mirror of
https://github.com/torvalds/linux.git
synced 2024-12-17 16:43:08 +00:00
1f3ac86b4c
Early in the boot process the memory layout of a pv-domain is changed to match the E820 map (either the host one for Dom0 or the Xen one) regarding placement of RAM and PCI holes. This requires removing memory pages initially located at positions not suitable for RAM and adding them later at higher addresses where no restrictions apply. To be able to operate on the hypervisor supported p2m list until a virtual mapped linear p2m list can be constructed, remapping must be delayed until virtual memory management is initialized, as the initial p2m list can't be extended unlimited at physical memory initialization time due to it's fixed structure. A further advantage is the reduction in complexity and code volume as we don't have to be careful regarding memory restrictions during p2m updates. Signed-off-by: Juergen Gross <jgross@suse.com> Reviewed-by: David Vrabel <david.vrabel@citrix.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com>
828 lines
23 KiB
C
828 lines
23 KiB
C
/*
|
|
* Machine specific setup for xen
|
|
*
|
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/cpufreq.h>
|
|
|
|
#include <asm/elf.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/acpi.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/xen/hypervisor.h>
|
|
#include <asm/xen/hypercall.h>
|
|
|
|
#include <xen/xen.h>
|
|
#include <xen/page.h>
|
|
#include <xen/interface/callback.h>
|
|
#include <xen/interface/memory.h>
|
|
#include <xen/interface/physdev.h>
|
|
#include <xen/features.h>
|
|
#include "xen-ops.h"
|
|
#include "vdso.h"
|
|
#include "p2m.h"
|
|
#include "mmu.h"
|
|
|
|
/* These are code, but not functions. Defined in entry.S */
|
|
extern const char xen_hypervisor_callback[];
|
|
extern const char xen_failsafe_callback[];
|
|
#ifdef CONFIG_X86_64
|
|
extern asmlinkage void nmi(void);
|
|
#endif
|
|
extern void xen_sysenter_target(void);
|
|
extern void xen_syscall_target(void);
|
|
extern void xen_syscall32_target(void);
|
|
|
|
/* Amount of extra memory space we add to the e820 ranges */
|
|
struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
|
|
|
|
/* Number of pages released from the initial allocation. */
|
|
unsigned long xen_released_pages;
|
|
|
|
/*
|
|
* Buffer used to remap identity mapped pages. We only need the virtual space.
|
|
* The physical page behind this address is remapped as needed to different
|
|
* buffer pages.
|
|
*/
|
|
#define REMAP_SIZE (P2M_PER_PAGE - 3)
|
|
static struct {
|
|
unsigned long next_area_mfn;
|
|
unsigned long target_pfn;
|
|
unsigned long size;
|
|
unsigned long mfns[REMAP_SIZE];
|
|
} xen_remap_buf __initdata __aligned(PAGE_SIZE);
|
|
static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
|
|
|
|
/*
|
|
* The maximum amount of extra memory compared to the base size. The
|
|
* main scaling factor is the size of struct page. At extreme ratios
|
|
* of base:extra, all the base memory can be filled with page
|
|
* structures for the extra memory, leaving no space for anything
|
|
* else.
|
|
*
|
|
* 10x seems like a reasonable balance between scaling flexibility and
|
|
* leaving a practically usable system.
|
|
*/
|
|
#define EXTRA_MEM_RATIO (10)
|
|
|
|
static void __init xen_add_extra_mem(u64 start, u64 size)
|
|
{
|
|
unsigned long pfn;
|
|
int i;
|
|
|
|
for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
|
|
/* Add new region. */
|
|
if (xen_extra_mem[i].size == 0) {
|
|
xen_extra_mem[i].start = start;
|
|
xen_extra_mem[i].size = size;
|
|
break;
|
|
}
|
|
/* Append to existing region. */
|
|
if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
|
|
xen_extra_mem[i].size += size;
|
|
break;
|
|
}
|
|
}
|
|
if (i == XEN_EXTRA_MEM_MAX_REGIONS)
|
|
printk(KERN_WARNING "Warning: not enough extra memory regions\n");
|
|
|
|
memblock_reserve(start, size);
|
|
|
|
xen_max_p2m_pfn = PFN_DOWN(start + size);
|
|
for (pfn = PFN_DOWN(start); pfn < xen_max_p2m_pfn; pfn++) {
|
|
unsigned long mfn = pfn_to_mfn(pfn);
|
|
|
|
if (WARN_ONCE(mfn == pfn, "Trying to over-write 1-1 mapping (pfn: %lx)\n", pfn))
|
|
continue;
|
|
WARN_ONCE(mfn != INVALID_P2M_ENTRY, "Trying to remove %lx which has %lx mfn!\n",
|
|
pfn, mfn);
|
|
|
|
__set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finds the next RAM pfn available in the E820 map after min_pfn.
