mirror of
https://github.com/torvalds/linux.git
synced 2024-12-04 01:51:34 +00:00
2fab02b25a
Some applications (like GDB) would like to tweak shadow stack state via ptrace. This allows for existing functionality to continue to work for seized shadow stack applications. Provide a regset interface for manipulating the shadow stack pointer (SSP). There is already ptrace functionality for accessing xstate, but this does not include supervisor xfeatures. So there is not a completely clear place for where to put the shadow stack state. Adding it to the user xfeatures regset would complicate that code, as it currently shares logic with signals which should not have supervisor features. Don't add a general supervisor xfeature regset like the user one, because it is better to maintain flexibility for other supervisor xfeatures to define their own interface. For example, an xfeature may decide not to expose all of it's state to userspace, as is actually the case for shadow stack ptrace functionality. A lot of enum values remain to be used, so just put it in dedicated shadow stack regset. The only downside to not having a generic supervisor xfeature regset, is that apps need to be enlightened of any new supervisor xfeature exposed this way (i.e. they can't try to have generic save/restore logic). But maybe that is a good thing, because they have to think through each new xfeature instead of encountering issues when a new supervisor xfeature was added. By adding a shadow stack regset, it also has the effect of including the shadow stack state in a core dump, which could be useful for debugging. The shadow stack specific xstate includes the SSP, and the shadow stack and WRSS enablement status. Enabling shadow stack or WRSS in the kernel involves more than just flipping the bit. The kernel is made aware that it has to do extra things when cloning or handling signals. That logic is triggered off of separate feature enablement state kept in the task struct. So the flipping on HW shadow stack enforcement without notifying the kernel to change its behavior would severely limit what an application could do without crashing, and the results would depend on kernel internal implementation details. There is also no known use for controlling this state via ptrace today. So only expose the SSP, which is something that userspace already has indirect control over. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-41-rick.p.edgecombe%40intel.com
468 lines
12 KiB
C
468 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* FPU register's regset abstraction, for ptrace, core dumps, etc.
|
|
*/
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/fpu/signal.h>
|
|
#include <asm/fpu/regset.h>
|
|
#include <asm/prctl.h>
|
|
|
|
#include "context.h"
|
|
#include "internal.h"
|
|
#include "legacy.h"
|
|
#include "xstate.h"
|
|
|
|
/*
|
|
* The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
|
|
* as the "regset->n" for the xstate regset will be updated based on the feature
|
|
* capabilities supported by the xsave.
|
|
*/
|
|
int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
return regset->n;
|
|
}
|
|
|
|
int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
if (boot_cpu_has(X86_FEATURE_FXSR))
|
|
return regset->n;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The regset get() functions are invoked from:
|
|
*
|
|
* - coredump to dump the current task's fpstate. If the current task
|
|
* owns the FPU then the memory state has to be synchronized and the
|
|
* FPU register state preserved. Otherwise fpstate is already in sync.
|
|
*
|
|
* - ptrace to dump fpstate of a stopped task, in which case the registers
|
|
* have already been saved to fpstate on context switch.
|
|
*/
|
|
static void sync_fpstate(struct fpu *fpu)
|
|
{
|
|
if (fpu == ¤t->thread.fpu)
|
|
fpu_sync_fpstate(fpu);
|
|
}
|
|
|
|
/*
|
|
* Invalidate cached FPU registers before modifying the stopped target
|
|
* task's fpstate.
|
|
*
|
|
* This forces the target task on resume to restore the FPU registers from
|
|
* modified fpstate. Otherwise the task might skip the restore and operate
|
|
* with the cached FPU registers which discards the modifications.
