mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 13:22:23 +00:00
b4ec805464
- Use local_clock() instead of jiffies in the cpufreq statistics to improve accuracy (Viresh Kumar). - Fix up OPP usage in the cpufreq-dt and qcom-cpufreq-nvmem cpufreq drivers (Viresh Kumar). - Clean up the cpufreq core, the intel_pstate driver and the schedutil cpufreq governor (Rafael Wysocki). - Fix up error code paths in the sti-cpufreq and mediatek cpufreq drivers (Yangtao Li, Qinglang Miao). - Fix cpufreq_online() to return error codes instead of success (0) in all cases when it fails (Wang ShaoBo). - Add mt8167 support to the mediatek cpufreq driver and blacklist mt8516 in the cpufreq-dt-platdev driver (Fabien Parent). - Modify the tegra194 cpufreq driver to always return values from the frequency table as the current frequency and clean up that driver (Sumit Gupta, Jon Hunter). - Modify the arm_scmi cpufreq driver to allow it to discover the power scale present in the performance protocol and provide this information to the Energy Model (Lukasz Luba). - Add missing MODULE_DEVICE_TABLE to several cpufreq drivers (Pali Rohár). - Clean up the CPPC cpufreq driver (Ionela Voinescu). - Fix NVMEM_IMX_OCOTP dependency in the imx cpufreq driver (Arnd Bergmann). - Rework the poling interval selection for the polling state in cpuidle (Mel Gorman). - Enable suspend-to-idle for PSCI OSI mode in the PSCI cpuidle driver (Ulf Hansson). - Modify the OPP framework to support empty (node-less) OPP tables in DT for passing dependency information (Nicola Mazzucato). - Fix potential lockdep issue in the OPP core and clean up the OPP core (Viresh Kumar). - Modify dev_pm_opp_put_regulators() to accept a NULL argument and update its users accordingly (Viresh Kumar). - Add frequency changes tracepoint to devfreq (Matthias Kaehlcke). - Add support for governor feature flags to devfreq, make devfreq sysfs file permissions depend on the governor and clean up the devfreq core (Chanwoo Choi). - Clean up the tegra20 devfreq driver and deprecate it to allow another driver based on EMC_STAT to be used instead of it (Dmitry Osipenko). - Add interconnect support to the tegra30 devfreq driver, allow it to take the interconnect and OPP information from DT and clean it up ((Dmitry Osipenko). - Add interconnect support to the exynos-bus devfreq driver along with interconnect properties documentation (Sylwester Nawrocki). - Add suport for AMD Fam17h and Fam19h processors to the RAPL power capping driver (Victor Ding, Kim Phillips). - Fix handling of overly long constraint names in the powercap framework (Lukasz Luba). - Fix the wakeup configuration handling for bridges in the ACPI device power management core (Rafael Wysocki). - Add support for using an abstract scale for power units in the Energy Model (EM) and document it (Lukasz Luba). - Add em_cpu_energy() micro-optimization to the EM (Pavankumar Kondeti). - Modify the generic power domains (genpd) framwework to support suspend-to-idle (Ulf Hansson). - Fix creation of debugfs nodes in genpd (Thierry Strudel). - Clean up genpd (Lina Iyer). - Clean up the core system-wide suspend code and make it print driver flags for devices with debug enabled (Alex Shi, Patrice Chotard, Chen Yu). - Modify the ACPI system reboot code to make it prepare for system power off to avoid confusing the platform firmware (Kai-Heng Feng). - Update the pm-graph (multiple changes, mostly usability-related) and cpupower (online and offline CPU information support) PM utilities (Todd Brandt, Brahadambal Srinivasan). -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl/Y8mcSHHJqd0Byand5 c29ja2kubmV0AAoJEILEb/54YlRxjY4QAKsNFJeEtjGCxq7MxQIML3QLAsdJM9of 9kkY9skMEw4v1TRmyy7sW9jZW2pLSRcLJwWRKWu4143qUS3YUp2DQ0lqX4WyXoWu BhnkhkMUl6iCeBO8CWnt8zsTuqSa20A13sL9LyqN1+7OZKHD8StbT4hKjBncdNNN 4aDj+1uAPyOgj2iCUZuHQ8DtpBvOLjgTh367vbhbufjeJ//8/9+R7s4Xzrj7wtmv JlE0LDgvge9QeGTpjhxQJzn0q2/H5fg9jbmjPXUfbHJNuyKhrqnmjGyrN5m256JI 8DqGqQtJpmFp7Ihrur3uKTk3gWO05YwJ1FdeEooAKEjEMObm5xuYhKVRoDhmlJAu G6ui+OAUvNR0FffJtbzvWe/pLovLGOEOHdvTrZxUF8Abo6br3untTm8rKTi1fhaF wWndSMw0apGsPzCx5T+bE7AbJz2QHFpLhaVAutenuCzNI8xoMlxNKEzsaVz/+FqL Pq/PdFaM4vNlMbv7hkb/fujkCs/v3EcX2ihzvt7I2o8dBS0D1X8A4mnuWJmiGslw 1ftbJ6M9XacwkPBTHPgeXxJh2C1yxxe5VQ9Z5fWWi7sPOUeJnUwxKaluv+coFndQ sO6JxsPQ4hQihg8yOxLEkL6Wn68sZlmp+u2Oj+TPFAsAGANIA8rJlBPo1ppJWvdQ j1OCIc/qzwpH =BVdX -----END PGP SIGNATURE----- Merge tag 'pm-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "These update cpufreq (core and drivers), cpuidle (polling state implementation and the PSCI driver), the OPP (operating performance points) framework, devfreq (core and drivers), the power capping RAPL (Running Average Power Limit) driver, the Energy Model support, the generic power domains (genpd) framework, the ACPI device