stop
|
|
* the host/io stack, terminate the association on the link,
|
|
* and recreate an association on the link.
|
|
*/
|
|
nvme_fc_error_recovery(ctrl, "io timeout error");
|
|
|
|
/*
|
|
* the io abort has been initiated. Have the reset timer
|
|
* restarted and the abort completion will complete the io
|
|
* shortly. Avoids a synchronous wait while the abort finishes.
|
|
*/
|
|
return BLK_EH_RESET_TIMER;
|
|
}
|
|
|
|
static int
|
|
nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
|
|
struct nvme_fc_fcp_op *op)
|
|
{
|
|
struct nvmefc_fcp_req *freq = &op->fcp_req;
|
|
enum dma_data_direction dir;
|
|
int ret;
|
|
|
|
freq->sg_cnt = 0;
|
|
|
|
if (!blk_rq_nr_phys_segments(rq))
|
|
return 0;
|
|
|
|
freq->sg_table.sgl = freq->first_sgl;
|
|
ret = sg_alloc_table_chained(&freq->sg_table,
|
|
blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
|
|
SG_CHUNK_SIZE);
|
|
if (ret)
|
|
return -ENOMEM;
|
|
|
|
op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
|
|
WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
|
|
dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
|
|
freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
|
|
op->nents, dir);
|
|
if (unlikely(freq->sg_cnt <= 0)) {
|
|
sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
|
|
freq->sg_cnt = 0;
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* TODO: blk_integrity_rq(rq) for DIF
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
|
|
struct nvme_fc_fcp_op *op)
|
|
{
|
|
struct nvmefc_fcp_req *freq = &op->fcp_req;
|
|
|
|
if (!freq->sg_cnt)
|
|
return;
|
|
|
|
fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
|
|
((rq_data_dir(rq) == WRITE) ?
|
|
DMA_TO_DEVICE : DMA_FROM_DEVICE));
|
|
|
|
nvme_cleanup_cmd(rq);
|
|
|
|
sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
|
|
|
|
freq->sg_cnt = 0;
|
|
}
|
|
|
|
/*
|
|
* In FC, the queue is a logical thing. At transport connect, the target
|
|
* creates its "queue" and returns a handle that is to be given to the
|
|
* target whenever it posts something to the corresponding SQ. When an
|
|
* SQE is sent on a SQ, FC effectively considers the SQE, or rather the
|
|
* command contained within the SQE, an io, and assigns a FC exchange
|
|
* to it. The SQE and the associated SQ handle are sent in the initial
|
|
* CMD IU sents on the exchange. All transfers relative to the io occur
|
|
* as part of the exchange. The CQE is the last thing for the io,
|
|
* which is transferred (explicitly or implicitly) with the RSP IU
|
|
* sent on the exchange. After the CQE is received, the FC exchange is
|
|
* terminaed and the Exchange may be used on a different io.
|
|
*
|
|
* The transport to LLDD api has the transport making a request for a
|
|
* new fcp io request to the LLDD. The LLDD then allocates a FC exchange
|
|
* resource and transfers the command. The LLDD will then process all
|
|
* steps to complete the io. Upon completion, the transport done routine
|
|
* is called.
|
|
*
|
|
* So - while the operation is outstanding to the LLDD, there is a link
|
|
* level FC exchange resource that is also outstanding. This must be
|
|
* considered in all cleanup operations.
|
|
*/
|
|
static blk_status_t
|
|
nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
|
|
struct nvme_fc_fcp_op *op, u32 data_len,
|
|
enum nvmefc_fcp_datadir io_dir)
|
|
{
|
|
struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
|
|
struct nvme_command *sqe = &cmdiu->sqe;
|
|
int ret, opstate;
|
|
|
|
/*
|
|
* before attempting to send the io, check to see if we believe
|
|
* the target device is present
|
|
*/
|
|
if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
if (!nvme_fc_ctrl_get(ctrl))
|
|
return BLK_STS_IOERR;
|
|
|
|
/* format the FC-NVME CMD IU and fcp_req */
|
|
cmdiu->connection_id = cpu_to_be64(queue->connection_id);
|
|
cmdiu->data_len = cpu_to_be32(data_len);
|
|
switch (io_dir) {
|
|
case NVMEFC_FCP_WRITE:
|
|
cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
|
|
break;
|
|
case NVMEFC_FCP_READ:
|
|
cmdiu->flags = FCNVME_CMD_FLAGS_READ;
|
|
break;
|
|
case NVMEFC_FCP_NODATA:
|
|
cmdiu->flags = 0;
|
|
break;
|
|
}
|
|
op->fcp_req.payload_length = data_len;
|
|
op->fcp_req.io_dir = io_dir;
|
|
op->fcp_req.transferred_length = 0;
|
|
op->fcp_req.rcv_rsplen = 0;
|
|
op->fcp_req.status = NVME_SC_SUCCESS;
|
|
op->fcp_req.sqid = cpu_to_le16(queue->qnum);
|
|
|
|
/*
|
|
* validate per fabric rules, set fields mandated by fabric spec
|
|
* as well as those by FC-NVME spec.
