linux/fs/btrfs/btrfs_inode.h
Qu Wenruo 6f6b643e44 btrfs: Better csum error message for data csum mismatch
The original csum error message only outputs inode number, offset, check
sum and expected check sum.

However no root objectid is outputted, which sometimes makes debugging
quite painful under multi-subvolume case (including relocation).

Also the checksum output is decimal, which seldom makes sense for
users/developers and is hard to read in most time.

This patch will add root objectid, which will be %lld for rootid larger
than LAST_FREE_OBJECTID, and hex csum output for better readability.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-17 12:03:48 +01:00

348 lines
9.4 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef __BTRFS_I__
#define __BTRFS_I__
#include <linux/hash.h>
#include "extent_map.h"
#include "extent_io.h"
#include "ordered-data.h"
#include "delayed-inode.h"
/*
* ordered_data_close is set by truncate when a file that used
* to have good data has been truncated to zero. When it is set
* the btrfs file release call will add this inode to the
* ordered operations list so that we make sure to flush out any
* new data the application may have written before commit.
*/
#define BTRFS_INODE_ORDERED_DATA_CLOSE 0
#define BTRFS_INODE_ORPHAN_META_RESERVED 1
#define BTRFS_INODE_DUMMY 2
#define BTRFS_INODE_IN_DEFRAG 3
#define BTRFS_INODE_DELALLOC_META_RESERVED 4
#define BTRFS_INODE_HAS_ORPHAN_ITEM 5
#define BTRFS_INODE_HAS_ASYNC_EXTENT 6
#define BTRFS_INODE_NEEDS_FULL_SYNC 7
#define BTRFS_INODE_COPY_EVERYTHING 8
#define BTRFS_INODE_IN_DELALLOC_LIST 9
#define BTRFS_INODE_READDIO_NEED_LOCK 10
#define BTRFS_INODE_HAS_PROPS 11
/* in memory btrfs inode */
struct btrfs_inode {
/* which subvolume this inode belongs to */
struct btrfs_root *root;
/* key used to find this inode on disk. This is used by the code
* to read in roots of subvolumes
*/
struct btrfs_key location;
/*
* Lock for counters and all fields used to determine if the inode is in
* the log or not (last_trans, last_sub_trans, last_log_commit,
* logged_trans).
*/
spinlock_t lock;
/* the extent_tree has caches of all the extent mappings to disk */
struct extent_map_tree extent_tree;
/* the io_tree does range state (DIRTY, LOCKED etc) */
struct extent_io_tree io_tree;
/* special utility tree used to record which mirrors have already been
* tried when checksums fail for a given block
*/
struct extent_io_tree io_failure_tree;
/* held while logging the inode in tree-log.c */
struct mutex log_mutex;
/* held while doing delalloc reservations */
struct mutex delalloc_mutex;
/* used to order data wrt metadata */
struct btrfs_ordered_inode_tree ordered_tree;
/* list of all the delalloc inodes in the FS. There are times we need
* to write all the delalloc pages to disk, and this list is used
* to walk them all.
*/
struct list_head delalloc_inodes;
/* node for the red-black tree that links inodes in subvolume root */
struct rb_node rb_node;
unsigned long runtime_flags;
/* Keep track of who's O_SYNC/fsyncing currently */
atomic_t sync_writers;
/* full 64 bit generation number, struct vfs_inode doesn't have a big
* enough field for this.
*/
u64 generation;
/*
* transid of the trans_handle that last modified this inode
*/
u64 last_trans;
/*
* transid that last logged this inode
*/
u64 logged_trans;
/*
* log transid when this inode was last modified
*/
int last_sub_trans;
/* a local copy of root's last_log_commit */
int last_log_commit;
/* total number of bytes pending delalloc, used by stat to calc the
* real block usage of the file
*/
u64 delalloc_bytes;
/*
* total number of bytes pending defrag, used by stat to check whether
* it needs COW.
*/
u64 defrag_bytes;
/*
* the size of the file stored in the metadata on disk. data=ordered
* means the in-memory i_size might be larger than the size on disk
* because not all the blocks are written yet.
*/
u64 disk_i_size;
/*
* if this is a directory then index_cnt is the counter for the index
* number for new files that are created
*/
u64 index_cnt;
/* Cache the directory index number to speed the dir/file remove */
u64 dir_index;
/* the fsync log has some corner cases that mean we have to check
* directories to see if any unlinks have been done before
* the directory was logged. See tree-log.c for all the
* details
*/
u64 last_unlink_trans;
/*
* Number of bytes outstanding that are going to need csums. This is
* used in ENOSPC accounting.
*/
u64 csum_bytes;
/* flags field from the on disk inode */
u32 flags;
/*
* Counters to keep track of the number of extent item's we may use due
* to delalloc and such. outstanding_extents is the number of extent