power management, the core system-wide suspend code and power management utilities. Specifics: - Use local_clock() instead of jiffies in the cpufreq statistics to improve accuracy (Viresh Kumar). - Fix up OPP usage in the cpufreq-dt and qcom-cpufreq-nvmem cpufreq drivers (Viresh Kumar). - Clean up the cpufreq core, the intel_pstate driver and the schedutil cpufreq governor (Rafael Wysocki). - Fix up error code paths in the sti-cpufreq and mediatek cpufreq drivers (Yangtao Li, Qinglang Miao). - Fix cpufreq_online() to return error codes instead of success (0) in all cases when it fails (Wang ShaoBo). - Add mt8167 support to the mediatek cpufreq driver and blacklist mt8516 in the cpufreq-dt-platdev driver (Fabien Parent). - Modify the tegra194 cpufreq driver to always return values from the frequency table as the current frequency and clean up that driver (Sumit Gupta, Jon Hunter). - Modify the arm_scmi cpufreq driver to allow it to discover the power scale present in the performance protocol and provide this information to the Energy Model (Lukasz Luba). - Add missing MODULE_DEVICE_TABLE to several cpufreq drivers (Pali Rohár). - Clean up the CPPC cpufreq driver (Ionela Voinescu). - Fix NVMEM_IMX_OCOTP dependency in the imx cpufreq driver (Arnd Bergmann). - Rework the poling interval selection for the polling state in cpuidle (Mel Gorman). - Enable suspend-to-idle for PSCI OSI mode in the PSCI cpuidle driver (Ulf Hansson). - Modify the OPP framework to support empty (node-less) OPP tables in DT for passing dependency information (Nicola Mazzucato). - Fix potential lockdep issue in the OPP core and clean up the OPP core (Viresh Kumar). - Modify dev_pm_opp_put_regulators() to accept a NULL argument and update its users accordingly (Viresh Kumar). - Add frequency changes tracepoint to devfreq (Matthias Kaehlcke). - Add support for governor feature flags to devfreq, make devfreq sysfs file permissions depend on the governor and clean up the devfreq core (Chanwoo Choi). - Clean up the tegra20 devfreq driver and deprecate it to allow another driver based on EMC_STAT to be used instead of it (Dmitry Osipenko). - Add interconnect support to the tegra30 devfreq driver, allow it to take the interconnect and OPP information from DT and clean it up (Dmitry Osipenko). - Add interconnect support to the exynos-bus devfreq driver along with interconnect properties documentation (Sylwester Nawrocki). - Add suport for AMD Fam17h and Fam19h processors to the RAPL power capping driver (Victor Ding, Kim Phillips). - Fix handling of overly long constraint names in the powercap framework (Lukasz Luba). - Fix the wakeup configuration handling for bridges in the ACPI device power management core (Rafael Wysocki). - Add support for using an abstract scale for power units in the Energy Model (EM) and document it (Lukasz Luba). - Add em_cpu_energy() micro-optimization to the EM (Pavankumar Kondeti). - Modify the generic power domains (genpd) framwework to support suspend-to-idle (Ulf Hansson). - Fix creation of debugfs nodes in genpd (Thierry Strudel). - Clean up genpd (Lina Iyer). - Clean up the core system-wide suspend code and make it print driver flags for devices with debug enabled (Alex Shi, Patrice Chotard, Chen Yu). - Modify the ACPI system reboot code to make it prepare for system power off to avoid confusing the platform firmware (Kai-Heng Feng). - Update the pm-graph (multiple changes, mostly usability-related) and cpupower (online and offline CPU information support) PM utilities (Todd Brandt, Brahadambal Srinivasan)" * tag 'pm-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (86 commits) cpufreq: Fix cpufreq_online() return value on errors cpufreq: Fix up several kerneldoc comments cpufreq: stats: Use local_clock() instead of jiffies cpufreq: schedutil: Simplify sugov_update_next_freq() cpufreq: intel_pstate: Simplify intel_cpufreq_update_pstate() PM: domains: create debugfs nodes when adding power domains opp: of: Allow empty opp-table with opp-shared dt-bindings: opp: Allow empty OPP tables media: venus: dev_pm_opp_put_*() accepts NULL argument drm/panfrost: dev_pm_opp_put_*() accepts NULL argument drm/lima: dev_pm_opp_put_*() accepts NULL argument PM / devfreq: exynos: dev_pm_opp_put_*() accepts NULL argument cpufreq: qcom-cpufreq-nvmem: dev_pm_opp_put_*() accepts NULL argument cpufreq: dt: dev_pm_opp_put_regulators() accepts NULL argument opp: Allow dev_pm_opp_put_*() APIs to accept NULL opp_table opp: Don't create an OPP table from dev_pm_opp_get_opp_table() cpufreq: dt: Don't (ab)use dev_pm_opp_get_opp_table() to create OPP table opp: Reduce the size of critical section in _opp_kref_release() PM / EM: Micro optimization in em_cpu_energy cpufreq: arm_scmi: Discover the power scale in performance protocol ...