|
|
*/
|
|
WARN_ON_ONCE(sqe->common.metadata);
|
|
sqe->common.flags |= NVME_CMD_SGL_METABUF;
|
|
|
|
/*
|
|
* format SQE DPTR field per FC-NVME rules:
|
|
* type=0x5 Transport SGL Data Block Descriptor
|
|
* subtype=0xA Transport-specific value
|
|
* address=0
|
|
* length=length of the data series
|
|
*/
|
|
sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
|
|
NVME_SGL_FMT_TRANSPORT_A;
|
|
sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
|
|
sqe->rw.dptr.sgl.addr = 0;
|
|
|
|
if (!(op->flags & FCOP_FLAGS_AEN)) {
|
|
ret = nvme_fc_map_data(ctrl, op->rq, op);
|
|
if (ret < 0) {
|
|
nvme_cleanup_cmd(op->rq);
|
|
nvme_fc_ctrl_put(ctrl);
|
|
if (ret == -ENOMEM || ret == -EAGAIN)
|
|
return BLK_STS_RESOURCE;
|
|
return BLK_STS_IOERR;
|
|
}
|
|
}
|
|
|
|
fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
|
|
sizeof(op->cmd_iu), DMA_TO_DEVICE);
|
|
|
|
atomic_set(&op->state, FCPOP_STATE_ACTIVE);
|
|
|
|
if (!(op->flags & FCOP_FLAGS_AEN))
|
|
blk_mq_start_request(op->rq);
|
|
|
|
cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
|
|
ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
|
|
&ctrl->rport->remoteport,
|
|
queue->lldd_handle, &op->fcp_req);
|
|
|
|
if (ret) {
|
|
/*
|
|
* If the lld fails to send the command is there an issue with
|
|
* the csn value? If the command that fails is the Connect,
|
|
* no - as the connection won't be live. If it is a command
|
|
* post-connect, it's possible a gap in csn may be created.
|
|
* Does this matter? As Linux initiators don't send fused
|
|
* commands, no. The gap would exist, but as there's nothing
|
|
* that depends on csn order to be delivered on the target
|
|
* side, it shouldn't hurt. It would be difficult for a
|
|
* target to even detect the csn gap as it has no idea when the
|
|
* cmd with the csn was supposed to arrive.
|
|
*/
|
|
opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
|
|
__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
|
|
|
|
if (!(op->flags & FCOP_FLAGS_AEN))
|
|
nvme_fc_unmap_data(ctrl, op->rq, op);
|
|
|
|
nvme_fc_ctrl_put(ctrl);
|
|
|
|
if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
|
|
ret != -EBUSY)
|
|
return BLK_STS_IOERR;
|
|
|
|
return BLK_STS_RESOURCE;
|
|
}
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t
|
|
nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
|
|
const struct blk_mq_queue_data *bd)
|
|
{
|
|
struct nvme_ns *ns = hctx->queue->queuedata;
|
|
struct nvme_fc_queue *queue = hctx->driver_data;
|
|
struct nvme_fc_ctrl *ctrl = queue->ctrl;
|
|
struct request *rq = bd->rq;
|
|
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
|
|
struct nvme_command *sqe = &cmdiu->sqe;
|
|
enum nvmefc_fcp_datadir io_dir;
|
|
bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
|
|
u32 data_len;
|
|
blk_status_t ret;
|
|
|
|
if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
|
|
!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
|
|
return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
|
|
|
|
ret = nvme_setup_cmd(ns, rq, sqe);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* nvme core doesn't quite treat the rq opaquely. Commands such
|
|
* as WRITE ZEROES will return a non-zero rq payload_bytes yet
|
|
* there is no actual payload to be transferred.
|
|
* To get it right, key data transmission on there being 1 or
|
|
* more physical segments in the sg list. If there is no
|
|
* physical segments, there is no payload.
|
|
*/
|
|
if (blk_rq_nr_phys_segments(rq)) {
|
|
data_len = blk_rq_payload_bytes(rq);
|
|
io_dir = ((rq_data_dir(rq) == WRITE) ?
|
|
NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
|
|
} else {
|
|
data_len = 0;
|
|
io_dir = NVMEFC_FCP_NODATA;
|
|
}
|
|
|
|
|
|
return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_submit_async_event(struct nvme_ctrl *arg)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
|
|
struct nvme_fc_fcp_op *aen_op;
|
|
unsigned long flags;
|
|
bool terminating = false;
|
|
blk_status_t ret;
|
|
|
|
spin_lock_irqsave(&ctrl->lock, flags);
|
|
if (ctrl->flags & FCCTRL_TERMIO)
|
|
terminating = true;
|
|
spin_unlock_irqrestore(&ctrl->lock, flags);
|
|
|
|
if (terminating)
|
|
return;
|
|
|
|
aen_op = &ctrl->aen_ops[0];
|
|
|
|
ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
|
|
NVMEFC_FCP_NODATA);
|
|
if (ret)
|
|
dev_err(ctrl->ctrl.device,
|
|
"failed async event work\n");
|
|
}
|
|
|
|
static void
|
|
nvme_fc_complete_rq(struct request *rq)
|
|
{
|
|
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_fc_ctrl *ctrl = op->ctrl;
|
|
|
|
atomic_set(&op->state, FCPOP_STATE_IDLE);
|
|
|
|
nvme_fc_unmap_data(ctrl, rq, op);
|
|
nvme_complete_rq(rq);
|
|
nvme_fc_ctrl_put(ctrl);
|
|
}
|
|
|
|
/*
|
|
* This routine is used by the transport when it needs to find active
|
|
* io on a queue that is to be terminated. The transport uses
|
|
* blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
|
|
* this routine to kill them on a 1 by 1 basis.
|
|
*
|
|
* As FC allocates FC exchange for each io, the transport must contact
|
|
* the LLDD to terminate the exchange, thus releasing the FC exchange.
|
|
* After terminating the exchange the LLDD will call the transport's
|
|
* normal io done path for the request, but it will have an aborted
|
|
* status. The done path will return the io request back to the block
|
|
* layer with an error status.
