linux/drivers/scsi/lpfc/lpfc_init.c
James Smart 7e04e21afa Fix Express lane queue creation.
The older sli4 adapters only supported the 64 byte WQE entry size.
The new adapter (fw) support both 64 and 128 byte WQE entry sizies.
The Express lane WQ was not being created with the 128 byte WQE sizes
when it was supported.

Not having the right WQE size created for the express lane work queue
caused the the firmware to overwrite the lun indentifier in the FCP header.

This patch correctly creates the express lane work queue with the
supported size.

Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <james.smart@broadcom.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2017-04-24 09:25:49 +02:00

12233 lines
357 KiB
C

/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2017 Broadcom. All Rights Reserved. The term *
* “Broadcom” refers to Broadcom Limited and/or its subsidiaries. *
* Copyright (C) 2004-2016 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.broadcom.com *
* Portions Copyright (C) 2004-2005 Christoph Hellwig *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
*******************************************************************/
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/ctype.h>
#include <linux/aer.h>
#include <linux/slab.h>
#include <linux/firmware.h>
#include <linux/miscdevice.h>
#include <linux/percpu.h>
#include <linux/msi.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_fc.h>
#include <scsi/scsi_tcq.h>
#include <scsi/fc/fc_fs.h>
#include <linux/nvme-fc-driver.h>
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc.h"
#include "lpfc_scsi.h"
#include "lpfc_nvme.h"
#include "lpfc_nvmet.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"
#include "lpfc_version.h"
#include "lpfc_ids.h"
char *_dump_buf_data;
unsigned long _dump_buf_data_order;
char *_dump_buf_dif;
unsigned long _dump_buf_dif_order;
spinlock_t _dump_buf_lock;
/* Used when mapping IRQ vectors in a driver centric manner */
uint16_t *lpfc_used_cpu;
uint32_t lpfc_present_cpu;
static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
static int lpfc_post_rcv_buf(struct lpfc_hba *);
static int lpfc_sli4_queue_verify(struct lpfc_hba *);
static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
static int lpfc_setup_endian_order(struct lpfc_hba *);
static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
static void lpfc_free_els_sgl_list(struct lpfc_hba *);
static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
static void lpfc_init_sgl_list(struct lpfc_hba *);
static int lpfc_init_active_sgl_array(struct lpfc_hba *);
static void lpfc_free_active_sgl(struct lpfc_hba *);
static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
static void lpfc_sli4_disable_intr(struct lpfc_hba *);
static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
static struct scsi_transport_template *lpfc_transport_template = NULL;
static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
static DEFINE_IDR(lpfc_hba_index);
#define LPFC_NVMET_BUF_POST 254
/**
* lpfc_config_port_prep - Perform lpfc initialization prior to config port
* @phba: pointer to lpfc hba data structure.
*
* This routine will do LPFC initialization prior to issuing the CONFIG_PORT
* mailbox command. It retrieves the revision information from the HBA and
* collects the Vital Product Data (VPD) about the HBA for preparing the
* configuration of the HBA.
*
* Return codes:
* 0 - success.
* -ERESTART - requests the SLI layer to reset the HBA and try again.
* Any other value - indicates an error.
**/
int
lpfc_config_port_prep(struct lpfc_hba *phba)
{
lpfc_vpd_t *vp = &phba->vpd;
int i = 0, rc;
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
char *lpfc_vpd_data = NULL;
uint16_t offset = 0;
static char licensed[56] =
"key unlock for use with gnu public licensed code only\0";
static int init_key = 1;
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
mb = &pmb->u.mb;
phba->link_state = LPFC_INIT_MBX_CMDS;
if (lpfc_is_LC_HBA(phba->pcidev->device)) {
if (init_key) {
uint32_t *ptext = (uint32_t *) licensed;
for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
*ptext = cpu_to_be32(*ptext);
init_key = 0;
}
lpfc_read_nv(phba, pmb);
memset((char*)mb->un.varRDnvp.rsvd3, 0,
sizeof (mb->un.varRDnvp.rsvd3));
memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
sizeof (licensed));
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
"0324 Config Port initialization "
"error, mbxCmd x%x READ_NVPARM, "
"mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
mempool_free(pmb, phba->mbox_mem_pool);
return -ERESTART;
}
memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
sizeof(phba->wwnn));
memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
sizeof(phba->wwpn));
}
phba->sli3_options = 0x0;
/* Setup and issue mailbox READ REV command */
lpfc_read_rev(phba, pmb);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0439 Adapter failed to init, mbxCmd x%x "
"READ_REV, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
mempool_free( pmb, phba->mbox_mem_pool);
return -ERESTART;
}
/*
* The value of rr must be 1 since the driver set the cv field to 1.
* This setting requires the FW to set all revision fields.
*/
if (mb->un.varRdRev.rr == 0) {
vp->rev.rBit = 0;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0440 Adapter failed to init, READ_REV has "
"missing revision information.\n");
mempool_free(pmb, phba->mbox_mem_pool);
return -ERESTART;
}
if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
mempool_free(pmb, phba->mbox_mem_pool);
return -EINVAL;
}
/* Save information as VPD data */
vp->rev.rBit = 1;
memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
vp->rev.biuRev = mb->un.varRdRev.biuRev;
vp->rev.smRev = mb->un.varRdRev.smRev;
vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
vp->rev.endecRev = mb->un.varRdRev.endecRev;
vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
/* If the sli feature level is less then 9, we must
* tear down all RPIs and VPIs on link down if NPIV
* is enabled.
