linux/arch/x86/mm/hugetlbpage.c
Hugh Dickins 1be7107fbe mm: larger stack guard gap, between vmas
Stack guard page is a useful feature to reduce a risk of stack smashing
into a different mapping. We have been using a single page gap which
is sufficient to prevent having stack adjacent to a different mapping.
But this seems to be insufficient in the light of the stack usage in
userspace. E.g. glibc uses as large as 64kB alloca() in many commonly
used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX]
which is 256kB or stack strings with MAX_ARG_STRLEN.

This will become especially dangerous for suid binaries and the default
no limit for the stack size limit because those applications can be
tricked to consume a large portion of the stack and a single glibc call
could jump over the guard page. These attacks are not theoretical,
unfortunatelly.

Make those attacks less probable by increasing the stack guard gap
to 1MB (on systems with 4k pages; but make it depend on the page size
because systems with larger base pages might cap stack allocations in
the PAGE_SIZE units) which should cover larger alloca() and VLA stack
allocations. It is obviously not a full fix because the problem is
somehow inherent, but it should reduce attack space a lot.

One could argue that the gap size should be configurable from userspace,
but that can be done later when somebody finds that the new 1MB is wrong
for some special case applications.  For now, add a kernel command line
option (stack_guard_gap) to specify the stack gap size (in page units).

Implementation wise, first delete all the old code for stack guard page:
because although we could get away with accounting one extra page in a
stack vma, accounting a larger gap can break userspace - case in point,
a program run with "ulimit -S -v 20000" failed when the 1MB gap was
counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK
and strict non-overcommit mode.

Instead of keeping gap inside the stack vma, maintain the stack guard
gap as a gap between vmas: using vm_start_gap() in place of vm_start
(or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few
places which need to respect the gap - mainly arch_get_unmapped_area(),
and and the vma tree's subtree_gap support for that.

Original-patch-by: Oleg Nesterov <oleg@redhat.com>
Original-patch-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-19 21:50:20 +08:00

192 lines
4.5 KiB
C

/*
* IA-32 Huge TLB Page Support for Kernel.
*
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
*/
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/sysctl.h>
#include <linux/compat.h>
#include <asm/mman.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgalloc.h>
#include <asm/elf.h>
#if 0 /* This is just for testing */
struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
unsigned long start = address;
int length = 1;
int nr;
struct page *page;
struct vm_area_struct *vma;
vma = find_vma(mm, addr);
if (!vma || !is_vm_hugetlb_page(vma))
return ERR_PTR(-EINVAL);
pte = huge_pte_offset(mm, address);
/* hugetlb should be locked, and hence, prefaulted */
WARN_ON(!pte || pte_none(*pte));
page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
WARN_ON(!PageHead(page));
return page;
}
int pmd_huge(pmd_t pmd)
{
return 0;
}
int pud_huge(pud_t pud)
{
return 0;
}
#else
/*
* pmd_huge() returns 1 if @pmd is hugetlb related entry, that is normal
* hugetlb entry or non-present (migration or hwpoisoned) hugetlb entry.
* Otherwise, returns 0.
*/
int pmd_huge(pmd_t pmd)
{
return !pmd_none(pmd) &&
(pmd_val(pmd) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT;
}
int pud_huge(pud_t pud)
{
return !!(pud_val(pud) & _PAGE_PSE);
}
#endif
#ifdef CONFIG_HUGETLB_PAGE
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
info.flags = 0;
info.length = len;
info.low_limit = get_mmap_base(1);
info.high_limit = in_compat_syscall() ?
tasksize_32bit() : tasksize_64bit();
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
return vm_unmapped_area(&info);
}
static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
unsigned long addr0, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
unsigned long addr;
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
info.low_limit = PAGE_SIZE;
info.high_limit = get_mmap_base(0);
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
addr = vm_unmapped_area(&info);
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
if (addr & ~PAGE_MASK) {
VM_BUG_ON(addr != -ENOMEM);
info.flags = 0;
info.low_limit = TASK_UNMAPPED_BASE;
info.high_limit = TASK_SIZE;
addr = vm_unmapped_area(&info);
}
return addr;
}
unsigned long
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
if (len & ~huge_page_mask(h))
return -EINVAL;
if (len > TASK_SIZE)
return -ENOMEM;
if (flags & MAP_FIXED) {
if (prepare_hugepage_range(file, addr, len))
return -EINVAL;
return addr;
}
if (addr) {
addr = ALIGN(addr, huge_page_size(h));
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vm_start_gap(vma)))
return addr;
}
if (mm->get_unmapped_area == arch_get_unmapped_area)
return hugetlb_get_unmapped_area_bottomup(file, addr, len,
pgoff, flags);
else
return hugetlb_get_unmapped_area_topdown(file, addr, len,
pgoff, flags);
}
#endif /* CONFIG_HUGETLB_PAGE */
#ifdef CONFIG_X86_64
static __init int setup_hugepagesz(char *opt)
{
unsigned long ps = memparse(opt, &opt);
if (ps == PMD_SIZE) {
hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
} else if (ps == PUD_SIZE && boot_cpu_has(X86_FEATURE_GBPAGES)) {
hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
} else {
hugetlb_bad_size();
printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
ps >> 20);
return 0;
}
return 1;
}
__setup("hugepagesz=", setup_hugepagesz);
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
static __init int gigantic_pages_init(void)
{
/* With compaction or CMA we can allocate gigantic pages at runtime */
if (boot_cpu_has(X86_FEATURE_GBPAGES) && !size_to_hstate(1UL << PUD_SHIFT))
hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
return 0;
}
arch_initcall(gigantic_pages_init);
#endif
#endif