|
|
*/
|
|
static bool
|
|
nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
|
|
{
|
|
struct nvme_ctrl *nctrl = data;
|
|
struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
|
|
struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
|
|
|
|
__nvme_fc_abort_op(ctrl, op);
|
|
return true;
|
|
}
|
|
|
|
|
|
static const struct blk_mq_ops nvme_fc_mq_ops = {
|
|
.queue_rq = nvme_fc_queue_rq,
|
|
.complete = nvme_fc_complete_rq,
|
|
.init_request = nvme_fc_init_request,
|
|
.exit_request = nvme_fc_exit_request,
|
|
.init_hctx = nvme_fc_init_hctx,
|
|
.timeout = nvme_fc_timeout,
|
|
};
|
|
|
|
static int
|
|
nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
|
|
unsigned int nr_io_queues;
|
|
int ret;
|
|
|
|
nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
|
|
ctrl->lport->ops->max_hw_queues);
|
|
ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
|
|
if (ret) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"set_queue_count failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ctrl->ctrl.queue_count = nr_io_queues + 1;
|
|
if (!nr_io_queues)
|
|
return 0;
|
|
|
|
nvme_fc_init_io_queues(ctrl);
|
|
|
|
memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
|
|
ctrl->tag_set.ops = &nvme_fc_mq_ops;
|
|
ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
|
|
ctrl->tag_set.reserved_tags = 1; /* fabric connect */
|
|
ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
|
|
ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
|
|
ctrl->tag_set.cmd_size =
|
|
struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
|
|
ctrl->lport->ops->fcprqst_priv_sz);
|
|
ctrl->tag_set.driver_data = ctrl;
|
|
ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
|
|
ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
|
|
|
|
ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctrl->ctrl.tagset = &ctrl->tag_set;
|
|
|
|
ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
|
|
if (IS_ERR(ctrl->ctrl.connect_q)) {
|
|
ret = PTR_ERR(ctrl->ctrl.connect_q);
|
|
goto out_free_tag_set;
|
|
}
|
|
|
|
ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
|
|
if (ret)
|
|
goto out_cleanup_blk_queue;
|
|
|
|
ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
|
|
if (ret)
|
|
goto out_delete_hw_queues;
|
|
|
|
ctrl->ioq_live = true;
|
|
|
|
return 0;
|
|
|
|
out_delete_hw_queues:
|
|
nvme_fc_delete_hw_io_queues(ctrl);
|
|
out_cleanup_blk_queue:
|
|
blk_cleanup_queue(ctrl->ctrl.connect_q);
|
|
out_free_tag_set:
|
|
blk_mq_free_tag_set(&ctrl->tag_set);
|
|
nvme_fc_free_io_queues(ctrl);
|
|
|
|
/* force put free routine to ignore io queues */
|
|
ctrl->ctrl.tagset = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
|
|
u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
|
|
unsigned int nr_io_queues;
|
|
int ret;
|
|
|
|
nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
|
|
ctrl->lport->ops->max_hw_queues);
|
|
ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
|
|
if (ret) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"set_queue_count failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (!nr_io_queues && prior_ioq_cnt) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"Fail Reconnect: At least 1 io queue "
|
|
"required (was %d)\n", prior_ioq_cnt);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ctrl->ctrl.queue_count = nr_io_queues + 1;
|
|
/* check for io queues existing */
|
|
if (ctrl->ctrl.queue_count == 1)
|
|
return 0;
|
|
|
|
ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
|
|
if (ret)
|
|
goto out_free_io_queues;
|
|
|
|
ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
|
|
if (ret)
|
|
goto out_delete_hw_queues;
|
|
|
|
if (prior_ioq_cnt != nr_io_queues)
|
|
dev_info(ctrl->ctrl.device,
|
|
"reconnect: revising io queue count from %d to %d\n",
|
|
prior_ioq_cnt, nr_io_queues);
|
|
blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
|
|
|
|
return 0;
|
|
|
|
out_delete_hw_queues:
|
|
nvme_fc_delete_hw_io_queues(ctrl);
|
|
out_free_io_queues:
|
|
nvme_fc_free_io_queues(ctrl);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
|
|
{
|
|
struct nvme_fc_lport *lport = rport->lport;
|
|
|
|
atomic_inc(&lport->act_rport_cnt);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
|
|
{
|
|
struct nvme_fc_lport *lport = rport->lport;
|
|
u32 cnt;
|
|
|
|
cnt = atomic_dec_return(&lport->act_rport_cnt);
|
|
if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
|
|
lport->ops->localport_delete(&lport->localport);
|
|
}
|
|
|
|
static int
|
|
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
struct nvme_fc_rport *rport = ctrl->rport;
|
|
u32 cnt;
|
|
|
|
if (ctrl->assoc_active)
|
|
return 1;
|
|
|
|
ctrl->assoc_active = true;
|
|
cnt = atomic_inc_return(&rport->act_ctrl_cnt);
|
|
if (cnt == 1)
|
|
nvme_fc_rport_active_on_lport(rport);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
struct nvme_fc_rport *rport = ctrl->rport;
|
|
struct nvme_fc_lport *lport = rport->lport;
|
|
u32 cnt;
|
|
|
|
/* ctrl->assoc_active=false will be set independently */
|
|
|
|
cnt = atomic_dec_return(&rport->act_ctrl_cnt);
|
|
if (cnt == 0) {
|
|
if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
|
|
lport->ops->remoteport_delete(&rport->remoteport);
|
|
nvme_fc_rport_inactive_on_lport(rport);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine restarts the controller on the host side, and
|
|
* on the link side, recreates the controller association.