*/
if (vp->rev.feaLevelHigh < 9)
phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
if (lpfc_is_LC_HBA(phba->pcidev->device))
memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
sizeof (phba->RandomData));
/* Get adapter VPD information */
lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
if (!lpfc_vpd_data)
goto out_free_mbox;
do {
lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0441 VPD not present on adapter, "
"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
mb->un.varDmp.word_cnt = 0;
}
/* dump mem may return a zero when finished or we got a
* mailbox error, either way we are done.
*/
if (mb->un.varDmp.word_cnt == 0)
break;
if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
lpfc_vpd_data + offset,
mb->un.varDmp.word_cnt);
offset += mb->un.varDmp.word_cnt;
} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
kfree(lpfc_vpd_data);
out_free_mbox:
mempool_free(pmb, phba->mbox_mem_pool);
return 0;
}
/**
* lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
* @phba: pointer to lpfc hba data structure.
* @pmboxq: pointer to the driver internal queue element for mailbox command.
*
* This is the completion handler for driver's configuring asynchronous event
* mailbox command to the device. If the mailbox command returns successfully,
* it will set internal async event support flag to 1; otherwise, it will
* set internal async event support flag to 0.
**/
static void
lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
{
if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
phba->temp_sensor_support = 1;
else
phba->temp_sensor_support = 0;
mempool_free(pmboxq, phba->mbox_mem_pool);
return;
}
/**
* lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
* @phba: pointer to lpfc hba data structure.
* @pmboxq: pointer to the driver internal queue element for mailbox command.
*
* This is the completion handler for dump mailbox command for getting
* wake up parameters. When this command complete, the response contain
* Option rom version of the HBA. This function translate the version number
* into a human readable string and store it in OptionROMVersion.
**/
static void
lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
{
struct prog_id *prg;
uint32_t prog_id_word;
char dist = ' ';
/* character array used for decoding dist type. */
char dist_char[] = "nabx";
if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
mempool_free(pmboxq, phba->mbox_mem_pool);
return;
}
prg = (struct prog_id *) &prog_id_word;
/* word 7 contain option rom version */
prog_id_word = pmboxq->u.mb.un.varWords[7];
/* Decode the Option rom version word to a readable string */
if (prg->dist < 4)
dist = dist_char[prg->dist];
if ((prg->dist == 3) && (prg->num == 0))
snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
prg->ver, prg->rev, prg->lev);
else
snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
prg->ver, prg->rev, prg->lev,
dist, prg->num);
mempool_free(pmboxq, phba->mbox_mem_pool);
return;
}
/**
* lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
* cfg_soft_wwnn, cfg_soft_wwpn
* @vport: pointer to lpfc vport data structure.
*
*
* Return codes
* None.
**/
void
lpfc_update_vport_wwn(struct lpfc_vport *vport)
{
uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level;
u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0];
/* If the soft name exists then update it using the service params */
if (vport->phba->cfg_soft_wwnn)
u64_to_wwn(vport->phba->cfg_soft_wwnn,
vport->fc_sparam.nodeName.u.wwn);
if (vport->phba->cfg_soft_wwpn)
u64_to_wwn(vport->phba->cfg_soft_wwpn,
vport->fc_sparam.portName.u.wwn);
/*
* If the name is empty or there exists a soft name
* then copy the service params name, otherwise use the fc name
*/
if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn)
memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
sizeof(struct lpfc_name));
else
memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
sizeof(struct lpfc_name));
/*
* If the port name has changed, then set the Param changes flag
* to unreg the login
*/
if (vport->fc_portname.u.wwn[0] != 0 &&
memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
sizeof(struct lpfc_name)))
vport->vport_flag |= FAWWPN_PARAM_CHG;
if (vport->fc_portname.u.wwn[0] == 0 ||
vport->phba->cfg_soft_wwpn ||
(vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) ||
vport->vport_flag & FAWWPN_SET) {
memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
sizeof(struct lpfc_name));
vport->vport_flag &= ~FAWWPN_SET;
if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR)
vport->vport_flag |= FAWWPN_SET;
}
else
memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
sizeof(struct lpfc_name));
}
/**
* lpfc_config_port_post - Perform lpfc initialization after config port
* @phba: pointer to lpfc hba data structure.
*
* This routine will do LPFC initialization after the CONFIG_PORT mailbox
* command call. It performs all internal resource and state setups on the
* port: post IOCB buffers, enable appropriate host interrupt attentions,
* ELS ring timers, etc.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
int
lpfc_config_port_post(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
struct lpfc_dmabuf *mp;
struct lpfc_sli *psli = &phba->sli;
uint32_t status, timeout;
int i, j;
int rc;
spin_lock_irq(&phba->hbalock);
/*
* If the Config port completed correctly the HBA is not
* over heated any more.