|
|
*/
|
|
static void fpu_force_restore(struct fpu *fpu)
|
|
{
|
|
/*
|
|
* Only stopped child tasks can be used to modify the FPU
|
|
* state in the fpstate buffer:
|
|
*/
|
|
WARN_ON_FPU(fpu == ¤t->thread.fpu);
|
|
|
|
__fpu_invalidate_fpregs_state(fpu);
|
|
}
|
|
|
|
int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
struct membuf to)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_FXSR))
|
|
return -ENODEV;
|
|
|
|
sync_fpstate(fpu);
|
|
|
|
if (!use_xsave()) {
|
|
return membuf_write(&to, &fpu->fpstate->regs.fxsave,
|
|
sizeof(fpu->fpstate->regs.fxsave));
|
|
}
|
|
|
|
copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_FX);
|
|
return 0;
|
|
}
|
|
|
|
int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct fxregs_state newstate;
|
|
int ret;
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_FXSR))
|
|
return -ENODEV;
|
|
|
|
/* No funny business with partial or oversized writes is permitted. */
|
|
if (pos != 0 || count != sizeof(newstate))
|
|
return -EINVAL;
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate, 0, -1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Do not allow an invalid MXCSR value. */
|
|
if (newstate.mxcsr & ~mxcsr_feature_mask)
|
|
return -EINVAL;
|
|
|
|
fpu_force_restore(fpu);
|
|
|
|
/* Copy the state */
|
|
memcpy(&fpu->fpstate->regs.fxsave, &newstate, sizeof(newstate));
|
|
|
|
/* Clear xmm8..15 for 32-bit callers */
|
|
BUILD_BUG_ON(sizeof(fpu->__fpstate.regs.fxsave.xmm_space) != 16 * 16);
|
|
if (in_ia32_syscall())
|
|
memset(&fpu->fpstate->regs.fxsave.xmm_space[8*4], 0, 8 * 16);
|
|
|
|
/* Mark FP and SSE as in use when XSAVE is enabled */
|
|
if (use_xsave())
|
|
fpu->fpstate->regs.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
struct membuf to)
|
|
{
|
|
if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
|
|
return -ENODEV;
|
|
|
|
sync_fpstate(&target->thread.fpu);
|
|
|
|
copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_XSAVE);
|
|
return 0;
|
|
}
|
|
|
|
int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct xregs_state *tmpbuf = NULL;
|
|
int ret;
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* A whole standard-format XSAVE buffer is needed:
|
|
*/
|
|
if (pos != 0 || count != fpu_user_cfg.max_size)
|
|
return -EFAULT;
|
|
|
|
if (!kbuf) {
|
|
tmpbuf = vmalloc(count);
|
|
if (!tmpbuf)
|
|
return -ENOMEM;
|
|
|
|
if (copy_from_user(tmpbuf, ubuf, count)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
fpu_force_restore(fpu);
|
|
ret = copy_uabi_from_kernel_to_xstate(fpu->fpstate, kbuf ?: tmpbuf, &target->thread.pkru);
|
|
|
|
out:
|
|
vfree(tmpbuf);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_USER_SHADOW_STACK
|
|
int ssp_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
if (target->thread.features & ARCH_SHSTK_SHSTK)
|
|
return regset->n;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ssp_get(struct task_struct *target, const struct user_regset *regset,
|
|
struct membuf to)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct cet_user_state *cetregs;
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_USER_SHSTK))
|
|
return -ENODEV;
|
|
|
|
sync_fpstate(fpu);
|
|
cetregs = get_xsave_addr(&fpu->fpstate->regs.xsave, XFEATURE_CET_USER);
|
|
if (WARN_ON(!cetregs)) {
|
|
/*
|
|
* This shouldn't ever be NULL because shadow stack was
|
|
* verified to be enabled above. This means
|
|
* MSR_IA32_U_CET.CET_SHSTK_EN should be 1 and so
|
|
* XFEATURE_CET_USER should not be in the init state.