|
|
*/
|
|
static int
|
|
nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
|
|
int ret;
|
|
bool changed;
|
|
|
|
++ctrl->ctrl.nr_reconnects;
|
|
|
|
if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
|
|
return -ENODEV;
|
|
|
|
if (nvme_fc_ctlr_active_on_rport(ctrl))
|
|
return -ENOTUNIQ;
|
|
|
|
dev_info(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: create association : host wwpn 0x%016llx "
|
|
" rport wwpn 0x%016llx: NQN \"%s\"\n",
|
|
ctrl->cnum, ctrl->lport->localport.port_name,
|
|
ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
|
|
|
|
/*
|
|
* Create the admin queue
|
|
*/
|
|
|
|
ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
|
|
NVME_AQ_DEPTH);
|
|
if (ret)
|
|
goto out_free_queue;
|
|
|
|
ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
|
|
NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
|
|
if (ret)
|
|
goto out_delete_hw_queue;
|
|
|
|
blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
|
|
|
|
ret = nvmf_connect_admin_queue(&ctrl->ctrl);
|
|
if (ret)
|
|
goto out_disconnect_admin_queue;
|
|
|
|
set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
|
|
|
|
/*
|
|
* Check controller capabilities
|
|
*
|
|
* todo:- add code to check if ctrl attributes changed from
|
|
* prior connection values
|
|
*/
|
|
|
|
ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
|
|
if (ret) {
|
|
dev_err(ctrl->ctrl.device,
|
|
"prop_get NVME_REG_CAP failed\n");
|
|
goto out_disconnect_admin_queue;
|
|
}
|
|
|
|
ctrl->ctrl.sqsize =
|
|
min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
|
|
|
|
ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
|
|
if (ret)
|
|
goto out_disconnect_admin_queue;
|
|
|
|
ctrl->ctrl.max_hw_sectors =
|
|
(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
|
|
|
|
ret = nvme_init_identify(&ctrl->ctrl);
|
|
if (ret)
|
|
goto out_disconnect_admin_queue;
|
|
|
|
/* sanity checks */
|
|
|
|
/* FC-NVME does not have other data in the capsule */
|
|
if (ctrl->ctrl.icdoff) {
|
|
dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
|
|
ctrl->ctrl.icdoff);
|
|
goto out_disconnect_admin_queue;
|
|
}
|
|
|
|
/* FC-NVME supports normal SGL Data Block Descriptors */
|
|
|
|
if (opts->queue_size > ctrl->ctrl.maxcmd) {
|
|
/* warn if maxcmd is lower than queue_size */
|
|
dev_warn(ctrl->ctrl.device,
|
|
"queue_size %zu > ctrl maxcmd %u, reducing "
|
|
"to queue_size\n",
|
|
opts->queue_size, ctrl->ctrl.maxcmd);
|
|
opts->queue_size = ctrl->ctrl.maxcmd;
|
|
}
|
|
|
|
if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
|
|
/* warn if sqsize is lower than queue_size */
|
|
dev_warn(ctrl->ctrl.device,
|
|
"queue_size %zu > ctrl sqsize %u, clamping down\n",
|
|
opts->queue_size, ctrl->ctrl.sqsize + 1);
|
|
opts->queue_size = ctrl->ctrl.sqsize + 1;
|
|
}
|
|
|
|
ret = nvme_fc_init_aen_ops(ctrl);
|
|
if (ret)
|
|
goto out_term_aen_ops;
|
|
|
|
/*
|
|
* Create the io queues
|
|
*/
|
|
|
|
if (ctrl->ctrl.queue_count > 1) {
|
|
if (!ctrl->ioq_live)
|
|
ret = nvme_fc_create_io_queues(ctrl);
|
|
else
|
|
ret = nvme_fc_recreate_io_queues(ctrl);
|
|
if (ret)
|
|
goto out_term_aen_ops;
|
|
}
|
|
|
|
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
|
|
|
|
ctrl->ctrl.nr_reconnects = 0;
|
|
|
|
if (changed)
|
|
nvme_start_ctrl(&ctrl->ctrl);
|
|
|
|
return 0; /* Success */
|
|
|
|
out_term_aen_ops:
|
|
nvme_fc_term_aen_ops(ctrl);
|
|
out_disconnect_admin_queue:
|
|
/* send a Disconnect(association) LS to fc-nvme target */
|
|
nvme_fc_xmt_disconnect_assoc(ctrl);
|
|
out_delete_hw_queue:
|
|
__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
|
|
out_free_queue:
|
|
nvme_fc_free_queue(&ctrl->queues[0]);
|
|
ctrl->assoc_active = false;
|
|
nvme_fc_ctlr_inactive_on_rport(ctrl);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This routine stops operation of the controller on the host side.
|
|
* On the host os stack side: Admin and IO queues are stopped,
|
|
* outstanding ios on them terminated via FC ABTS.
|
|
* On the link side: the association is terminated.
|
|
*/
|
|
static void
|
|
nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!ctrl->assoc_active)
|
|
return;
|
|
ctrl->assoc_active = false;
|
|
|
|
spin_lock_irqsave(&ctrl->lock, flags);
|
|
ctrl->flags |= FCCTRL_TERMIO;
|
|
ctrl->iocnt = 0;
|
|
spin_unlock_irqrestore(&ctrl->lock, flags);
|
|
|
|
/*
|
|
* If io queues are present, stop them and terminate all outstanding
|
|
* ios on them. As FC allocates FC exchange for each io, the
|
|
* transport must contact the LLDD to terminate the exchange,
|
|
* thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
|
|
* to tell us what io's are busy and invoke a transport routine
|
|
* to kill them with the LLDD. After terminating the exchange
|
|
* the LLDD will call the transport's normal io done path, but it
|
|
* will have an aborted status. The done path will return the
|
|
* io requests back to the block layer as part of normal completions
|
|
* (but with error status).