|
|
* This function updates min_pfn with the pfn found and returns
|
|
* the size of that range or zero if not found.
|
|
*/
|
|
static unsigned long __init xen_find_pfn_range(
|
|
const struct e820entry *list, size_t map_size,
|
|
unsigned long *min_pfn)
|
|
{
|
|
const struct e820entry *entry;
|
|
unsigned int i;
|
|
unsigned long done = 0;
|
|
|
|
for (i = 0, entry = list; i < map_size; i++, entry++) {
|
|
unsigned long s_pfn;
|
|
unsigned long e_pfn;
|
|
|
|
if (entry->type != E820_RAM)
|
|
continue;
|
|
|
|
e_pfn = PFN_DOWN(entry->addr + entry->size);
|
|
|
|
/* We only care about E820 after this */
|
|
if (e_pfn < *min_pfn)
|
|
continue;
|
|
|
|
s_pfn = PFN_UP(entry->addr);
|
|
|
|
/* If min_pfn falls within the E820 entry, we want to start
|
|
* at the min_pfn PFN.
|
|
*/
|
|
if (s_pfn <= *min_pfn) {
|
|
done = e_pfn - *min_pfn;
|
|
} else {
|
|
done = e_pfn - s_pfn;
|
|
*min_pfn = s_pfn;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
static int __init xen_free_mfn(unsigned long mfn)
|
|
{
|
|
struct xen_memory_reservation reservation = {
|
|
.address_bits = 0,
|
|
.extent_order = 0,
|
|
.domid = DOMID_SELF
|
|
};
|
|
|
|
set_xen_guest_handle(reservation.extent_start, &mfn);
|
|
reservation.nr_extents = 1;
|
|
|
|
return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
|
|
}
|
|
|
|
/*
|
|
* This releases a chunk of memory and then does the identity map. It's used
|
|
* as a fallback if the remapping fails.
|
|
*/
|
|
static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
|
|
unsigned long end_pfn, unsigned long nr_pages, unsigned long *identity,
|
|
unsigned long *released)
|
|
{
|
|
unsigned long len = 0;
|
|
unsigned long pfn, end;
|
|
int ret;
|
|
|
|
WARN_ON(start_pfn > end_pfn);
|
|
|
|
end = min(end_pfn, nr_pages);
|
|
for (pfn = start_pfn; pfn < end; pfn++) {
|
|
unsigned long mfn = pfn_to_mfn(pfn);
|
|
|
|
/* Make sure pfn exists to start with */
|
|
if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
|
|
continue;
|
|
|
|
ret = xen_free_mfn(mfn);
|
|
WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
|
|
|
|
if (ret == 1) {
|
|
if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
|
|
break;
|
|
len++;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
/* Need to release pages first */
|
|
*released += len;
|
|
*identity += set_phys_range_identity(start_pfn, end_pfn);
|
|
}
|
|
|
|
/*
|
|
* Helper function to update the p2m and m2p tables and kernel mapping.
|
|
*/
|
|
static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
|
|
{
|
|
struct mmu_update update = {
|
|
.ptr = ((unsigned long long)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
|
|
.val = pfn
|
|
};
|
|
|
|
/* Update p2m */
|
|
if (!set_phys_to_machine(pfn, mfn)) {
|
|
WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
|
|
pfn, mfn);
|
|
BUG();
|
|
}
|
|
|
|
/* Update m2p */
|
|
if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
|
|
WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
|
|
mfn, pfn);
|
|
BUG();
|
|
}
|
|
|
|
/* Update kernel mapping, but not for highmem. */
|
|
if ((pfn << PAGE_SHIFT) >= __pa(high_memory))
|
|
return;
|
|
|
|
if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
|
|
mfn_pte(mfn, PAGE_KERNEL), 0)) {
|
|
WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
|
|
mfn, pfn);
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function updates the p2m and m2p tables with an identity map from
|
|
* start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
|
|
* original allocation at remap_pfn. The information needed for remapping is
|
|
* saved in the memory itself to avoid the need for allocating buffers. The
|
|
* complete remap information is contained in a list of MFNs each containing
|
|
* up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
|
|
* This enables us to preserve the original mfn sequence while doing the
|
|
* remapping at a time when the memory management is capable of allocating
|
|
* virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
|
|
* its callers.