1136 lines
28 KiB
C
1136 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* SuperH Timer Support - CMT
|
|
*
|
|
* Copyright (C) 2008 Magnus Damm
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_domain.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/sh_timer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#ifdef CONFIG_SUPERH
|
|
#include <asm/platform_early.h>
|
|
#endif
|
|
|
|
struct sh_cmt_device;
|
|
|
|
/*
|
|
* The CMT comes in 5 different identified flavours, depending not only on the
|
|
* SoC but also on the particular instance. The following table lists the main
|
|
* characteristics of those flavours.
|
|
*
|
|
* 16B 32B 32B-F 48B R-Car Gen2
|
|
* -----------------------------------------------------------------------------
|
|
* Channels 2 1/4 1 6 2/8
|
|
* Control Width 16 16 16 16 32
|
|
* Counter Width 16 32 32 32/48 32/48
|
|
* Shared Start/Stop Y Y Y Y N
|
|
*
|
|
* The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
|
|
* located in the channel registers block. All other versions have a shared
|
|
* start/stop register located in the global space.
|
|
*
|
|
* Channels are indexed from 0 to N-1 in the documentation. The channel index
|
|
* infers the start/stop bit position in the control register and the channel
|
|
* registers block address. Some CMT instances have a subset of channels
|
|
* available, in which case the index in the documentation doesn't match the
|
|
* "real" index as implemented in hardware. This is for instance the case with
|
|
* CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
|
|
* in the documentation but using start/stop bit 5 and having its registers
|
|
* block at 0x60.
|
|
*
|
|
* Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
|
|
* channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
|
|
*/
|
|
|
|
enum sh_cmt_model {
|
|
SH_CMT_16BIT,
|
|
SH_CMT_32BIT,
|
|
SH_CMT_48BIT,
|
|
SH_CMT0_RCAR_GEN2,
|
|
SH_CMT1_RCAR_GEN2,
|
|
};
|
|
|
|
struct sh_cmt_info {
|
|
enum sh_cmt_model model;
|
|
|
|
unsigned int channels_mask;
|
|
|
|
unsigned long width; /* 16 or 32 bit version of hardware block */
|
|
u32 overflow_bit;
|
|
u32 clear_bits;
|
|
|
|
/* callbacks for CMSTR and CMCSR access */
|
|
u32 (*read_control)(void __iomem *base, unsigned long offs);
|
|
void (*write_control)(void __iomem *base, unsigned long offs,
|
|
u32 value);
|
|
|
|
/* callbacks for CMCNT and CMCOR access */
|
|
u32 (*read_count)(void __iomem *base, unsigned long offs);
|
|
void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
|
|
};
|
|
|
|
struct sh_cmt_channel {
|
|
struct sh_cmt_device *cmt;
|
|
|
|
unsigned int index; /* Index in the documentation */
|
|
unsigned int hwidx; /* Real hardware index */
|
|
|
|
void __iomem *iostart;
|
|
void __iomem *ioctrl;
|
|
|
|
unsigned int timer_bit;
|
|
unsigned long flags;
|
|
u32 match_value;
|
|
u32 next_match_value;
|
|
u32 max_match_value;
|
|
raw_spinlock_t lock;
|
|
struct clock_event_device ced;
|
|
struct clocksource cs;
|
|
u64 total_cycles;
|
|
bool cs_enabled;
|
|
};
|
|
|
|
struct sh_cmt_device {
|
|
struct platform_device *pdev;
|
|
|
|
const struct sh_cmt_info *info;
|
|
|
|
void __iomem *mapbase;
|
|
struct clk *clk;
|
|
unsigned long rate;
|
|
|
|
raw_spinlock_t lock; /* Protect the shared start/stop register */
|
|
|
|
struct sh_cmt_channel *channels;
|
|
unsigned int num_channels;
|
|
unsigned int hw_channels;
|
|
|
|
bool has_clockevent;
|
|
bool has_clocksource;
|
|
};
|
|
|
|
#define SH_CMT16_CMCSR_CMF (1 << 7)
|
|
#define SH_CMT16_CMCSR_CMIE (1 << 6)
|
|
#define SH_CMT16_CMCSR_CKS8 (0 << 0)
|
|
#define SH_CMT16_CMCSR_CKS32 (1 << 0)
|
|
#define SH_CMT16_CMCSR_CKS128 (2 << 0)
|
|
#define SH_CMT16_CMCSR_CKS512 (3 << 0)
|
|
#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
|
|
|
|
#define SH_CMT32_CMCSR_CMF (1 << 15)
|
|
#define SH_CMT32_CMCSR_OVF (1 << 14)
|
|
#define SH_CMT32_CMCSR_WRFLG (1 << 13)
|
|
#define SH_CMT32_CMCSR_STTF (1 << 12)
|
|
#define SH_CMT32_CMCSR_STPF (1 << 11)
|
|
#define SH_CMT32_CMCSR_SSIE (1 << 10)
|
|
#define SH_CMT32_CMCSR_CMS (1 << 9)
|
|
#define SH_CMT32_CMCSR_CMM (1 << 8)
|
|
#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
|
|
#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
|
|
#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
|
|
#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
|
|
#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
|
|
#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
|
|
#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
|
|
#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
|
|
#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
|
|
#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
|
|
#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
|
|
|
|
static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
|
|
{
|
|
return ioread16(base + (offs << 1));
|
|
}
|
|
|
|
static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
|
|
{
|
|
return ioread32(base + (offs << 2));
|
|
}
|
|
|
|
static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
|
|
{
|
|
iowrite16(value, base + (offs << 1));
|
|
}
|
|
|
|
static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