*/
if (phba->over_temp_state == HBA_OVER_TEMP)
phba->over_temp_state = HBA_NORMAL_TEMP;
spin_unlock_irq(&phba->hbalock);
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
mb = &pmb->u.mb;
/* Get login parameters for NID. */
rc = lpfc_read_sparam(phba, pmb, 0);
if (rc) {
mempool_free(pmb, phba->mbox_mem_pool);
return -ENOMEM;
}
pmb->vport = vport;
if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0448 Adapter failed init, mbxCmd x%x "
"READ_SPARM mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
phba->link_state = LPFC_HBA_ERROR;
mp = (struct lpfc_dmabuf *) pmb->context1;
mempool_free(pmb, phba->mbox_mem_pool);
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
return -EIO;
}
mp = (struct lpfc_dmabuf *) pmb->context1;
memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
pmb->context1 = NULL;
lpfc_update_vport_wwn(vport);
/* Update the fc_host data structures with new wwn. */
fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
fc_host_max_npiv_vports(shost) = phba->max_vpi;
/* If no serial number in VPD data, use low 6 bytes of WWNN */
/* This should be consolidated into parse_vpd ? - mr */
if (phba->SerialNumber[0] == 0) {
uint8_t *outptr;
outptr = &vport->fc_nodename.u.s.IEEE[0];
for (i = 0; i < 12; i++) {
status = *outptr++;
j = ((status & 0xf0) >> 4);
if (j <= 9)
phba->SerialNumber[i] =
(char)((uint8_t) 0x30 + (uint8_t) j);
else
phba->SerialNumber[i] =
(char)((uint8_t) 0x61 + (uint8_t) (j - 10));
i++;
j = (status & 0xf);
if (j <= 9)
phba->SerialNumber[i] =
(char)((uint8_t) 0x30 + (uint8_t) j);
else
phba->SerialNumber[i] =
(char)((uint8_t) 0x61 + (uint8_t) (j - 10));
}
}
lpfc_read_config(phba, pmb);
pmb->vport = vport;
if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0453 Adapter failed to init, mbxCmd x%x "
"READ_CONFIG, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
phba->link_state = LPFC_HBA_ERROR;
mempool_free( pmb, phba->mbox_mem_pool);
return -EIO;
}
/* Check if the port is disabled */
lpfc_sli_read_link_ste(phba);
/* Reset the DFT_HBA_Q_DEPTH to the max xri */
i = (mb->un.varRdConfig.max_xri + 1);
if (phba->cfg_hba_queue_depth > i) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3359 HBA queue depth changed from %d to %d\n",
phba->cfg_hba_queue_depth, i);
phba->cfg_hba_queue_depth = i;
}
/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */
i = (mb->un.varRdConfig.max_xri >> 3);
if (phba->pport->cfg_lun_queue_depth > i) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3360 LUN queue depth changed from %d to %d\n",
phba->pport->cfg_lun_queue_depth, i);
phba->pport->cfg_lun_queue_depth = i;
}
phba->lmt = mb->un.varRdConfig.lmt;
/* Get the default values for Model Name and Description */
lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
phba->link_state = LPFC_LINK_DOWN;
/* Only process IOCBs on ELS ring till hba_state is READY */
if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
/* Post receive buffers for desired rings */
if (phba->sli_rev != 3)
lpfc_post_rcv_buf(phba);
/*
* Configure HBA MSI-X attention conditions to messages if MSI-X mode
*/
if (phba->intr_type == MSIX) {
rc = lpfc_config_msi(phba, pmb);
if (rc) {
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
"0352 Config MSI mailbox command "
"failed, mbxCmd x%x, mbxStatus x%x\n",
pmb->u.mb.mbxCommand,
pmb->u.mb.mbxStatus);
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
}
spin_lock_irq(&phba->hbalock);
/* Initialize ERATT handling flag */
phba->hba_flag &= ~HBA_ERATT_HANDLED;
/* Enable appropriate host interrupts */
if (lpfc_readl(phba->HCregaddr, &status)) {
spin_unlock_irq(&phba->hbalock);
return -EIO;
}
status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
if (psli->num_rings > 0)
status |= HC_R0INT_ENA;
if (psli->num_rings > 1)
status |= HC_R1INT_ENA;
if (psli->num_rings > 2)
status |= HC_R2INT_ENA;
if (psli->num_rings > 3)
status |= HC_R3INT_ENA;
if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
(phba->cfg_poll & DISABLE_FCP_RING_INT))
status &= ~(HC_R0INT_ENA);
writel(status, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
spin_unlock_irq(&phba->hbalock);
/* Set up ring-0 (ELS) timer */
timeout = phba->fc_ratov * 2;
mod_timer(&vport->els_tmofunc,
jiffies + msecs_to_jiffies(1000 * timeout));
/* Set up heart beat (HB) timer */
mod_timer(&phba->hb_tmofunc,
jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
phba->hb_outstanding = 0;
phba->last_completion_time = jiffies;
/* Set up error attention (ERATT) polling timer */
mod_timer(&phba->eratt_poll,
jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
if (phba->hba_flag & LINK_DISABLED) {
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"2598 Adapter Link is disabled.\n");
lpfc_down_link(phba, pmb);
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"2599 Adapter failed to issue DOWN_LINK"
" mbox command rc 0x%x\n", rc);
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
mempool_free(pmb, phba->mbox_mem_pool);
rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
if (rc)
return rc;
}
/* MBOX buffer will be freed in mbox compl */
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
lpfc_config_async(phba, pmb, LPFC_ELS_RING);
pmb->mbox_cmpl = lpfc_config_async_cmpl;
pmb->vport = phba->pport;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
lpfc_printf_log(phba,
KERN_ERR,
LOG_INIT,
"0456 Adapter failed to issue "
"ASYNCEVT_ENABLE mbox status x%x\n",
rc);
mempool_free(pmb, phba->mbox_mem_pool);
}
/* Get Option rom version */
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
lpfc_dump_wakeup_param(phba, pmb);
pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
pmb->vport = phba->pport;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0435 Adapter failed "
"to get Option ROM version status x%x\n", rc);
mempool_free(pmb, phba->mbox_mem_pool);
}
return 0;
}
/**
* lpfc_hba_init_link - Initialize the FC link
* @phba: pointer to lpfc hba data structure.