|
|
*/
|
|
static void __init xen_do_set_identity_and_remap_chunk(
|
|
unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
|
|
{
|
|
unsigned long buf = (unsigned long)&xen_remap_buf;
|
|
unsigned long mfn_save, mfn;
|
|
unsigned long ident_pfn_iter, remap_pfn_iter;
|
|
unsigned long ident_end_pfn = start_pfn + size;
|
|
unsigned long left = size;
|
|
unsigned long ident_cnt = 0;
|
|
unsigned int i, chunk;
|
|
|
|
WARN_ON(size == 0);
|
|
|
|
BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
|
|
|
|
/* Don't use memory until remapped */
|
|
memblock_reserve(PFN_PHYS(remap_pfn), PFN_PHYS(size));
|
|
|
|
mfn_save = virt_to_mfn(buf);
|
|
|
|
for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
|
|
ident_pfn_iter < ident_end_pfn;
|
|
ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
|
|
chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
|
|
|
|
/* Map first pfn to xen_remap_buf */
|
|
mfn = pfn_to_mfn(ident_pfn_iter);
|
|
set_pte_mfn(buf, mfn, PAGE_KERNEL);
|
|
|
|
/* Save mapping information in page */
|
|
xen_remap_buf.next_area_mfn = xen_remap_mfn;
|
|
xen_remap_buf.target_pfn = remap_pfn_iter;
|
|
xen_remap_buf.size = chunk;
|
|
for (i = 0; i < chunk; i++)
|
|
xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
|
|
|
|
/* Put remap buf into list. */
|
|
xen_remap_mfn = mfn;
|
|
|
|
/* Set identity map */
|
|
ident_cnt += set_phys_range_identity(ident_pfn_iter,
|
|
ident_pfn_iter + chunk);
|
|
|
|
left -= chunk;
|
|
}
|
|
|
|
/* Restore old xen_remap_buf mapping */
|
|
set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
|
|
}
|
|
|
|
/*
|
|
* This function takes a contiguous pfn range that needs to be identity mapped
|
|
* and:
|
|
*
|
|
* 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
|
|
* 2) Calls the do_ function to actually do the mapping/remapping work.
|
|
*
|
|
* The goal is to not allocate additional memory but to remap the existing
|
|
* pages. In the case of an error the underlying memory is simply released back
|
|
* to Xen and not remapped.
|
|
*/
|
|
static unsigned long __init xen_set_identity_and_remap_chunk(
|
|
const struct e820entry *list, size_t map_size, unsigned long start_pfn,
|
|
unsigned long end_pfn, unsigned long nr_pages, unsigned long remap_pfn,
|
|
unsigned long *identity, unsigned long *released)
|
|
{
|
|
unsigned long pfn;
|
|
unsigned long i = 0;
|
|
unsigned long n = end_pfn - start_pfn;
|
|
|
|
while (i < n) {
|
|
unsigned long cur_pfn = start_pfn + i;
|
|
unsigned long left = n - i;
|
|
unsigned long size = left;
|
|
unsigned long remap_range_size;
|
|
|
|
/* Do not remap pages beyond the current allocation */
|
|
if (cur_pfn >= nr_pages) {
|
|
/* Identity map remaining pages */
|
|
*identity += set_phys_range_identity(cur_pfn,
|
|
cur_pfn + size);
|
|
break;
|
|
}
|
|
if (cur_pfn + size > nr_pages)
|
|
size = nr_pages - cur_pfn;
|
|
|
|
remap_range_size = xen_find_pfn_range(list, map_size,
|
|
&remap_pfn);
|
|
if (!remap_range_size) {
|
|
pr_warning("Unable to find available pfn range, not remapping identity pages\n");
|
|
xen_set_identity_and_release_chunk(cur_pfn,
|
|
cur_pfn + left, nr_pages, identity, released);
|
|
break;
|
|
}
|
|
/* Adjust size to fit in current e820 RAM region */
|
|
if (size > remap_range_size)
|
|
size = remap_range_size;
|
|
|
|
xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
|
|
|
|
/* Update variables to reflect new mappings. */
|
|
i += size;
|
|
remap_pfn += size;
|
|
*identity += size;
|
|
}
|
|
|
|
/*
|
|
* If the PFNs are currently mapped, the VA mapping also needs
|
|
* to be updated to be 1:1.