|
|
{
|
|
iowrite32(value, base + (offs << 2));
|
|
}
|
|
|
|
static const struct sh_cmt_info sh_cmt_info[] = {
|
|
[SH_CMT_16BIT] = {
|
|
.model = SH_CMT_16BIT,
|
|
.width = 16,
|
|
.overflow_bit = SH_CMT16_CMCSR_CMF,
|
|
.clear_bits = ~SH_CMT16_CMCSR_CMF,
|
|
.read_control = sh_cmt_read16,
|
|
.write_control = sh_cmt_write16,
|
|
.read_count = sh_cmt_read16,
|
|
.write_count = sh_cmt_write16,
|
|
},
|
|
[SH_CMT_32BIT] = {
|
|
.model = SH_CMT_32BIT,
|
|
.width = 32,
|
|
.overflow_bit = SH_CMT32_CMCSR_CMF,
|
|
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
|
|
.read_control = sh_cmt_read16,
|
|
.write_control = sh_cmt_write16,
|
|
.read_count = sh_cmt_read32,
|
|
.write_count = sh_cmt_write32,
|
|
},
|
|
[SH_CMT_48BIT] = {
|
|
.model = SH_CMT_48BIT,
|
|
.channels_mask = 0x3f,
|
|
.width = 32,
|
|
.overflow_bit = SH_CMT32_CMCSR_CMF,
|
|
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
|
|
.read_control = sh_cmt_read32,
|
|
.write_control = sh_cmt_write32,
|
|
.read_count = sh_cmt_read32,
|
|
.write_count = sh_cmt_write32,
|
|
},
|
|
[SH_CMT0_RCAR_GEN2] = {
|
|
.model = SH_CMT0_RCAR_GEN2,
|
|
.channels_mask = 0x60,
|
|
.width = 32,
|
|
.overflow_bit = SH_CMT32_CMCSR_CMF,
|
|
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
|
|
.read_control = sh_cmt_read32,
|
|
.write_control = sh_cmt_write32,
|
|
.read_count = sh_cmt_read32,
|
|
.write_count = sh_cmt_write32,
|
|
},
|
|
[SH_CMT1_RCAR_GEN2] = {
|
|
.model = SH_CMT1_RCAR_GEN2,
|
|
.channels_mask = 0xff,
|
|
.width = 32,
|
|
.overflow_bit = SH_CMT32_CMCSR_CMF,
|
|
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
|
|
.read_control = sh_cmt_read32,
|
|
.write_control = sh_cmt_write32,
|
|
.read_count = sh_cmt_read32,
|
|
.write_count = sh_cmt_write32,
|
|
},
|
|
};
|
|
|
|
#define CMCSR 0 /* channel register */
|
|
#define CMCNT 1 /* channel register */
|
|
#define CMCOR 2 /* channel register */
|
|
|
|
static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
|
|
{
|
|
if (ch->iostart)
|
|
return ch->cmt->info->read_control(ch->iostart, 0);
|
|
else
|
|
return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
|
|
{
|
|
if (ch->iostart)
|
|
ch->cmt->info->write_control(ch->iostart, 0, value);
|
|
else
|
|
ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
|
|
}
|
|
|
|
static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
|
|
{
|
|
return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
|
|
{
|
|
ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
|
|
}
|
|
|
|
static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
|
|
{
|
|
return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
|
|
{
|
|
ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
|
|
{
|
|
ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
|
|
}
|
|
|
|
static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
|
|
{
|
|
u32 v1, v2, v3;
|
|
u32 o1, o2;
|
|
|
|
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
|
|
|
|
/* Make sure the timer value is stable. Stolen from acpi_pm.c */
|
|
do {
|
|
o2 = o1;
|
|
v1 = sh_cmt_read_cmcnt(ch);
|
|
v2 = sh_cmt_read_cmcnt(ch);
|
|
v3 = sh_cmt_read_cmcnt(ch);
|
|
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
|
|
} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
|
|
|| (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
|
|
|
|
*has_wrapped = o1;
|
|
return v2;
|
|
}
|
|
|
|
static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
|
|
{
|
|
unsigned long flags;
|
|
u32 value;
|
|
|
|
/* start stop register shared by multiple timer channels */
|
|
raw_spin_lock_irqsave(&ch->cmt->lock, flags);
|
|
value = sh_cmt_read_cmstr(ch);
|
|
|
|
if (start)
|
|
value |= 1 << ch->timer_bit;
|
|
else
|
|
value &= ~(1 << ch->timer_bit);
|
|
|
|
sh_cmt_write_cmstr(ch, value);
|
|
raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
|
|
}
|
|
|
|
static int sh_cmt_enable(struct sh_cmt_channel *ch)
|
|
{
|
|
int k, ret;
|
|
|
|
dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
|
|
|
|
/* enable clock */
|
|
ret = clk_enable(ch->cmt->clk);
|
|
if (ret) {
|
|
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
|
|
ch->index);
|
|
goto err0;
|
|
}
|
|
|
|
/* make sure channel is disabled */
|
|
sh_cmt_start_stop_ch(ch, 0);
|
|
|
|
/* configure channel, periodic mode and maximum timeout */
|
|
if (ch->cmt->info->width == 16) {
|
|
sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
|
|
SH_CMT16_CMCSR_CKS512);
|
|
} else {
|
|
sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
|
|
SH_CMT32_CMCSR_CMTOUT_IE |
|
|
SH_CMT32_CMCSR_CMR_IRQ |
|
|
SH_CMT32_CMCSR_CKS_RCLK8);
|
|
}
|
|
|
|
sh_cmt_write_cmcor(ch, 0xffffffff);
|
|
sh_cmt_write_cmcnt(ch, 0);
|
|
|
|
/*
|
|
* According to the sh73a0 user's manual, as CMCNT can be operated
|
|
* only by the RCLK (Pseudo 32 kHz), there's one restriction on
|
|
* modifying CMCNT register; two RCLK cycles are necessary before
|
|
* this register is either read or any modification of the value
|
|
* it holds is reflected in the LSI's actual operation.
|
|
*
|
|
* While at it, we're supposed to clear out the CMCNT as of this
|
|
* moment, so make sure it's processed properly here. This will
|
|
* take RCLKx2 at maximum.