* @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
*
* This routine will issue the INIT_LINK mailbox command call.
* It is available to other drivers through the lpfc_hba data
* structure for use as a delayed link up mechanism with the
* module parameter lpfc_suppress_link_up.
*
* Return code
* 0 - success
* Any other value - error
**/
static int
lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
{
return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
}
/**
* lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
* @phba: pointer to lpfc hba data structure.
* @fc_topology: desired fc topology.
* @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
*
* This routine will issue the INIT_LINK mailbox command call.
* It is available to other drivers through the lpfc_hba data
* structure for use as a delayed link up mechanism with the
* module parameter lpfc_suppress_link_up.
*
* Return code
* 0 - success
* Any other value - error
**/
int
lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
uint32_t flag)
{
struct lpfc_vport *vport = phba->pport;
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
int rc;
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
mb = &pmb->u.mb;
pmb->vport = vport;
if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
!(phba->lmt & LMT_1Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
!(phba->lmt & LMT_2Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
!(phba->lmt & LMT_4Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
!(phba->lmt & LMT_8Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
!(phba->lmt & LMT_10Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
!(phba->lmt & LMT_16Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
!(phba->lmt & LMT_32Gb))) {
/* Reset link speed to auto */
lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT,
"1302 Invalid speed for this board:%d "
"Reset link speed to auto.\n",
phba->cfg_link_speed);
phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
}
lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
if (phba->sli_rev < LPFC_SLI_REV4)
lpfc_set_loopback_flag(phba);
rc = lpfc_sli_issue_mbox(phba, pmb, flag);
if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0498 Adapter failed to init, mbxCmd x%x "
"INIT_LINK, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
if (phba->sli_rev <= LPFC_SLI_REV3) {
/* Clear all interrupt enable conditions */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* Clear all pending interrupts */
writel(0xffffffff, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
}
phba->link_state = LPFC_HBA_ERROR;
if (rc != MBX_BUSY || flag == MBX_POLL)
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
if (flag == MBX_POLL)
mempool_free(pmb, phba->mbox_mem_pool);
return 0;
}
/**
* lpfc_hba_down_link - this routine downs the FC link
* @phba: pointer to lpfc hba data structure.
* @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
*
* This routine will issue the DOWN_LINK mailbox command call.
* It is available to other drivers through the lpfc_hba data
* structure for use to stop the link.
*
* Return code
* 0 - success
* Any other value - error
**/
static int
lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
{
LPFC_MBOXQ_t *pmb;
int rc;
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"0491 Adapter Link is disabled.\n");
lpfc_down_link(phba, pmb);
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(phba, pmb, flag);
if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"2522 Adapter failed to issue DOWN_LINK"
" mbox command rc 0x%x\n", rc);
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
if (flag == MBX_POLL)
mempool_free(pmb, phba->mbox_mem_pool);
return 0;
}
/**
* lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
* @phba: pointer to lpfc HBA data structure.
*
* This routine will do LPFC uninitialization before the HBA is reset when
* bringing down the SLI Layer.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
int
lpfc_hba_down_prep(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
int i;
if (phba->sli_rev <= LPFC_SLI_REV3) {
/* Disable interrupts */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
}
if (phba->pport->load_flag & FC_UNLOADING)
lpfc_cleanup_discovery_resources(phba->pport);
else {
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports &&
vports[i] != NULL; i++)
lpfc_cleanup_discovery_resources(vports[i]);
lpfc_destroy_vport_work_array(phba, vports);
}
return 0;
}
/**
* lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
* rspiocb which got deferred
*
* @phba: pointer to lpfc HBA data structure.
*
* This routine will cleanup completed slow path events after HBA is reset
* when bringing down the SLI Layer.
*
*
* Return codes
* void.
**/
static void
lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
{
struct lpfc_iocbq *rspiocbq;
struct hbq_dmabuf *dmabuf;
struct lpfc_cq_event *cq_event;
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
spin_unlock_irq(&phba->hbalock);
while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
/* Get the response iocb from the head of work queue */
spin_lock_irq(&phba->hbalock);
list_remove_head(&phba->sli4_hba.sp_queue_event,
cq_event, struct lpfc_cq_event, list);
spin_unlock_irq(&phba->hbalock);
switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
case CQE_CODE_COMPL_WQE:
rspiocbq = container_of(cq_event, struct lpfc_iocbq,
cq_event);
lpfc_sli_release_iocbq(phba, rspiocbq);
break;
case CQE_CODE_RECEIVE:
case CQE_CODE_RECEIVE_V1:
dmabuf = container_of(cq_event, struct hbq_dmabuf,
cq_event);
lpfc_in_buf_free(phba, &dmabuf->dbuf);
}
}
}
/**
* lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
* @phba: pointer to lpfc HBA data structure.
*
* This routine will cleanup posted ELS buffers after the HBA is reset
* when bringing down the SLI Layer.
*
*
* Return codes
* void.
**/
static void
lpfc_hba_free_post_buf(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
struct lpfc_dmabuf *mp, *next_mp;
LIST_HEAD(buflist);
int count;
if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
lpfc_sli_hbqbuf_free_all(phba);
else {
/* Cleanup preposted buffers on the ELS ring */
pring = &psli->sli3_ring[LPFC_ELS_RING];
spin_lock_irq(&phba->hbalock);
list_splice_init(&pring->postbufq, &buflist);
spin_unlock_irq(&phba->hbalock);
count = 0;
list_for_each_entry_safe(mp, next_mp, &buflist, list) {
list_del(&mp->list);
count++;
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
}
spin_lock_irq(&phba->hbalock);
pring->postbufq_cnt -= count;
spin_unlock_irq(&phba->hbalock);
}
}
/**
* lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
* @phba: pointer to lpfc HBA data structure.