|
|
*/
|
|
return -ENODEV;
|
|
}
|
|
|
|
return membuf_write(&to, (unsigned long *)&cetregs->user_ssp,
|
|
sizeof(cetregs->user_ssp));
|
|
}
|
|
|
|
int ssp_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct xregs_state *xsave = &fpu->fpstate->regs.xsave;
|
|
struct cet_user_state *cetregs;
|
|
unsigned long user_ssp;
|
|
int r;
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_USER_SHSTK) ||
|
|
!ssp_active(target, regset))
|
|
return -ENODEV;
|
|
|
|
if (pos != 0 || count != sizeof(user_ssp))
|
|
return -EINVAL;
|
|
|
|
r = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &user_ssp, 0, -1);
|
|
if (r)
|
|
return r;
|
|
|
|
/*
|
|
* Some kernel instructions (IRET, etc) can cause exceptions in the case
|
|
* of disallowed CET register values. Just prevent invalid values.
|
|
*/
|
|
if (user_ssp >= TASK_SIZE_MAX || !IS_ALIGNED(user_ssp, 8))
|
|
return -EINVAL;
|
|
|
|
fpu_force_restore(fpu);
|
|
|
|
cetregs = get_xsave_addr(xsave, XFEATURE_CET_USER);
|
|
if (WARN_ON(!cetregs)) {
|
|
/*
|
|
* This shouldn't ever be NULL because shadow stack was
|
|
* verified to be enabled above. This means
|
|
* MSR_IA32_U_CET.CET_SHSTK_EN should be 1 and so
|
|
* XFEATURE_CET_USER should not be in the init state.
|
|
*/
|
|
return -ENODEV;
|
|
}
|
|
|
|
cetregs->user_ssp = user_ssp;
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_X86_USER_SHADOW_STACK */
|
|
|
|
#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
|
|
|
|
/*
|
|
* FPU tag word conversions.
|
|
*/
|
|
|
|
static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
|
|
{
|
|
unsigned int tmp; /* to avoid 16 bit prefixes in the code */
|
|
|
|
/* Transform each pair of bits into 01 (valid) or 00 (empty) */
|
|
tmp = ~twd;
|
|
tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
|
|
/* and move the valid bits to the lower byte. */
|
|
tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
|
|
tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
|
|
tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
|
|
|
|
return tmp;
|
|
}
|
|
|
|
#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
|
|
#define FP_EXP_TAG_VALID 0
|
|
#define FP_EXP_TAG_ZERO 1
|
|
#define FP_EXP_TAG_SPECIAL 2
|
|
#define FP_EXP_TAG_EMPTY 3
|
|
|
|
static inline u32 twd_fxsr_to_i387(struct fxregs_state *fxsave)
|
|
{
|
|
struct _fpxreg *st;
|
|
u32 tos = (fxsave->swd >> 11) & 7;
|
|
u32 twd = (unsigned long) fxsave->twd;
|
|
u32 tag;
|
|
u32 ret = 0xffff0000u;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++, twd >>= 1) {
|
|
if (twd & 0x1) {
|
|
st = FPREG_ADDR(fxsave, (i - tos) & 7);
|
|
|
|
switch (st->exponent & 0x7fff) {
|
|
case 0x7fff:
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
case 0x0000:
|
|
if (!st->significand[0] &&
|
|
!st->significand[1] &&
|
|
!st->significand[2] &&
|
|
!st->significand[3])
|
|
tag = FP_EXP_TAG_ZERO;
|
|
else
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
default:
|
|
if (st->significand[3] & 0x8000)
|
|
tag = FP_EXP_TAG_VALID;
|
|
else
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
}
|
|
} else {
|
|
tag = FP_EXP_TAG_EMPTY;
|
|
}
|
|
ret |= tag << (2 * i);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* FXSR floating point environment conversions.
|
|
*/
|
|
|
|
static void __convert_from_fxsr(struct user_i387_ia32_struct *env,
|
|
struct task_struct *tsk,
|
|
struct fxregs_state *fxsave)
|
|
{
|
|
struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
|
|
struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
|
|
int i;
|
|
|
|
env->cwd = fxsave->cwd | 0xffff0000u;
|
|
env->swd = fxsave->swd | 0xffff0000u;
|
|
env->twd = twd_fxsr_to_i387(fxsave);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
env->fip = fxsave->rip;
|
|
env->foo = fxsave->rdp;
|
|
/*
|
|
* should be actually ds/cs at fpu exception time, but
|
|
* that information is not available in 64bit mode.