|
|
*/
|
|
for (k = 0; k < 100; k++) {
|
|
if (!sh_cmt_read_cmcnt(ch))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
if (sh_cmt_read_cmcnt(ch)) {
|
|
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
|
|
ch->index);
|
|
ret = -ETIMEDOUT;
|
|
goto err1;
|
|
}
|
|
|
|
/* enable channel */
|
|
sh_cmt_start_stop_ch(ch, 1);
|
|
return 0;
|
|
err1:
|
|
/* stop clock */
|
|
clk_disable(ch->cmt->clk);
|
|
|
|
err0:
|
|
return ret;
|
|
}
|
|
|
|
static void sh_cmt_disable(struct sh_cmt_channel *ch)
|
|
{
|
|
/* disable channel */
|
|
sh_cmt_start_stop_ch(ch, 0);
|
|
|
|
/* disable interrupts in CMT block */
|
|
sh_cmt_write_cmcsr(ch, 0);
|
|
|
|
/* stop clock */
|
|
clk_disable(ch->cmt->clk);
|
|
|
|
dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
|
|
}
|
|
|
|
/* private flags */
|
|
#define FLAG_CLOCKEVENT (1 << 0)
|
|
#define FLAG_CLOCKSOURCE (1 << 1)
|
|
#define FLAG_REPROGRAM (1 << 2)
|
|
#define FLAG_SKIPEVENT (1 << 3)
|
|
#define FLAG_IRQCONTEXT (1 << 4)
|
|
|
|
static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
|
|
int absolute)
|
|
{
|
|
u32 value = ch->next_match_value;
|
|
u32 new_match;
|
|
u32 delay = 0;
|
|
u32 now = 0;
|
|
u32 has_wrapped;
|
|
|
|
now = sh_cmt_get_counter(ch, &has_wrapped);
|
|
ch->flags |= FLAG_REPROGRAM; /* force reprogram */
|
|
|
|
if (has_wrapped) {
|
|
/* we're competing with the interrupt handler.
|
|
* -> let the interrupt handler reprogram the timer.
|
|
* -> interrupt number two handles the event.
|
|
*/
|
|
ch->flags |= FLAG_SKIPEVENT;
|
|
return;
|
|
}
|
|
|
|
if (absolute)
|
|
now = 0;
|
|
|
|
do {
|
|
/* reprogram the timer hardware,
|
|
* but don't save the new match value yet.
|
|
*/
|
|
new_match = now + value + delay;
|
|
if (new_match > ch->max_match_value)
|
|
new_match = ch->max_match_value;
|
|
|
|
sh_cmt_write_cmcor(ch, new_match);
|
|
|
|
now = sh_cmt_get_counter(ch, &has_wrapped);
|
|
if (has_wrapped && (new_match > ch->match_value)) {
|
|
/* we are changing to a greater match value,
|
|
* so this wrap must be caused by the counter
|
|
* matching the old value.
|
|
* -> first interrupt reprograms the timer.
|
|
* -> interrupt number two handles the event.
|
|
*/
|
|
ch->flags |= FLAG_SKIPEVENT;
|
|
break;
|
|
}
|
|
|
|
if (has_wrapped) {
|
|
/* we are changing to a smaller match value,
|
|
* so the wrap must be caused by the counter
|
|
* matching the new value.
|
|
* -> save programmed match value.
|
|
* -> let isr handle the event.
|
|
*/
|
|
ch->match_value = new_match;
|
|
break;
|
|
}
|
|
|
|
/* be safe: verify hardware settings */
|
|
if (now < new_match) {
|
|
/* timer value is below match value, all good.
|
|
* this makes sure we won't miss any match events.
|
|
* -> save programmed match value.
|
|
* -> let isr handle the event.
|
|
*/
|
|
ch->match_value = new_match;
|
|
break;
|
|
}
|
|
|
|
/* the counter has reached a value greater
|
|
* than our new match value. and since the
|
|
* has_wrapped flag isn't set we must have
|
|
* programmed a too close event.
|
|
* -> increase delay and retry.
|
|
*/
|
|
if (delay)
|
|
delay <<= 1;
|
|
else
|
|
delay = 1;
|
|
|
|
if (!delay)
|
|
dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
|
|
ch->index);
|
|
|
|
} while (delay);
|
|
}
|
|
|
|
static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
|
|
{
|
|
if (delta > ch->max_match_value)
|
|
dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
|
|
ch->index);
|
|
|
|
ch->next_match_value = delta;
|
|
sh_cmt_clock_event_program_verify(ch, 0);
|
|
}
|
|
|
|
static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&ch->lock, flags);
|
|
__sh_cmt_set_next(ch, delta);
|
|
raw_spin_unlock_irqrestore(&ch->lock, flags);
|
|
}
|
|
|
|
static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct sh_cmt_channel *ch = dev_id;
|
|
|
|
/* clear flags */
|
|
sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
|
|
ch->cmt->info->clear_bits);
|
|
|
|
/* update clock source counter to begin with if enabled
|
|
* the wrap flag should be cleared by the timer specific
|
|
* isr before we end up here.