*
* This routine will cleanup the txcmplq after the HBA is reset when bringing
* down the SLI Layer.
*
* Return codes
* void
**/
static void
lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
struct lpfc_queue *qp = NULL;
struct lpfc_sli_ring *pring;
LIST_HEAD(completions);
int i;
if (phba->sli_rev != LPFC_SLI_REV4) {
for (i = 0; i < psli->num_rings; i++) {
pring = &psli->sli3_ring[i];
spin_lock_irq(&phba->hbalock);
/* At this point in time the HBA is either reset or DOA
* Nothing should be on txcmplq as it will
* NEVER complete.
*/
list_splice_init(&pring->txcmplq, &completions);
pring->txcmplq_cnt = 0;
spin_unlock_irq(&phba->hbalock);
lpfc_sli_abort_iocb_ring(phba, pring);
}
/* Cancel all the IOCBs from the completions list */
lpfc_sli_cancel_iocbs(phba, &completions,
IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
return;
}
list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
pring = qp->pring;
if (!pring)
continue;
spin_lock_irq(&pring->ring_lock);
list_splice_init(&pring->txcmplq, &completions);
pring->txcmplq_cnt = 0;
spin_unlock_irq(&pring->ring_lock);
lpfc_sli_abort_iocb_ring(phba, pring);
}
/* Cancel all the IOCBs from the completions list */
lpfc_sli_cancel_iocbs(phba, &completions,
IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
}
/**
* lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
int i;
* @phba: pointer to lpfc HBA data structure.
*
* This routine will do uninitialization after the HBA is reset when bring
* down the SLI Layer.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
static int
lpfc_hba_down_post_s3(struct lpfc_hba *phba)
{
lpfc_hba_free_post_buf(phba);
lpfc_hba_clean_txcmplq(phba);
return 0;
}
/**
* lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
* @phba: pointer to lpfc HBA data structure.
*
* This routine will do uninitialization after the HBA is reset when bring
* down the SLI Layer.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
static int
lpfc_hba_down_post_s4(struct lpfc_hba *phba)
{
struct lpfc_scsi_buf *psb, *psb_next;
struct lpfc_nvmet_rcv_ctx *ctxp, *ctxp_next;
LIST_HEAD(aborts);
LIST_HEAD(nvme_aborts);
LIST_HEAD(nvmet_aborts);
unsigned long iflag = 0;
struct lpfc_sglq *sglq_entry = NULL;
lpfc_sli_hbqbuf_free_all(phba);
lpfc_hba_clean_txcmplq(phba);
/* At this point in time the HBA is either reset or DOA. Either
* way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
* on the lpfc_els_sgl_list so that it can either be freed if the
* driver is unloading or reposted if the driver is restarting
* the port.
*/
spin_lock_irq(&phba->hbalock); /* required for lpfc_els_sgl_list and */
/* scsl_buf_list */
/* sgl_list_lock required because worker thread uses this
* list.
*/
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_for_each_entry(sglq_entry,
&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
sglq_entry->state = SGL_FREED;
list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
&phba->sli4_hba.lpfc_els_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
/* abts_scsi_buf_list_lock required because worker thread uses this
* list.
*/
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_abts_scsi_buf_list,
&aborts);
spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock);
}
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_abts_nvme_buf_list,
&nvme_aborts);
list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
&nvmet_aborts);
spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
}
spin_unlock_irq(&phba->hbalock);
list_for_each_entry_safe(psb, psb_next, &aborts, list) {
psb->pCmd = NULL;
psb->status = IOSTAT_SUCCESS;
}
spin_lock_irqsave(&phba->scsi_buf_list_put_lock, iflag);
list_splice(&aborts, &phba->lpfc_scsi_buf_list_put);
spin_unlock_irqrestore(&phba->scsi_buf_list_put_lock, iflag);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
list_for_each_entry_safe(psb, psb_next, &nvme_aborts, list) {
psb->pCmd = NULL;
psb->status = IOSTAT_SUCCESS;
}
spin_lock_irqsave(&phba->nvme_buf_list_put_lock, iflag);
list_splice(&nvme_aborts, &phba->lpfc_nvme_buf_list_put);
spin_unlock_irqrestore(&phba->nvme_buf_list_put_lock, iflag);
list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
ctxp->flag &= ~(LPFC_NVMET_XBUSY | LPFC_NVMET_ABORT_OP);
lpfc_nvmet_rq_post(phba, ctxp, &ctxp->rqb_buffer->hbuf);
}
}
lpfc_sli4_free_sp_events(phba);
return 0;
}
/**
* lpfc_hba_down_post - Wrapper func for hba down post routine
* @phba: pointer to lpfc HBA data structure.
*
* This routine wraps the actual SLI3 or SLI4 routine for performing
* uninitialization after the HBA is reset when bring down the SLI Layer.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
int
lpfc_hba_down_post(struct lpfc_hba *phba)
{
return (*phba->lpfc_hba_down_post)(phba);
}
/**
* lpfc_hb_timeout - The HBA-timer timeout handler
* @ptr: unsigned long holds the pointer to lpfc hba data structure.