* items we think we'll end up using, and reserved_extents is the number
* of extent items we've reserved metadata for.
*/
unsigned outstanding_extents;
unsigned reserved_extents;
/*
* always compress this one file
*/
unsigned force_compress;
struct btrfs_delayed_node *delayed_node;
/* File creation time. */
struct timespec i_otime;
/* Hook into fs_info->delayed_iputs */
struct list_head delayed_iput;
long delayed_iput_count;
/*
* To avoid races between lockless (i_mutex not held) direct IO writes
* and concurrent fsync requests. Direct IO writes must acquire read
* access on this semaphore for creating an extent map and its
* corresponding ordered extent. The fast fsync path must acquire write
* access on this semaphore before it collects ordered extents and
* extent maps.
*/
struct rw_semaphore dio_sem;
struct inode vfs_inode;
};
extern unsigned char btrfs_filetype_table[];
static inline struct btrfs_inode *BTRFS_I(struct inode *inode)
{
return container_of(inode, struct btrfs_inode, vfs_inode);
}
static inline unsigned long btrfs_inode_hash(u64 objectid,
const struct btrfs_root *root)
{
u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
#if BITS_PER_LONG == 32
h = (h >> 32) ^ (h & 0xffffffff);
#endif
return (unsigned long)h;
}
static inline void btrfs_insert_inode_hash(struct inode *inode)
{
unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
__insert_inode_hash(inode, h);
}
static inline u64 btrfs_ino(struct btrfs_inode *inode)
{
u64 ino = inode->location.objectid;
/*
* !ino: btree_inode
* type == BTRFS_ROOT_ITEM_KEY: subvol dir
*/
if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
ino = inode->vfs_inode.i_ino;
return ino;
}
static inline void btrfs_i_size_write(struct inode *inode, u64 size)
{
i_size_write(inode, size);
BTRFS_I(inode)->disk_i_size = size;
}
static inline bool btrfs_is_free_space_inode(struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
if (root == root->fs_info->tree_root &&
btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID)
return true;
if (BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
return true;
return false;
}
static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
{
int ret = 0;
spin_lock(&inode->lock);
if (inode->logged_trans == generation &&
inode->last_sub_trans <= inode->last_log_commit &&
inode->last_sub_trans <= inode->root->last_log_commit) {
/*
* After a ranged fsync we might have left some extent maps
* (that fall outside the fsync's range). So return false
* here if the list isn't empty, to make sure btrfs_log_inode()
* will be called and process those extent maps.
*/
smp_mb();
if (list_empty(&inode->extent_tree.modified_extents))
ret = 1;
}
spin_unlock(&inode->lock);
return ret;
}
#define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1
struct btrfs_dio_private {
struct inode *inode;
unsigned long flags;
u64 logical_offset;
u64 disk_bytenr;
u64 bytes;
void *private;
/* number of bios pending for this dio */
atomic_t pending_bios;
/* IO errors */
int errors;
/* orig_bio is our btrfs_io_bio */
struct bio *orig_bio;
/* dio_bio came from fs/direct-io.c */
struct bio *dio_bio;
/*
* The original bio may be split to several sub-bios, this is
* done during endio of sub-bios
*/
int (*subio_endio)(struct inode *, struct btrfs_io_bio *, int);
};
/*
* Disable DIO read nolock optimization, so new dio readers will be forced
* to grab i_mutex. It is used to avoid the endless truncate due to
* nonlocked dio read.
*/
static inline void btrfs_inode_block_unlocked_dio(struct inode *inode)
{
set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &BTRFS_I(inode)->runtime_flags);
smp_mb();
}
static inline void btrfs_inode_resume_unlocked_dio(struct inode *inode)
{
smp_mb__before_atomic();
clear_bit(BTRFS_INODE_READDIO_NEED_LOCK,
&BTRFS_I(inode)->runtime_flags);
}
static inline void btrfs_print_data_csum_error(struct inode *inode,
u64 logical_start, u32 csum, u32 csum_expected, int mirror_num)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
/* Output minus objectid, which is more meaningful */
if (root->objectid >= BTRFS_LAST_FREE_OBJECTID)
btrfs_warn_rl(root->fs_info,
"csum failed root %lld ino %lld off %llu csum 0x%08x expected csum 0x%08x mirror %d",
root->objectid, btrfs_ino(BTRFS_I(inode)),
logical_start, csum, csum_expected, mirror_num);
else
btrfs_warn_rl(root->fs_info,
"csum failed root %llu ino %llu off %llu csum 0x%08x expected csum 0x%08x mirror %d",
root->objectid, btrfs_ino(BTRFS_I(inode)),
logical_start, csum, csum_expected, mirror_num);
}
bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end);
#endif