|
|
*/
|
|
if (ch->flags & FLAG_CLOCKSOURCE)
|
|
ch->total_cycles += ch->match_value + 1;
|
|
|
|
if (!(ch->flags & FLAG_REPROGRAM))
|
|
ch->next_match_value = ch->max_match_value;
|
|
|
|
ch->flags |= FLAG_IRQCONTEXT;
|
|
|
|
if (ch->flags & FLAG_CLOCKEVENT) {
|
|
if (!(ch->flags & FLAG_SKIPEVENT)) {
|
|
if (clockevent_state_oneshot(&ch->ced)) {
|
|
ch->next_match_value = ch->max_match_value;
|
|
ch->flags |= FLAG_REPROGRAM;
|
|
}
|
|
|
|
ch->ced.event_handler(&ch->ced);
|
|
}
|
|
}
|
|
|
|
ch->flags &= ~FLAG_SKIPEVENT;
|
|
|
|
if (ch->flags & FLAG_REPROGRAM) {
|
|
ch->flags &= ~FLAG_REPROGRAM;
|
|
sh_cmt_clock_event_program_verify(ch, 1);
|
|
|
|
if (ch->flags & FLAG_CLOCKEVENT)
|
|
if ((clockevent_state_shutdown(&ch->ced))
|
|
|| (ch->match_value == ch->next_match_value))
|
|
ch->flags &= ~FLAG_REPROGRAM;
|
|
}
|
|
|
|
ch->flags &= ~FLAG_IRQCONTEXT;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
if (flag & FLAG_CLOCKSOURCE)
|
|
pm_runtime_get_sync(&ch->cmt->pdev->dev);
|
|
|
|
raw_spin_lock_irqsave(&ch->lock, flags);
|
|
|
|
if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
|
|
if (flag & FLAG_CLOCKEVENT)
|
|
pm_runtime_get_sync(&ch->cmt->pdev->dev);
|
|
ret = sh_cmt_enable(ch);
|
|
}
|
|
|
|
if (ret)
|
|
goto out;
|
|
ch->flags |= flag;
|
|
|
|
/* setup timeout if no clockevent */
|
|
if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
|
|
__sh_cmt_set_next(ch, ch->max_match_value);
|
|
out:
|
|
raw_spin_unlock_irqrestore(&ch->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long f;
|
|
|
|
raw_spin_lock_irqsave(&ch->lock, flags);
|
|
|
|
f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
|
|
ch->flags &= ~flag;
|
|
|
|
if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
|
|
sh_cmt_disable(ch);
|
|
if (flag & FLAG_CLOCKEVENT)
|
|
pm_runtime_put(&ch->cmt->pdev->dev);
|
|
}
|
|
|
|
/* adjust the timeout to maximum if only clocksource left */
|
|
if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
|
|
__sh_cmt_set_next(ch, ch->max_match_value);
|
|
|
|
raw_spin_unlock_irqrestore(&ch->lock, flags);
|
|
|
|
if (flag & FLAG_CLOCKSOURCE)
|
|
pm_runtime_put(&ch->cmt->pdev->dev);
|
|
}
|
|
|
|
static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
|
|
{
|
|
return container_of(cs, struct sh_cmt_channel, cs);
|
|
}
|
|
|
|
static u64 sh_cmt_clocksource_read(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
|
|
unsigned long flags;
|
|
u32 has_wrapped;
|
|
u64 value;
|
|
u32 raw;
|
|
|
|
raw_spin_lock_irqsave(&ch->lock, flags);
|
|
value = ch->total_cycles;
|
|
raw = sh_cmt_get_counter(ch, &has_wrapped);
|
|
|
|
if (unlikely(has_wrapped))
|
|
raw += ch->match_value + 1;
|
|
raw_spin_unlock_irqrestore(&ch->lock, flags);
|
|
|
|
return value + raw;
|
|
}
|
|
|
|
static int sh_cmt_clocksource_enable(struct clocksource *cs)
|
|
{
|
|
int ret;
|
|
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
|
|
|
|
WARN_ON(ch->cs_enabled);
|
|
|
|
ch->total_cycles = 0;
|
|
|
|
ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
|
|
if (!ret)
|
|
ch->cs_enabled = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sh_cmt_clocksource_disable(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
|
|
|
|
WARN_ON(!ch->cs_enabled);
|
|
|
|
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
|
|
ch->cs_enabled = false;
|
|
}
|
|
|
|
static void sh_cmt_clocksource_suspend(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
|
|
|
|
if (!ch->cs_enabled)
|
|
return;
|
|
|
|
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
|
|
dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
|
|
}
|
|
|
|
static void sh_cmt_clocksource_resume(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
|
|
|
|
if (!ch->cs_enabled)
|
|
return;
|
|
|
|
dev_pm_genpd_resume(&ch->cmt->pdev->dev);
|
|
sh_cmt_start(ch, FLAG_CLOCKSOURCE);
|
|
}
|
|
|
|
static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
|
|
const char *name)
|
|
{
|
|
struct clocksource *cs = &ch->cs;
|
|
|
|
cs->name = name;
|
|
cs->rating = 125;
|
|
cs->read = sh_cmt_clocksource_read;
|
|
cs->enable = sh_cmt_clocksource_enable;
|
|
cs->disable = sh_cmt_clocksource_disable;
|
|
cs->suspend = sh_cmt_clocksource_suspend;
|
|
cs->resume = sh_cmt_clocksource_resume;
|
|
cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
|
|
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
|
|
|
|
dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
|
|
ch->index);
|
|
|
|
clocksource_register_hz(cs, ch->cmt->rate);
|
|
return 0;
|
|
}
|
|
|
|
static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
|
|
{
|
|
return container_of(ced, struct sh_cmt_channel, ced);
|
|
}
|
|
|
|
static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
|
|
{
|
|
sh_cmt_start(ch, FLAG_CLOCKEVENT);
|
|
|
|
if (periodic)
|
|
sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
|
|
else
|
|
sh_cmt_set_next(ch, ch->max_match_value);
|
|
}
|
|
|
|
static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
|
|
{
|
|
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
|
|
|
|
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
|
|
int periodic)
|
|
{
|
|
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
|
|
|
|
/* deal with old setting first */
|
|