*
* This is the HBA-timer timeout handler registered to the lpfc driver. When
* this timer fires, a HBA timeout event shall be posted to the lpfc driver
* work-port-events bitmap and the worker thread is notified. This timeout
* event will be used by the worker thread to invoke the actual timeout
* handler routine, lpfc_hb_timeout_handler. Any periodical operations will
* be performed in the timeout handler and the HBA timeout event bit shall
* be cleared by the worker thread after it has taken the event bitmap out.
**/
static void
lpfc_hb_timeout(unsigned long ptr)
{
struct lpfc_hba *phba;
uint32_t tmo_posted;
unsigned long iflag;
phba = (struct lpfc_hba *)ptr;
/* Check for heart beat timeout conditions */
spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
if (!tmo_posted)
phba->pport->work_port_events |= WORKER_HB_TMO;
spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
/* Tell the worker thread there is work to do */
if (!tmo_posted)
lpfc_worker_wake_up(phba);
return;
}
/**
* lpfc_rrq_timeout - The RRQ-timer timeout handler
* @ptr: unsigned long holds the pointer to lpfc hba data structure.
*
* This is the RRQ-timer timeout handler registered to the lpfc driver. When
* this timer fires, a RRQ timeout event shall be posted to the lpfc driver
* work-port-events bitmap and the worker thread is notified. This timeout
* event will be used by the worker thread to invoke the actual timeout
* handler routine, lpfc_rrq_handler. Any periodical operations will
* be performed in the timeout handler and the RRQ timeout event bit shall
* be cleared by the worker thread after it has taken the event bitmap out.
**/
static void
lpfc_rrq_timeout(unsigned long ptr)
{
struct lpfc_hba *phba;
unsigned long iflag;
phba = (struct lpfc_hba *)ptr;
spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
if (!(phba->pport->load_flag & FC_UNLOADING))
phba->hba_flag |= HBA_RRQ_ACTIVE;
else
phba->hba_flag &= ~HBA_RRQ_ACTIVE;
spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
if (!(phba->pport->load_flag & FC_UNLOADING))
lpfc_worker_wake_up(phba);
}
/**
* lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
* @phba: pointer to lpfc hba data structure.
* @pmboxq: pointer to the driver internal queue element for mailbox command.
*
* This is the callback function to the lpfc heart-beat mailbox command.
* If configured, the lpfc driver issues the heart-beat mailbox command to
* the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
* heart-beat mailbox command is issued, the driver shall set up heart-beat
* timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
* heart-beat outstanding state. Once the mailbox command comes back and
* no error conditions detected, the heart-beat mailbox command timer is
* reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
* state is cleared for the next heart-beat. If the timer expired with the
* heart-beat outstanding state set, the driver will put the HBA offline.
**/
static void
lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
{
unsigned long drvr_flag;
spin_lock_irqsave(&phba->hbalock, drvr_flag);
phba->hb_outstanding = 0;
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
/* Check and reset heart-beat timer is necessary */
mempool_free(pmboxq, phba->mbox_mem_pool);
if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
!(phba->link_state == LPFC_HBA_ERROR) &&
!(phba->pport->load_flag & FC_UNLOADING))
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
return;
}
/**
* lpfc_hb_timeout_handler - The HBA-timer timeout handler
* @phba: pointer to lpfc hba data structure.
*
* This is the actual HBA-timer timeout handler to be invoked by the worker
* thread whenever the HBA timer fired and HBA-timeout event posted. This
* handler performs any periodic operations needed for the device. If such
* periodic event has already been attended to either in the interrupt handler
* or by processing slow-ring or fast-ring events within the HBA-timer
* timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
* the timer for the next timeout period. If lpfc heart-beat mailbox command
* is configured and there is no heart-beat mailbox command outstanding, a
* heart-beat mailbox is issued and timer set properly. Otherwise, if there
* has been a heart-beat mailbox command outstanding, the HBA shall be put
* to offline.
**/
void
lpfc_hb_timeout_handler(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
LPFC_MBOXQ_t *pmboxq;
struct lpfc_dmabuf *buf_ptr;
int retval, i;
struct lpfc_sli *psli = &phba->sli;
LIST_HEAD(completions);
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
lpfc_rcv_seq_check_edtov(vports[i]);
lpfc_fdmi_num_disc_check(vports[i]);
}
lpfc_destroy_vport_work_array(phba, vports);
if ((phba->link_state == LPFC_HBA_ERROR) ||
(phba->pport->load_flag & FC_UNLOADING) ||
(phba->pport->fc_flag & FC_OFFLINE_MODE))
return;
spin_lock_irq(&phba->pport->work_port_lock);
if (time_after(phba->last_completion_time +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
jiffies)) {
spin_unlock_irq(&phba->pport->work_port_lock);
if (!phba->hb_outstanding)
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
else
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT));
return;
}
spin_unlock_irq(&phba->pport->work_port_lock);
if (phba->elsbuf_cnt &&
(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
spin_lock_irq(&phba->hbalock);
list_splice_init(&phba->elsbuf, &completions);
phba->elsbuf_cnt = 0;
phba->elsbuf_prev_cnt = 0;
spin_unlock_irq(&phba->hbalock);
while (!list_empty(&completions)) {
list_remove_head(&completions, buf_ptr,
struct lpfc_dmabuf, list);
lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
kfree(buf_ptr);
}
}
phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
/* If there is no heart beat outstanding, issue a heartbeat command */
if (phba->cfg_enable_hba_heartbeat) {
if (!phba->hb_outstanding) {
if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
(list_empty(&psli->mboxq))) {
pmboxq = mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!pmboxq) {
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 *
LPFC_HB_MBOX_INTERVAL));
return;
}
lpfc_heart_beat(phba, pmboxq);
pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
pmboxq->vport = phba->pport;
retval = lpfc_sli_issue_mbox(phba, pmboxq,
MBX_NOWAIT);
if (retval != MBX_BUSY &&
retval != MBX_SUCCESS) {
mempool_free(pmboxq,
phba->mbox_mem_pool);
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 *
LPFC_HB_MBOX_INTERVAL));
return;
}
phba->skipped_hb = 0;
phba->hb_outstanding = 1;
} else if (time_before_eq(phba->last_completion_time,
phba->skipped_hb)) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2857 Last completion time not "
" updated in %d ms\n",
jiffies_to_msecs(jiffies
- phba->last_completion_time));
} else
phba->skipped_hb = jiffies;
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT));
return;
} else {
/*
* If heart beat timeout called with hb_outstanding set
* we need to give the hb mailbox cmd a chance to
* complete or TMO.