|
|
*/
|
|
for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
|
|
(void)HYPERVISOR_update_va_mapping(
|
|
(unsigned long)__va(pfn << PAGE_SHIFT),
|
|
mfn_pte(pfn, PAGE_KERNEL_IO), 0);
|
|
|
|
return remap_pfn;
|
|
}
|
|
|
|
static unsigned long __init xen_set_identity_and_remap(
|
|
const struct e820entry *list, size_t map_size, unsigned long nr_pages,
|
|
unsigned long *released)
|
|
{
|
|
phys_addr_t start = 0;
|
|
unsigned long identity = 0;
|
|
unsigned long last_pfn = nr_pages;
|
|
const struct e820entry *entry;
|
|
unsigned long num_released = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Combine non-RAM regions and gaps until a RAM region (or the
|
|
* end of the map) is reached, then set the 1:1 map and
|
|
* remap the memory in those non-RAM regions.
|
|
*
|
|
* The combined non-RAM regions are rounded to a whole number
|
|
* of pages so any partial pages are accessible via the 1:1
|
|
* mapping. This is needed for some BIOSes that put (for
|
|
* example) the DMI tables in a reserved region that begins on
|
|
* a non-page boundary.
|
|
*/
|
|
for (i = 0, entry = list; i < map_size; i++, entry++) {
|
|
phys_addr_t end = entry->addr + entry->size;
|
|
if (entry->type == E820_RAM || i == map_size - 1) {
|
|
unsigned long start_pfn = PFN_DOWN(start);
|
|
unsigned long end_pfn = PFN_UP(end);
|
|
|
|
if (entry->type == E820_RAM)
|
|
end_pfn = PFN_UP(entry->addr);
|
|
|
|
if (start_pfn < end_pfn)
|
|
last_pfn = xen_set_identity_and_remap_chunk(
|
|
list, map_size, start_pfn,
|
|
end_pfn, nr_pages, last_pfn,
|
|
&identity, &num_released);
|
|
start = end;
|
|
}
|
|
}
|
|
|
|
*released = num_released;
|
|
|
|
pr_info("Set %ld page(s) to 1-1 mapping\n", identity);
|
|
pr_info("Released %ld page(s)\n", num_released);
|
|
|
|
return last_pfn;
|
|
}
|
|
|
|
/*
|
|
* Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
|
|
* The remap information (which mfn remap to which pfn) is contained in the
|
|
* to be remapped memory itself in a linked list anchored at xen_remap_mfn.
|
|
* This scheme allows to remap the different chunks in arbitrary order while
|
|
* the resulting mapping will be independant from the order.
|
|
*/
|
|
void __init xen_remap_memory(void)
|
|
{
|
|
unsigned long buf = (unsigned long)&xen_remap_buf;
|
|
unsigned long mfn_save, mfn, pfn;
|
|
unsigned long remapped = 0;
|
|
unsigned int i;
|
|
unsigned long pfn_s = ~0UL;
|
|
unsigned long len = 0;
|
|
|
|
mfn_save = virt_to_mfn(buf);
|
|
|
|
while (xen_remap_mfn != INVALID_P2M_ENTRY) {
|
|
/* Map the remap information */
|
|
set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
|
|
|
|
BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
|
|
|
|
pfn = xen_remap_buf.target_pfn;
|
|
for (i = 0; i < xen_remap_buf.size; i++) {
|
|
mfn = xen_remap_buf.mfns[i];
|
|
xen_update_mem_tables(pfn, mfn);
|
|
remapped++;
|
|
pfn++;
|
|
}
|
|
if (pfn_s == ~0UL || pfn == pfn_s) {
|
|
pfn_s = xen_remap_buf.target_pfn;
|
|
len += xen_remap_buf.size;
|
|
} else if (pfn_s + len == xen_remap_buf.target_pfn) {
|
|
len += xen_remap_buf.size;
|
|
} else {
|
|
memblock_free(PFN_PHYS(pfn_s), PFN_PHYS(len));
|
|
pfn_s = xen_remap_buf.target_pfn;
|
|
len = xen_remap_buf.size;
|
|
}
|
|
|
|
mfn = xen_remap_mfn;
|
|
xen_remap_mfn = xen_remap_buf.next_area_mfn;
|
|
}
|
|
|
|
if (pfn_s != ~0UL && len)
|
|
memblock_free(PFN_PHYS(pfn_s), PFN_PHYS(len));
|
|
|
|
set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
|
|
|
|
pr_info("Remapped %ld page(s)\n", remapped);
|
|
}
|
|
|
|
static unsigned long __init xen_get_max_pages(void)
|
|
{
|
|
unsigned long max_pages = MAX_DOMAIN_PAGES;
|
|
domid_t domid = DOMID_SELF;
|
|
int ret;
|
|
|
|
/*
|
|
* For the initial domain we use the maximum reservation as
|
|
* the maximum page.