|
|
*/
|
|
if (ctrl->ctrl.queue_count > 1) {
|
|
nvme_stop_queues(&ctrl->ctrl);
|
|
blk_mq_tagset_busy_iter(&ctrl->tag_set,
|
|
nvme_fc_terminate_exchange, &ctrl->ctrl);
|
|
}
|
|
|
|
/*
|
|
* Other transports, which don't have link-level contexts bound
|
|
* to sqe's, would try to gracefully shutdown the controller by
|
|
* writing the registers for shutdown and polling (call
|
|
* nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
|
|
* just aborted and we will wait on those contexts, and given
|
|
* there was no indication of how live the controlelr is on the
|
|
* link, don't send more io to create more contexts for the
|
|
* shutdown. Let the controller fail via keepalive failure if
|
|
* its still present.
|
|
*/
|
|
|
|
/*
|
|
* clean up the admin queue. Same thing as above.
|
|
* use blk_mq_tagset_busy_itr() and the transport routine to
|
|
* terminate the exchanges.
|
|
*/
|
|
blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
|
|
blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
|
|
nvme_fc_terminate_exchange, &ctrl->ctrl);
|
|
|
|
/* kill the aens as they are a separate path */
|
|
nvme_fc_abort_aen_ops(ctrl);
|
|
|
|
/* wait for all io that had to be aborted */
|
|
spin_lock_irq(&ctrl->lock);
|
|
wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
|
|
ctrl->flags &= ~FCCTRL_TERMIO;
|
|
spin_unlock_irq(&ctrl->lock);
|
|
|
|
nvme_fc_term_aen_ops(ctrl);
|
|
|
|
/*
|
|
* send a Disconnect(association) LS to fc-nvme target
|
|
* Note: could have been sent at top of process, but
|
|
* cleaner on link traffic if after the aborts complete.
|
|
* Note: if association doesn't exist, association_id will be 0
|
|
*/
|
|
if (ctrl->association_id)
|
|
nvme_fc_xmt_disconnect_assoc(ctrl);
|
|
|
|
if (ctrl->ctrl.tagset) {
|
|
nvme_fc_delete_hw_io_queues(ctrl);
|
|
nvme_fc_free_io_queues(ctrl);
|
|
}
|
|
|
|
__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
|
|
nvme_fc_free_queue(&ctrl->queues[0]);
|
|
|
|
/* re-enable the admin_q so anything new can fast fail */
|
|
blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
|
|
|
|
/* resume the io queues so that things will fast fail */
|
|
nvme_start_queues(&ctrl->ctrl);
|
|
|
|
nvme_fc_ctlr_inactive_on_rport(ctrl);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
|
|
|
|
cancel_work_sync(&ctrl->err_work);
|
|
cancel_delayed_work_sync(&ctrl->connect_work);
|
|
/*
|
|
* kill the association on the link side. this will block
|
|
* waiting for io to terminate
|
|
*/
|
|
nvme_fc_delete_association(ctrl);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
|
|
{
|
|
struct nvme_fc_rport *rport = ctrl->rport;
|
|
struct nvme_fc_remote_port *portptr = &rport->remoteport;
|
|
unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
|
|
bool recon = true;
|
|
|
|
if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
|
|
return;
|
|
|
|
if (portptr->port_state == FC_OBJSTATE_ONLINE)
|
|
dev_info(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
|
|
ctrl->cnum, status);
|
|
else if (time_after_eq(jiffies, rport->dev_loss_end))
|
|
recon = false;
|
|
|
|
if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
|
|
if (portptr->port_state == FC_OBJSTATE_ONLINE)
|
|
dev_info(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: Reconnect attempt in %ld "
|
|
"seconds\n",
|
|
ctrl->cnum, recon_delay / HZ);
|
|
else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
|
|
recon_delay = rport->dev_loss_end - jiffies;
|
|
|
|
queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
|
|
} else {
|
|
if (portptr->port_state == FC_OBJSTATE_ONLINE)
|
|
dev_warn(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: Max reconnect attempts (%d) "
|
|
"reached.\n",
|
|
ctrl->cnum, ctrl->ctrl.nr_reconnects);
|
|
else
|
|
dev_warn(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: dev_loss_tmo (%d) expired "
|
|
"while waiting for remoteport connectivity.\n",
|
|
ctrl->cnum, portptr->dev_loss_tmo);
|
|
WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
|
|
}
|
|
}
|
|
|
|
static void
|
|
__nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
|
|
{
|
|
nvme_stop_keep_alive(&ctrl->ctrl);
|
|
|
|
/* will block will waiting for io to terminate */
|
|
nvme_fc_delete_association(ctrl);
|
|
|
|
if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
|
|
!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
|
|
dev_err(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: error_recovery: Couldn't change state "
|
|
"to CONNECTING\n", ctrl->cnum);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_reset_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl =
|
|
container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
|
|
int ret;
|
|
|
|
__nvme_fc_terminate_io(ctrl);
|
|
|
|
nvme_stop_ctrl(&ctrl->ctrl);
|
|
|
|
if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
|
|
ret = nvme_fc_create_association(ctrl);
|
|
else
|
|
ret = -ENOTCONN;
|
|
|
|
if (ret)
|
|
nvme_fc_reconnect_or_delete(ctrl, ret);
|
|
else
|
|
dev_info(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: controller reset complete\n",
|
|
ctrl->cnum);
|
|
}
|
|
|
|
static void
|
|
nvme_fc_connect_err_work(struct work_struct *work)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl =
|
|
container_of(work, struct nvme_fc_ctrl, err_work);
|
|
|
|
__nvme_fc_terminate_io(ctrl);
|
|
|
|
atomic_set(&ctrl->err_work_active, 0);
|
|
|
|
/*
|
|
* Rescheduling the connection after recovering
|
|
* from the io error is left to the reconnect work
|
|
* item, which is what should have stalled waiting on
|
|
* the io that had the error that scheduled this work.