*/
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0459 Adapter heartbeat still out"
"standing:last compl time was %d ms.\n",
jiffies_to_msecs(jiffies
- phba->last_completion_time));
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT));
}
} else {
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
}
}
/**
* lpfc_offline_eratt - Bring lpfc offline on hardware error attention
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to bring the HBA offline when HBA hardware error
* other than Port Error 6 has been detected.
**/
static void
lpfc_offline_eratt(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
lpfc_offline(phba);
lpfc_reset_barrier(phba);
spin_lock_irq(&phba->hbalock);
lpfc_sli_brdreset(phba);
spin_unlock_irq(&phba->hbalock);
lpfc_hba_down_post(phba);
lpfc_sli_brdready(phba, HS_MBRDY);
lpfc_unblock_mgmt_io(phba);
phba->link_state = LPFC_HBA_ERROR;
return;
}
/**
* lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to bring a SLI4 HBA offline when HBA hardware error
* other than Port Error 6 has been detected.
**/
void
lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
{
spin_lock_irq(&phba->hbalock);
phba->link_state = LPFC_HBA_ERROR;
spin_unlock_irq(&phba->hbalock);
lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
lpfc_offline(phba);
lpfc_hba_down_post(phba);
lpfc_unblock_mgmt_io(phba);
}
/**
* lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to handle the deferred HBA hardware error
* conditions. This type of error is indicated by HBA by setting ER1
* and another ER bit in the host status register. The driver will
* wait until the ER1 bit clears before handling the error condition.
**/
static void
lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
{
uint32_t old_host_status = phba->work_hs;
struct lpfc_sli *psli = &phba->sli;
/* If the pci channel is offline, ignore possible errors,
* since we cannot communicate with the pci card anyway.
*/
if (pci_channel_offline(phba->pcidev)) {
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~DEFER_ERATT;
spin_unlock_irq(&phba->hbalock);
return;
}
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0479 Deferred Adapter Hardware Error "
"Data: x%x x%x x%x\n",
phba->work_hs,
phba->work_status[0], phba->work_status[1]);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/*
* Firmware stops when it triggred erratt. That could cause the I/Os
* dropped by the firmware. Error iocb (I/O) on txcmplq and let the
* SCSI layer retry it after re-establishing link.
*/
lpfc_sli_abort_fcp_rings(phba);
/*
* There was a firmware error. Take the hba offline and then
* attempt to restart it.
*/
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
/* Wait for the ER1 bit to clear.*/
while (phba->work_hs & HS_FFER1) {
msleep(100);
if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
phba->work_hs = UNPLUG_ERR ;
break;
}
/* If driver is unloading let the worker thread continue */
if (phba->pport->load_flag & FC_UNLOADING) {
phba->work_hs = 0;
break;
}
}
/*
* This is to ptrotect against a race condition in which
* first write to the host attention register clear the
* host status register.
*/
if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
phba->work_hs = old_host_status & ~HS_FFER1;
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~DEFER_ERATT;
spin_unlock_irq(&phba->hbalock);
phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
}
static void
lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
{
struct lpfc_board_event_header board_event;
struct Scsi_Host *shost;
board_event.event_type = FC_REG_BOARD_EVENT;
board_event.subcategory = LPFC_EVENT_PORTINTERR;
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(board_event),
(char *) &board_event,
LPFC_NL_VENDOR_ID);
}
/**
* lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to handle the following HBA hardware error
* conditions:
* 1 - HBA error attention interrupt
* 2 - DMA ring index out of range
* 3 - Mailbox command came back as unknown
**/
static void
lpfc_handle_eratt_s3(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct lpfc_sli *psli = &phba->sli;
uint32_t event_data;
unsigned long temperature;
struct temp_event temp_event_data;
struct Scsi_Host *shost;
/* If the pci channel is offline, ignore possible errors,
* since we cannot communicate with the pci card anyway.
*/
if (pci_channel_offline(phba->pcidev)) {
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~DEFER_ERATT;
spin_unlock_irq(&phba->hbalock);
return;
}
/* If resets are disabled then leave the HBA alone and return */
if (!phba->cfg_enable_hba_reset)
return;
/* Send an internal error event to mgmt application */
lpfc_board_errevt_to_mgmt(phba);
if (phba->hba_flag & DEFER_ERATT)
lpfc_handle_deferred_eratt(phba);
if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
if (phba->work_hs & HS_FFER6)
/* Re-establishing Link */
lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
"1301 Re-establishing Link "
"Data: x%x x%x x%x\n",
phba->work_hs, phba->work_status[0],
phba->work_status[1]);
if (phba->work_hs & HS_FFER8)
/* Device Zeroization */
lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
"2861 Host Authentication device "
"zeroization Data:x%x x%x x%x\n",
phba->work_hs, phba->work_status[0],
phba->work_status[1]);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/*
* Firmware stops when it triggled erratt with HS_FFER6.