|
|
*/
|
|
env->fcs = task_pt_regs(tsk)->cs;
|
|
if (tsk == current) {
|
|
savesegment(ds, env->fos);
|
|
} else {
|
|
env->fos = tsk->thread.ds;
|
|
}
|
|
env->fos |= 0xffff0000;
|
|
#else
|
|
env->fip = fxsave->fip;
|
|
env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
|
|
env->foo = fxsave->foo;
|
|
env->fos = fxsave->fos;
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
memcpy(&to[i], &from[i], sizeof(to[0]));
|
|
}
|
|
|
|
void
|
|
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
|
|
{
|
|
__convert_from_fxsr(env, tsk, &tsk->thread.fpu.fpstate->regs.fxsave);
|
|
}
|
|
|
|
void convert_to_fxsr(struct fxregs_state *fxsave,
|
|
const struct user_i387_ia32_struct *env)
|
|
|
|
{
|
|
struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
|
|
struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
|
|
int i;
|
|
|
|
fxsave->cwd = env->cwd;
|
|
fxsave->swd = env->swd;
|
|
fxsave->twd = twd_i387_to_fxsr(env->twd);
|
|
fxsave->fop = (u16) ((u32) env->fcs >> 16);
|
|
#ifdef CONFIG_X86_64
|
|
fxsave->rip = env->fip;
|
|
fxsave->rdp = env->foo;
|
|
/* cs and ds ignored */
|
|
#else
|
|
fxsave->fip = env->fip;
|
|
fxsave->fcs = (env->fcs & 0xffff);
|
|
fxsave->foo = env->foo;
|
|
fxsave->fos = env->fos;
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
memcpy(&to[i], &from[i], sizeof(from[0]));
|
|
}
|
|
|
|
int fpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
struct membuf to)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct user_i387_ia32_struct env;
|
|
struct fxregs_state fxsave, *fx;
|
|
|
|
sync_fpstate(fpu);
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_FPU))
|
|
return fpregs_soft_get(target, regset, to);
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_FXSR)) {
|
|
return membuf_write(&to, &fpu->fpstate->regs.fsave,
|
|
sizeof(struct fregs_state));
|
|
}
|
|
|
|
if (use_xsave()) {
|
|
struct membuf mb = { .p = &fxsave, .left = sizeof(fxsave) };
|
|
|
|
/* Handle init state optimized xstate correctly */
|
|
copy_xstate_to_uabi_buf(mb, target, XSTATE_COPY_FP);
|
|
fx = &fxsave;
|
|
} else {
|
|
fx = &fpu->fpstate->regs.fxsave;
|
|
}
|
|
|
|
__convert_from_fxsr(&env, target, fx);
|
|
return membuf_write(&to, &env, sizeof(env));
|
|
}
|
|
|
|
int fpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct user_i387_ia32_struct env;
|
|
int ret;
|
|
|
|
/* No funny business with partial or oversized writes is permitted. */
|
|
if (pos != 0 || count != sizeof(struct user_i387_ia32_struct))
|
|
return -EINVAL;
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_FPU))
|
|
return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fpu_force_restore(fpu);
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_FXSR))
|
|
convert_to_fxsr(&fpu->fpstate->regs.fxsave, &env);
|
|
else
|
|
memcpy(&fpu->fpstate->regs.fsave, &env, sizeof(env));
|
|
|
|
/*
|
|
* Update the header bit in the xsave header, indicating the
|
|
* presence of FP.
|
|
*/
|
|
if (cpu_feature_enabled(X86_FEATURE_XSAVE))
|
|
fpu->fpstate->regs.xsave.header.xfeatures |= XFEATURE_MASK_FP;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
|