|
|
*/
|
|
}
|
|
|
|
static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
|
|
.name = "fc",
|
|
.module = THIS_MODULE,
|
|
.flags = NVME_F_FABRICS,
|
|
.reg_read32 = nvmf_reg_read32,
|
|
.reg_read64 = nvmf_reg_read64,
|
|
.reg_write32 = nvmf_reg_write32,
|
|
.free_ctrl = nvme_fc_nvme_ctrl_freed,
|
|
.submit_async_event = nvme_fc_submit_async_event,
|
|
.delete_ctrl = nvme_fc_delete_ctrl,
|
|
.get_address = nvmf_get_address,
|
|
};
|
|
|
|
static void
|
|
nvme_fc_connect_ctrl_work(struct work_struct *work)
|
|
{
|
|
int ret;
|
|
|
|
struct nvme_fc_ctrl *ctrl =
|
|
container_of(to_delayed_work(work),
|
|
struct nvme_fc_ctrl, connect_work);
|
|
|
|
ret = nvme_fc_create_association(ctrl);
|
|
if (ret)
|
|
nvme_fc_reconnect_or_delete(ctrl, ret);
|
|
else
|
|
dev_info(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: controller connect complete\n",
|
|
ctrl->cnum);
|
|
}
|
|
|
|
|
|
static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
|
|
.queue_rq = nvme_fc_queue_rq,
|
|
.complete = nvme_fc_complete_rq,
|
|
.init_request = nvme_fc_init_request,
|
|
.exit_request = nvme_fc_exit_request,
|
|
.init_hctx = nvme_fc_init_admin_hctx,
|
|
.timeout = nvme_fc_timeout,
|
|
};
|
|
|
|
|
|
/*
|
|
* Fails a controller request if it matches an existing controller
|
|
* (association) with the same tuple:
|
|
* <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
|
|
*
|
|
* The ports don't need to be compared as they are intrinsically
|
|
* already matched by the port pointers supplied.
|
|
*/
|
|
static bool
|
|
nvme_fc_existing_controller(struct nvme_fc_rport *rport,
|
|
struct nvmf_ctrl_options *opts)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl;
|
|
unsigned long flags;
|
|
bool found = false;
|
|
|
|
spin_lock_irqsave(&rport->lock, flags);
|
|
list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
|
|
found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
|
|
if (found)
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
|
|
return found;
|
|
}
|
|
|
|
static struct nvme_ctrl *
|
|
nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
|
|
struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
|
|
{
|
|
struct nvme_fc_ctrl *ctrl;
|
|
unsigned long flags;
|
|
int ret, idx;
|
|
|
|
if (!(rport->remoteport.port_role &
|
|
(FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
|
|
ret = -EBADR;
|
|
goto out_fail;
|
|
}
|
|
|
|
if (!opts->duplicate_connect &&
|
|
nvme_fc_existing_controller(rport, opts)) {
|
|
ret = -EALREADY;
|
|
goto out_fail;
|
|
}
|
|
|
|
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
|
|
if (!ctrl) {
|
|
ret = -ENOMEM;
|
|
goto out_fail;
|
|
}
|
|
|
|
idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
|
|
if (idx < 0) {
|
|
ret = -ENOSPC;
|
|
goto out_free_ctrl;
|
|
}
|
|
|
|
ctrl->ctrl.opts = opts;
|
|
ctrl->ctrl.nr_reconnects = 0;
|
|
if (lport->dev)
|
|
ctrl->ctrl.numa_node = dev_to_node(lport->dev);
|
|
else
|
|
ctrl->ctrl.numa_node = NUMA_NO_NODE;
|
|
INIT_LIST_HEAD(&ctrl->ctrl_list);
|
|
ctrl->lport = lport;
|
|
ctrl->rport = rport;
|
|
ctrl->dev = lport->dev;
|
|
ctrl->cnum = idx;
|
|
ctrl->ioq_live = false;
|
|
ctrl->assoc_active = false;
|
|
atomic_set(&ctrl->err_work_active, 0);
|
|
init_waitqueue_head(&ctrl->ioabort_wait);
|
|
|
|
get_device(ctrl->dev);
|
|
kref_init(&ctrl->ref);
|
|
|
|
INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
|
|
INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
|
|
INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
|
|
spin_lock_init(&ctrl->lock);
|
|
|
|
/* io queue count */
|
|
ctrl->ctrl.queue_count = min_t(unsigned int,
|
|
opts->nr_io_queues,
|
|
lport->ops->max_hw_queues);
|
|
ctrl->ctrl.queue_count++; /* +1 for admin queue */
|
|
|
|
ctrl->ctrl.sqsize = opts->queue_size - 1;
|
|
ctrl->ctrl.kato = opts->kato;
|
|
ctrl->ctrl.cntlid = 0xffff;
|
|
|
|
ret = -ENOMEM;
|
|
ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
|
|
sizeof(struct nvme_fc_queue), GFP_KERNEL);
|
|
if (!ctrl->queues)
|
|
goto out_free_ida;
|
|
|
|
nvme_fc_init_queue(ctrl, 0);
|
|
|
|
memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
|
|
ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
|
|
ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
|
|
ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
|
|
ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
|
|
ctrl->admin_tag_set.cmd_size =
|
|
struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
|
|
ctrl->lport->ops->fcprqst_priv_sz);
|
|
ctrl->admin_tag_set.driver_data = ctrl;
|
|
ctrl->admin_tag_set.nr_hw_queues = 1;
|
|
ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
|
|
ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
|
|
|
|
ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
|
|
if (ret)
|
|
goto out_free_queues;
|
|
ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
|
|
|
|
ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
|
|
if (IS_ERR(ctrl->ctrl.admin_q)) {
|
|
ret = PTR_ERR(ctrl->ctrl.admin_q);
|
|
goto out_free_admin_tag_set;
|
|
}
|
|
|
|
/*
|
|
* Would have been nice to init io queues tag set as well.