|
|
*
|
|
* For guest domains the current maximum reservation reflects
|
|
* the current maximum rather than the static maximum. In this
|
|
* case the e820 map provided to us will cover the static
|
|
* maximum region.
|
|
*/
|
|
if (xen_initial_domain()) {
|
|
ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
|
|
if (ret > 0)
|
|
max_pages = ret;
|
|
}
|
|
|
|
return min(max_pages, MAX_DOMAIN_PAGES);
|
|
}
|
|
|
|
static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
|
|
{
|
|
u64 end = start + size;
|
|
|
|
/* Align RAM regions to page boundaries. */
|
|
if (type == E820_RAM) {
|
|
start = PAGE_ALIGN(start);
|
|
end &= ~((u64)PAGE_SIZE - 1);
|
|
}
|
|
|
|
e820_add_region(start, end - start, type);
|
|
}
|
|
|
|
void xen_ignore_unusable(struct e820entry *list, size_t map_size)
|
|
{
|
|
struct e820entry *entry;
|
|
unsigned int i;
|
|
|
|
for (i = 0, entry = list; i < map_size; i++, entry++) {
|
|
if (entry->type == E820_UNUSABLE)
|
|
entry->type = E820_RAM;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* machine_specific_memory_setup - Hook for machine specific memory setup.
|
|
**/
|
|
char * __init xen_memory_setup(void)
|
|
{
|
|
static struct e820entry map[E820MAX] __initdata;
|
|
|
|
unsigned long max_pfn = xen_start_info->nr_pages;
|
|
unsigned long long mem_end;
|
|
int rc;
|
|
struct xen_memory_map memmap;
|
|
unsigned long max_pages;
|
|
unsigned long last_pfn = 0;
|
|
unsigned long extra_pages = 0;
|
|
int i;
|
|
int op;
|
|
|
|
max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
|
|
mem_end = PFN_PHYS(max_pfn);
|
|
|
|
memmap.nr_entries = E820MAX;
|
|
set_xen_guest_handle(memmap.buffer, map);
|
|
|
|
op = xen_initial_domain() ?
|
|
XENMEM_machine_memory_map :
|
|
XENMEM_memory_map;
|
|
rc = HYPERVISOR_memory_op(op, &memmap);
|
|
if (rc == -ENOSYS) {
|
|
BUG_ON(xen_initial_domain());
|
|
memmap.nr_entries = 1;
|
|
map[0].addr = 0ULL;
|
|
map[0].size = mem_end;
|
|
/* 8MB slack (to balance backend allocations). */
|
|
map[0].size += 8ULL << 20;
|
|
map[0].type = E820_RAM;
|
|
rc = 0;
|
|
}
|
|
BUG_ON(rc);
|
|
BUG_ON(memmap.nr_entries == 0);
|
|
|
|
/*
|
|
* Xen won't allow a 1:1 mapping to be created to UNUSABLE
|
|
* regions, so if we're using the machine memory map leave the
|
|
* region as RAM as it is in the pseudo-physical map.
|
|
*
|
|
* UNUSABLE regions in domUs are not handled and will need
|
|
* a patch in the future.
|
|
*/
|
|
if (xen_initial_domain())
|
|
xen_ignore_unusable(map, memmap.nr_entries);
|
|
|
|
/* Make sure the Xen-supplied memory map is well-ordered. */
|
|
sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
|
|
|
|
max_pages = xen_get_max_pages();
|
|
if (max_pages > max_pfn)
|
|
extra_pages += max_pages - max_pfn;
|
|
|
|
/*
|
|
* Set identity map on non-RAM pages and prepare remapping the
|
|
* underlying RAM.