if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
|
|
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
|
|
|
|
dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
|
|
ch->index, periodic ? "periodic" : "oneshot");
|
|
sh_cmt_clock_event_start(ch, periodic);
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
|
|
{
|
|
return sh_cmt_clock_event_set_state(ced, 0);
|
|
}
|
|
|
|
static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
|
|
{
|
|
return sh_cmt_clock_event_set_state(ced, 1);
|
|
}
|
|
|
|
static int sh_cmt_clock_event_next(unsigned long delta,
|
|
struct clock_event_device *ced)
|
|
{
|
|
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
|
|
|
|
BUG_ON(!clockevent_state_oneshot(ced));
|
|
if (likely(ch->flags & FLAG_IRQCONTEXT))
|
|
ch->next_match_value = delta - 1;
|
|
else
|
|
sh_cmt_set_next(ch, delta - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
|
|
{
|
|
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
|
|
|
|
dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
|
|
clk_unprepare(ch->cmt->clk);
|
|
}
|
|
|
|
static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
|
|
{
|
|
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
|
|
|
|
clk_prepare(ch->cmt->clk);
|
|
dev_pm_genpd_resume(&ch->cmt->pdev->dev);
|
|
}
|
|
|
|
static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
|
|
const char *name)
|
|
{
|
|
struct clock_event_device *ced = &ch->ced;
|
|
int irq;
|
|
int ret;
|
|
|
|
irq = platform_get_irq(ch->cmt->pdev, ch->index);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
ret = request_irq(irq, sh_cmt_interrupt,
|
|
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
|
|
dev_name(&ch->cmt->pdev->dev), ch);
|
|
if (ret) {
|
|
dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
|
|
ch->index, irq);
|
|
return ret;
|
|
}
|
|
|
|
ced->name = name;
|
|
ced->features = CLOCK_EVT_FEAT_PERIODIC;
|
|
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
|
|
ced->rating = 125;
|
|
ced->cpumask = cpu_possible_mask;
|
|
ced->set_next_event = sh_cmt_clock_event_next;
|
|
ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
|
|
ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
|
|
ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
|
|
ced->suspend = sh_cmt_clock_event_suspend;
|
|
ced->resume = sh_cmt_clock_event_resume;
|
|
|
|
/* TODO: calculate good shift from rate and counter bit width */
|
|
ced->shift = 32;
|
|
ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
|
|
ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
|
|
ced->max_delta_ticks = ch->max_match_value;
|
|
ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
|
|
ced->min_delta_ticks = 0x1f;
|
|
|
|
dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
|
|
ch->index);
|
|
clockevents_register_device(ced);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
|
|
bool clockevent, bool clocksource)
|
|
{
|
|
int ret;
|
|
|
|
if (clockevent) {
|
|
ch->cmt->has_clockevent = true;
|
|
ret = sh_cmt_register_clockevent(ch, name);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
if (clocksource) {
|
|
ch->cmt->has_clocksource = true;
|
|
sh_cmt_register_clocksource(ch, name);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
|
|
unsigned int hwidx, bool clockevent,
|
|
bool clocksource, struct sh_cmt_device *cmt)
|
|
{
|
|
int ret;
|
|
|
|
/* Skip unused channels. */
|
|
if (!clockevent && !clocksource)
|
|
return 0;
|
|
|
|
ch->cmt = cmt;
|
|
ch->index = index;
|
|
ch->hwidx = hwidx;
|
|
ch->timer_bit = hwidx;
|
|
|
|
/*
|
|
* Compute the address of the channel control register block. For the
|
|
* timers with a per-channel start/stop register, compute its address
|
|
* as well.
|
|
*/
|
|
switch (cmt->info->model) {
|
|
case SH_CMT_16BIT:
|
|
ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
|
|
break;
|
|
case SH_CMT_32BIT:
|
|
case SH_CMT_48BIT:
|
|
ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
|
|
break;
|
|
case SH_CMT0_RCAR_GEN2:
|
|
case SH_CMT1_RCAR_GEN2:
|
|
ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
|
|
ch->ioctrl = ch->iostart + 0x10;
|
|
ch->timer_bit = 0;
|
|
break;
|
|
}
|
|
|
|
if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
|
|
ch->max_match_value = ~0;
|
|
else
|
|
ch->max_match_value = (1 << cmt->info->width) - 1;
|
|
|
|
ch->match_value = ch->max_match_value;
|
|
raw_spin_lock_init(&ch->lock);
|
|
|
|
ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
|
|
clockevent, clocksource);
|
|
if (ret) {
|
|
dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
|
|
ch->index);
|
|
return ret;
|
|
}
|
|
ch->cs_enabled = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
|
|
{
|
|
struct resource *mem;
|
|
|
|
mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
|
|
if (!mem) {
|
|
dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
cmt->mapbase = ioremap(mem->start, resource_size(mem));
|
|
if (cmt->mapbase == NULL) {
|
|
dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct platform_device_id sh_cmt_id_table[] = {
|
|
{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
|
|
{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
|
|
|
|
static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
|
|
{
|
|