|
|
* However, we require interaction from the controller
|
|
* for max io queue count before we can do so.
|
|
* Defer this to the connect path.
|
|
*/
|
|
|
|
ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
|
|
if (ret)
|
|
goto out_cleanup_admin_q;
|
|
|
|
/* at this point, teardown path changes to ref counting on nvme ctrl */
|
|
|
|
spin_lock_irqsave(&rport->lock, flags);
|
|
list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
|
|
spin_unlock_irqrestore(&rport->lock, flags);
|
|
|
|
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
|
|
!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
|
|
dev_err(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
|
|
goto fail_ctrl;
|
|
}
|
|
|
|
nvme_get_ctrl(&ctrl->ctrl);
|
|
|
|
if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
|
|
nvme_put_ctrl(&ctrl->ctrl);
|
|
dev_err(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: failed to schedule initial connect\n",
|
|
ctrl->cnum);
|
|
goto fail_ctrl;
|
|
}
|
|
|
|
flush_delayed_work(&ctrl->connect_work);
|
|
|
|
dev_info(ctrl->ctrl.device,
|
|
"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
|
|
ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
|
|
|
|
return &ctrl->ctrl;
|
|
|
|
fail_ctrl:
|
|
nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
|
|
cancel_work_sync(&ctrl->ctrl.reset_work);
|
|
cancel_work_sync(&ctrl->err_work);
|
|
cancel_delayed_work_sync(&ctrl->connect_work);
|
|
|
|
ctrl->ctrl.opts = NULL;
|
|
|
|
/* initiate nvme ctrl ref counting teardown */
|
|
nvme_uninit_ctrl(&ctrl->ctrl);
|
|
|
|
/* Remove core ctrl ref. */
|
|
nvme_put_ctrl(&ctrl->ctrl);
|
|
|
|
/* as we're past the point where we transition to the ref
|
|
* counting teardown path, if we return a bad pointer here,
|
|
* the calling routine, thinking it's prior to the
|
|
* transition, will do an rport put. Since the teardown
|
|
* path also does a rport put, we do an extra get here to
|
|
* so proper order/teardown happens.
|
|
*/
|
|
nvme_fc_rport_get(rport);
|
|
|
|
return ERR_PTR(-EIO);
|
|
|
|
out_cleanup_admin_q:
|
|
blk_cleanup_queue(ctrl->ctrl.admin_q);
|
|
out_free_admin_tag_set:
|
|
blk_mq_free_tag_set(&ctrl->admin_tag_set);
|
|
out_free_queues:
|
|
kfree(ctrl->queues);
|
|
out_free_ida:
|
|
put_device(ctrl->dev);
|
|
ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
|
|
out_free_ctrl:
|
|
kfree(ctrl);
|
|
out_fail:
|
|
/* exit via here doesn't follow ctlr ref points */
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
|
|
struct nvmet_fc_traddr {
|
|
u64 nn;
|
|
u64 pn;
|
|
};
|
|
|
|
static int
|
|
__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
|
|
{
|
|
u64 token64;
|
|
|
|
if (match_u64(sstr, &token64))
|
|
return -EINVAL;
|
|
*val = token64;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine validates and extracts the WWN's from the TRADDR string.
|
|
* As kernel parsers need the 0x to determine number base, universally
|
|
* build string to parse with 0x prefix before parsing name strings.
|
|
*/
|
|
static int
|
|
nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
|
|
{
|
|
char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
|
|
substring_t wwn = { name, &name[sizeof(name)-1] };
|
|
int nnoffset, pnoffset;
|
|
|
|
/* validate if string is one of the 2 allowed formats */
|
|
if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
|
|
!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
|
|
!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
|
|
"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
|
|
nnoffset = NVME_FC_TRADDR_OXNNLEN;
|
|
pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
|
|
NVME_FC_TRADDR_OXNNLEN;
|
|
} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
|
|
!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
|
|
!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
|
|
"pn-", NVME_FC_TRADDR_NNLEN))) {
|
|
nnoffset = NVME_FC_TRADDR_NNLEN;
|
|
pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
|
|
} else
|
|
goto out_einval;
|
|
|
|
name[0] = '0';
|
|
name[1] = 'x';
|
|
name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
|
|
|
|
memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
|
|
if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
|
|
goto out_einval;
|
|
|
|
memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
|
|
if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
|
|
goto out_einval;
|
|
|
|
return 0;
|
|
|
|
out_einval:
|
|
pr_warn("%s: bad traddr string\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static struct nvme_ctrl *
|
|
nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
|
|
{
|
|
struct nvme_fc_lport *lport;
|
|
struct nvme_fc_rport *rport;
|
|
struct nvme_ctrl *ctrl;
|
|
struct nvmet_fc_traddr laddr = { 0L, 0L };
|
|
struct nvmet_fc_traddr raddr = { 0L, 0L };
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
|
|
if (ret || !raddr.nn || !raddr.pn)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
|
|
if (ret || !laddr.nn || !laddr.pn)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* find the host and remote ports to connect together */
|
|
spin_lock_irqsave(&nvme_fc_lock, flags);
|
|
list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
|
|
if (lport->localport.node_name != laddr.nn ||
|
|
lport->localport.port_name != laddr.pn)
|
|
continue;
|
|
|
|
list_for_each_entry(rport, &lport->endp_list, endp_list) {
|
|
if (rport->remoteport.node_name != raddr.nn ||
|
|
rport->remoteport.port_name != raddr.pn)
|
|
continue;
|
|
|
|
/* if fail to get reference fall through. Will error */
|
|
if (!nvme_fc_rport_get(rport))
|
|
break;
|
|
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
|
|
if (IS_ERR(ctrl))
|
|
nvme_fc_rport_put(rport);
|
|
return ctrl;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
pr_warn("%s: %s - %s combination not found\n",
|
|
__func__, opts->traddr, opts->host_traddr);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
|
|
static struct nvmf_transport_ops nvme_fc_transport = {
|
|
.name = "fc",
|
|
.module = THIS_MODULE,
|
|
.required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
|
|
.allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
|
|
.create_ctrl = nvme_fc_create_ctrl,
|
|
};
|
|
|
|
/* Arbitrary successive failures max. With lots of subsystems could be high */
|
|
#define DISCOVERY_MAX_FAIL 20
|
|
|
|
static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
unsigned long flags;
|
|
LIST_HEAD(local_disc_list);
|
|
struct nvme_fc_lport *lport;
|
|
struct nvme_fc_rport *rport;
|
|
int failcnt = 0;
|
|
|
|
spin_lock_irqsave(&nvme_fc_lock, flags);
|
|
restart:
|
|
list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
|
|
list_for_each_entry(rport, &lport->endp_list, endp_list) {
|
|
if (!nvme_fc_lport_get(lport))
|
|
continue;
|
|
if (!nvme_fc_rport_get(rport)) {
|
|
/*
|
|
* This is a temporary condition. Upon restart
|
|
* this rport will be gone from the list.