|
|
*/
|
|
last_pfn = xen_set_identity_and_remap(map, memmap.nr_entries, max_pfn,
|
|
&xen_released_pages);
|
|
|
|
extra_pages += xen_released_pages;
|
|
|
|
if (last_pfn > max_pfn) {
|
|
max_pfn = min(MAX_DOMAIN_PAGES, last_pfn);
|
|
mem_end = PFN_PHYS(max_pfn);
|
|
}
|
|
/*
|
|
* Clamp the amount of extra memory to a EXTRA_MEM_RATIO
|
|
* factor the base size. On non-highmem systems, the base
|
|
* size is the full initial memory allocation; on highmem it
|
|
* is limited to the max size of lowmem, so that it doesn't
|
|
* get completely filled.
|
|
*
|
|
* In principle there could be a problem in lowmem systems if
|
|
* the initial memory is also very large with respect to
|
|
* lowmem, but we won't try to deal with that here.
|
|
*/
|
|
extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
|
|
extra_pages);
|
|
i = 0;
|
|
while (i < memmap.nr_entries) {
|
|
u64 addr = map[i].addr;
|
|
u64 size = map[i].size;
|
|
u32 type = map[i].type;
|
|
|
|
if (type == E820_RAM) {
|
|
if (addr < mem_end) {
|
|
size = min(size, mem_end - addr);
|
|
} else if (extra_pages) {
|
|
size = min(size, (u64)extra_pages * PAGE_SIZE);
|
|
extra_pages -= size / PAGE_SIZE;
|
|
xen_add_extra_mem(addr, size);
|
|
} else
|
|
type = E820_UNUSABLE;
|
|
}
|
|
|
|
xen_align_and_add_e820_region(addr, size, type);
|
|
|
|
map[i].addr += size;
|
|
map[i].size -= size;
|
|
if (map[i].size == 0)
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Set the rest as identity mapped, in case PCI BARs are
|
|
* located here.
|
|
*
|
|
* PFNs above MAX_P2M_PFN are considered identity mapped as
|
|
* well.
|
|
*/
|
|
set_phys_range_identity(map[i-1].addr / PAGE_SIZE, ~0ul);
|
|
|
|
/*
|
|
* In domU, the ISA region is normal, usable memory, but we
|
|
* reserve ISA memory anyway because too many things poke
|
|
* about in there.
|
|
*/
|
|
e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
|
|
E820_RESERVED);
|
|
|
|
/*
|
|
* Reserve Xen bits:
|
|
* - mfn_list
|
|
* - xen_start_info
|
|
* See comment above "struct start_info" in <xen/interface/xen.h>
|
|
* We tried to make the the memblock_reserve more selective so
|
|
* that it would be clear what region is reserved. Sadly we ran
|
|
* in the problem wherein on a 64-bit hypervisor with a 32-bit
|
|
* initial domain, the pt_base has the cr3 value which is not
|
|
* neccessarily where the pagetable starts! As Jan put it: "
|
|
* Actually, the adjustment turns out to be correct: The page
|
|
* tables for a 32-on-64 dom0 get allocated in the order "first L1",
|
|
* "first L2", "first L3", so the offset to the page table base is
|
|
* indeed 2. When reading xen/include/public/xen.h's comment
|
|
* very strictly, this is not a violation (since there nothing is said
|
|
* that the first thing in the page table space is pointed to by
|
|
* pt_base; I admit that this seems to be implied though, namely
|
|
* do I think that it is implied that the page table space is the
|
|
* range [pt_base, pt_base + nt_pt_frames), whereas that
|
|
* range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
|
|
* which - without a priori knowledge - the kernel would have
|
|
* difficulty to figure out)." - so lets just fall back to the
|
|
* easy way and reserve the whole region.
|
|
*/
|
|
memblock_reserve(__pa(xen_start_info->mfn_list),
|
|
xen_start_info->pt_base - xen_start_info->mfn_list);
|
|
|
|
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
|
|
|
|
return "Xen";
|
|
}
|
|
|
|
/*
|
|
* Machine specific memory setup for auto-translated guests.