/* deprecated, preserved for backward compatibility */
|
|
.compatible = "renesas,cmt-48",
|
|
.data = &sh_cmt_info[SH_CMT_48BIT]
|
|
},
|
|
{
|
|
/* deprecated, preserved for backward compatibility */
|
|
.compatible = "renesas,cmt-48-gen2",
|
|
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
|
|
},
|
|
{
|
|
.compatible = "renesas,r8a7740-cmt1",
|
|
.data = &sh_cmt_info[SH_CMT_48BIT]
|
|
},
|
|
{
|
|
.compatible = "renesas,sh73a0-cmt1",
|
|
.data = &sh_cmt_info[SH_CMT_48BIT]
|
|
},
|
|
{
|
|
.compatible = "renesas,rcar-gen2-cmt0",
|
|
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
|
|
},
|
|
{
|
|
.compatible = "renesas,rcar-gen2-cmt1",
|
|
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
|
|
},
|
|
{
|
|
.compatible = "renesas,rcar-gen3-cmt0",
|
|
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
|
|
},
|
|
{
|
|
.compatible = "renesas,rcar-gen3-cmt1",
|
|
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
|
|
},
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
|
|
|
|
static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
|
|
{
|
|
unsigned int mask;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
cmt->pdev = pdev;
|
|
raw_spin_lock_init(&cmt->lock);
|
|
|
|
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
|
|
cmt->info = of_device_get_match_data(&pdev->dev);
|
|
cmt->hw_channels = cmt->info->channels_mask;
|
|
} else if (pdev->dev.platform_data) {
|
|
struct sh_timer_config *cfg = pdev->dev.platform_data;
|
|
const struct platform_device_id *id = pdev->id_entry;
|
|
|
|
cmt->info = (const struct sh_cmt_info *)id->driver_data;
|
|
cmt->hw_channels = cfg->channels_mask;
|
|
} else {
|
|
dev_err(&cmt->pdev->dev, "missing platform data\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Get hold of clock. */
|
|
cmt->clk = clk_get(&cmt->pdev->dev, "fck");
|
|
if (IS_ERR(cmt->clk)) {
|
|
dev_err(&cmt->pdev->dev, "cannot get clock\n");
|
|
return PTR_ERR(cmt->clk);
|
|
}
|
|
|
|
ret = clk_prepare(cmt->clk);
|
|
if (ret < 0)
|
|
goto err_clk_put;
|
|
|
|
/* Determine clock rate. */
|
|
ret = clk_enable(cmt->clk);
|
|
if (ret < 0)
|
|
goto err_clk_unprepare;
|
|
|
|
if (cmt->info->width == 16)
|
|
cmt->rate = clk_get_rate(cmt->clk) / 512;
|
|
else
|
|
cmt->rate = clk_get_rate(cmt->clk) / 8;
|
|
|
|
clk_disable(cmt->clk);
|
|
|
|
/* Map the memory resource(s). */
|
|
ret = sh_cmt_map_memory(cmt);
|
|
if (ret < 0)
|
|
goto err_clk_unprepare;
|
|
|
|
/* Allocate and setup the channels. */
|
|
cmt->num_channels = hweight8(cmt->hw_channels);
|
|
cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
|
|
GFP_KERNEL);
|
|
if (cmt->channels == NULL) {
|
|
ret = -ENOMEM;
|
|
goto err_unmap;
|
|
}
|
|
|
|
/*
|
|
* Use the first channel as a clock event device and the second channel
|
|
* as a clock source. If only one channel is available use it for both.
|
|
*/
|
|
for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
|
|
unsigned int hwidx = ffs(mask) - 1;
|
|
bool clocksource = i == 1 || cmt->num_channels == 1;
|
|
bool clockevent = i == 0;
|
|
|
|
ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
|
|
clockevent, clocksource, cmt);
|
|
if (ret < 0)
|
|
goto err_unmap;
|
|
|
|
mask &= ~(1 << hwidx);
|
|
}
|
|
|
|
platform_set_drvdata(pdev, cmt);
|
|
|
|
return 0;
|
|
|
|
err_unmap:
|
|
kfree(cmt->channels);
|
|
iounmap(cmt->mapbase);
|
|
err_clk_unprepare:
|
|
clk_unprepare(cmt->clk);
|
|
err_clk_put:
|
|
clk_put(cmt->clk);
|
|
return ret;
|
|
}
|
|
|
|
static int sh_cmt_probe(struct platform_device *pdev)
|
|
{
|
|
struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
|
|
int ret;
|
|
|
|
if (!is_sh_early_platform_device(pdev)) {
|
|
pm_runtime_set_active(&pdev->dev);
|
|
pm_runtime_enable(&pdev->dev);
|
|
}
|
|
|
|
if (cmt) {
|
|
dev_info(&pdev->dev, "kept as earlytimer\n");
|
|
goto out;
|
|
}
|
|
|
|
cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
|
|
if (cmt == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = sh_cmt_setup(cmt, pdev);
|
|
if (ret) {
|
|
kfree(cmt);
|
|
pm_runtime_idle(&pdev->dev);
|
|
return ret;
|
|
}
|
|
if (is_sh_early_platform_device(pdev))
|
|
return 0;
|
|
|
|
out:
|
|
if (cmt->has_clockevent || cmt->has_clocksource)
|
|
pm_runtime_irq_safe(&pdev->dev);
|
|
else
|
|
pm_runtime_idle(&pdev->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_remove(struct platform_device *pdev)
|
|
{
|
|
return -EBUSY; /* cannot unregister clockevent and clocksource */
|
|
}
|
|
|
|
static struct platform_driver sh_cmt_device_driver = {
|
|
.probe = sh_cmt_probe,
|
|
.remove = sh_cmt_remove,
|
|
.driver = {
|
|
.name = "sh_cmt",
|
|
.of_match_table = of_match_ptr(sh_cmt_of_table),
|
|
},
|
|
.id_table = sh_cmt_id_table,
|
|
};
|
|
|
|
static int __init sh_cmt_init(void)
|
|
{
|
|
return platform_driver_register(&sh_cmt_device_driver);
|
|
}
|
|
|
|
static void __exit sh_cmt_exit(void)
|
|
{
|
|
platform_driver_unregister(&sh_cmt_device_driver);
|
|
}
|
|
|
|
#ifdef CONFIG_SUPERH
|
|
sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
|
|
#endif
|
|
|
|
subsys_initcall(sh_cmt_init);
|
|
module_exit(sh_cmt_exit);
|
|
|
|
MODULE_AUTHOR("Magnus Damm");
|
|
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
|
|
MODULE_LICENSE("GPL v2");
|