|
|
*
|
|
* Revert the lport put and retry. Anything
|
|
* added to the list already will be skipped (as
|
|
* they are no longer list_empty). Loops should
|
|
* resume at rports that were not yet seen.
|
|
*/
|
|
nvme_fc_lport_put(lport);
|
|
|
|
if (failcnt++ < DISCOVERY_MAX_FAIL)
|
|
goto restart;
|
|
|
|
pr_err("nvme_discovery: too many reference "
|
|
"failures\n");
|
|
goto process_local_list;
|
|
}
|
|
if (list_empty(&rport->disc_list))
|
|
list_add_tail(&rport->disc_list,
|
|
&local_disc_list);
|
|
}
|
|
}
|
|
|
|
process_local_list:
|
|
while (!list_empty(&local_disc_list)) {
|
|
rport = list_first_entry(&local_disc_list,
|
|
struct nvme_fc_rport, disc_list);
|
|
list_del_init(&rport->disc_list);
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
lport = rport->lport;
|
|
/* signal discovery. Won't hurt if it repeats */
|
|
nvme_fc_signal_discovery_scan(lport, rport);
|
|
nvme_fc_rport_put(rport);
|
|
nvme_fc_lport_put(lport);
|
|
|
|
spin_lock_irqsave(&nvme_fc_lock, flags);
|
|
}
|
|
spin_unlock_irqrestore(&nvme_fc_lock, flags);
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
|
|
|
|
static struct attribute *nvme_fc_attrs[] = {
|
|
&dev_attr_nvme_discovery.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group nvme_fc_attr_group = {
|
|
.attrs = nvme_fc_attrs,
|
|
};
|
|
|
|
static const struct attribute_group *nvme_fc_attr_groups[] = {
|
|
&nvme_fc_attr_group,
|
|
NULL
|
|
};
|
|
|
|
static struct class fc_class = {
|
|
.name = "fc",
|
|
.dev_groups = nvme_fc_attr_groups,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init nvme_fc_init_module(void)
|
|
{
|
|
int ret;
|
|
|
|
nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
|
|
if (!nvme_fc_wq)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* NOTE:
|
|
* It is expected that in the future the kernel will combine
|
|
* the FC-isms that are currently under scsi and now being
|
|
* added to by NVME into a new standalone FC class. The SCSI
|
|
* and NVME protocols and their devices would be under this
|
|
* new FC class.
|
|
*
|
|
* As we need something to post FC-specific udev events to,
|
|
* specifically for nvme probe events, start by creating the
|
|
* new device class. When the new standalone FC class is
|
|
* put in place, this code will move to a more generic
|
|
* location for the class.
|
|
*/
|
|
ret = class_register(&fc_class);
|
|
if (ret) {
|
|
pr_err("couldn't register class fc\n");
|
|
goto out_destroy_wq;
|
|
}
|
|
|
|
/*
|
|
* Create a device for the FC-centric udev events
|
|
*/
|
|
fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
|
|
"fc_udev_device");
|
|
if (IS_ERR(fc_udev_device)) {
|
|
pr_err("couldn't create fc_udev device!\n");
|
|
ret = PTR_ERR(fc_udev_device);
|
|
goto out_destroy_class;
|
|
}
|
|
|
|
ret = nvmf_register_transport(&nvme_fc_transport);
|
|
if (ret)
|
|
goto out_destroy_device;
|
|
|
|
return 0;
|
|
|
|
out_destroy_device:
|
|
device_destroy(&fc_class, MKDEV(0, 0));
|
|
out_destroy_class:
|
|
class_unregister(&fc_class);
|
|
out_destroy_wq:
|
|
destroy_workqueue(nvme_fc_wq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit nvme_fc_exit_module(void)
|
|
{
|
|
/* sanity check - all lports should be removed */
|
|
if (!list_empty(&nvme_fc_lport_list))
|
|
pr_warn("%s: localport list not empty\n", __func__);
|
|
|
|
nvmf_unregister_transport(&nvme_fc_transport);
|
|
|
|
ida_destroy(&nvme_fc_local_port_cnt);
|
|
ida_destroy(&nvme_fc_ctrl_cnt);
|
|
|
|
device_destroy(&fc_class, MKDEV(0, 0));
|
|
class_unregister(&fc_class);
|
|
destroy_workqueue(nvme_fc_wq);
|
|
}
|
|
|
|
module_init(nvme_fc_init_module);
|
|
module_exit(nvme_fc_exit_module);
|
|
|
|
MODULE_LICENSE("GPL v2");
|