|
|
*/
|
|
char * __init xen_auto_xlated_memory_setup(void)
|
|
{
|
|
static struct e820entry map[E820MAX] __initdata;
|
|
|
|
struct xen_memory_map memmap;
|
|
int i;
|
|
int rc;
|
|
|
|
memmap.nr_entries = E820MAX;
|
|
set_xen_guest_handle(memmap.buffer, map);
|
|
|
|
rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
|
|
if (rc < 0)
|
|
panic("No memory map (%d)\n", rc);
|
|
|
|
sanitize_e820_map(map, ARRAY_SIZE(map), &memmap.nr_entries);
|
|
|
|
for (i = 0; i < memmap.nr_entries; i++)
|
|
e820_add_region(map[i].addr, map[i].size, map[i].type);
|
|
|
|
memblock_reserve(__pa(xen_start_info->mfn_list),
|
|
xen_start_info->pt_base - xen_start_info->mfn_list);
|
|
|
|
return "Xen";
|
|
}
|
|
|
|
/*
|
|
* Set the bit indicating "nosegneg" library variants should be used.
|
|
* We only need to bother in pure 32-bit mode; compat 32-bit processes
|
|
* can have un-truncated segments, so wrapping around is allowed.
|
|
*/
|
|
static void __init fiddle_vdso(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* This could be called before selected_vdso32 is initialized, so
|
|
* just fiddle with both possible images. vdso_image_32_syscall
|
|
* can't be selected, since it only exists on 64-bit systems.
|
|
*/
|
|
u32 *mask;
|
|
mask = vdso_image_32_int80.data +
|
|
vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
|
|
*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
|
|
mask = vdso_image_32_sysenter.data +
|
|
vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
|
|
*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
|
|
#endif
|
|
}
|
|
|
|
static int register_callback(unsigned type, const void *func)
|
|
{
|
|
struct callback_register callback = {
|
|
.type = type,
|
|
.address = XEN_CALLBACK(__KERNEL_CS, func),
|
|
.flags = CALLBACKF_mask_events,
|
|
};
|
|
|
|
return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
|
|
}
|
|
|
|
void xen_enable_sysenter(void)
|
|
{
|
|
int ret;
|
|
unsigned sysenter_feature;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
sysenter_feature = X86_FEATURE_SEP;
|
|
#else
|
|
sysenter_feature = X86_FEATURE_SYSENTER32;
|
|
#endif
|
|
|
|
if (!boot_cpu_has(sysenter_feature))
|
|
return;
|
|
|
|
ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
|
|
if(ret != 0)
|
|
setup_clear_cpu_cap(sysenter_feature);
|
|
}
|
|
|
|
void xen_enable_syscall(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
int ret;
|
|
|
|
ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
|
|
if (ret != 0) {
|
|
printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
|
|
/* Pretty fatal; 64-bit userspace has no other
|
|
mechanism for syscalls. */
|
|
}
|
|
|
|
if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
|
|
ret = register_callback(CALLBACKTYPE_syscall32,
|
|
xen_syscall32_target);
|
|
if (ret != 0)
|
|
setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
|
|
}
|
|
#endif /* CONFIG_X86_64 */
|
|
}
|
|
|
|
void __init xen_pvmmu_arch_setup(void)
|
|
{
|
|
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
|
|
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
|
|
|
|
HYPERVISOR_vm_assist(VMASST_CMD_enable,
|
|
VMASST_TYPE_pae_extended_cr3);
|
|
|
|
if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
|
|
register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
|
|
BUG();
|
|
|
|
xen_enable_sysenter();
|
|
xen_enable_syscall();
|
|
}
|
|
|
|
/* This function is not called for HVM domains */
|
|
void __init xen_arch_setup(void)
|
|
{
|
|
xen_panic_handler_init();
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap))
|
|
xen_pvmmu_arch_setup();
|
|
|
|
#ifdef CONFIG_ACPI
|
|
if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
|
|
printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
|
|
disable_acpi();
|
|
}
|
|
#endif
|
|
|
|
memcpy(boot_command_line, xen_start_info->cmd_line,
|
|
MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
|
|
COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
|
|
|
|
/* Set up idle, making sure it calls safe_halt() pvop */
|
|
disable_cpuidle();
|
|
disable_cpufreq();
|
|
WARN_ON(xen_set_default_idle());
|
|
fiddle_vdso();
|
|
#ifdef CONFIG_NUMA
|
|
numa_off = 1;
|
|
#endif
|
|
}
|