* That could cause the I/Os dropped by the firmware.
* Error iocb (I/O) on txcmplq and let the SCSI layer
* retry it after re-establishing link.
*/
lpfc_sli_abort_fcp_rings(phba);
/*
* There was a firmware error. Take the hba offline and then
* attempt to restart it.
*/
lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
lpfc_offline(phba);
lpfc_sli_brdrestart(phba);
if (lpfc_online(phba) == 0) { /* Initialize the HBA */
lpfc_unblock_mgmt_io(phba);
return;
}
lpfc_unblock_mgmt_io(phba);
} else if (phba->work_hs & HS_CRIT_TEMP) {
temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
temp_event_data.event_code = LPFC_CRIT_TEMP;
temp_event_data.data = (uint32_t)temperature;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0406 Adapter maximum temperature exceeded "
"(%ld), taking this port offline "
"Data: x%x x%x x%x\n",
temperature, phba->work_hs,
phba->work_status[0], phba->work_status[1]);
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(temp_event_data),
(char *) &temp_event_data,
SCSI_NL_VID_TYPE_PCI
| PCI_VENDOR_ID_EMULEX);
spin_lock_irq(&phba->hbalock);
phba->over_temp_state = HBA_OVER_TEMP;
spin_unlock_irq(&phba->hbalock);
lpfc_offline_eratt(phba);
} else {
/* The if clause above forces this code path when the status
* failure is a value other than FFER6. Do not call the offline
* twice. This is the adapter hardware error path.
*/
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0457 Adapter Hardware Error "
"Data: x%x x%x x%x\n",
phba->work_hs,
phba->work_status[0], phba->work_status[1]);
event_data = FC_REG_DUMP_EVENT;
shost = lpfc_shost_from_vport(vport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(event_data), (char *) &event_data,
SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
lpfc_offline_eratt(phba);
}
return;
}
/**
* lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
* @phba: pointer to lpfc hba data structure.
* @mbx_action: flag for mailbox shutdown action.
*
* This routine is invoked to perform an SLI4 port PCI function reset in
* response to port status register polling attention. It waits for port
* status register (ERR, RDY, RN) bits before proceeding with function reset.
* During this process, interrupt vectors are freed and later requested
* for handling possible port resource change.
**/
static int
lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
bool en_rn_msg)
{
int rc;
uint32_t intr_mode;
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
LPFC_SLI_INTF_IF_TYPE_2) {
/*
* On error status condition, driver need to wait for port
* ready before performing reset.
*/
rc = lpfc_sli4_pdev_status_reg_wait(phba);
if (rc)
return rc;
}
/* need reset: attempt for port recovery */
if (en_rn_msg)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2887 Reset Needed: Attempting Port "
"Recovery...\n");
lpfc_offline_prep(phba, mbx_action);
lpfc_offline(phba);
/* release interrupt for possible resource change */
lpfc_sli4_disable_intr(phba);
lpfc_sli_brdrestart(phba);
/* request and enable interrupt */
intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3175 Failed to enable interrupt\n");
return -EIO;
}
phba->intr_mode = intr_mode;
rc = lpfc_online(phba);
if (rc == 0)
lpfc_unblock_mgmt_io(phba);
return rc;
}
/**
* lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to handle the SLI4 HBA hardware error attention
* conditions.
**/
static void
lpfc_handle_eratt_s4(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
uint32_t event_data;
struct Scsi_Host *shost;
uint32_t if_type;
struct lpfc_register portstat_reg = {0};
uint32_t reg_err1, reg_err2;
uint32_t uerrlo_reg, uemasklo_reg;
uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
bool en_rn_msg = true;
struct temp_event temp_event_data;
struct lpfc_register portsmphr_reg;
int rc, i;
/* If the pci channel is offline, ignore possible errors, since
* we cannot communicate with the pci card anyway.
*/
if (pci_channel_offline(phba->pcidev))
return;
memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
pci_rd_rc1 = lpfc_readl(
phba->sli4_hba.u.if_type0.UERRLOregaddr,
&uerrlo_reg);
pci_rd_rc2 = lpfc_readl(
phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
&uemasklo_reg);
/* consider PCI bus read error as pci_channel_offline */
if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
return;
if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
lpfc_sli4_offline_eratt(phba);
return;
}
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"7623 Checking UE recoverable");
for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
&portsmphr_reg.word0))
continue;
smphr_port_status = bf_get(lpfc_port_smphr_port_status,
&portsmphr_reg);
if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
LPFC_PORT_SEM_UE_RECOVERABLE)
break;
/*Sleep for 1Sec, before checking SEMAPHORE */
msleep(1000);
}
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"4827 smphr_port_status x%x : Waited %dSec",
smphr_port_status, i);
/* Recoverable UE, reset the HBA device */
if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
LPFC_PORT_SEM_UE_RECOVERABLE) {
for (i = 0; i < 20; i++) {
msleep(1000);
if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
&portsmphr_reg.word0) &&
(LPFC_POST_STAGE_PORT_READY ==
bf_get(lpfc_port_smphr_port_status,
&portsmphr_reg))) {
rc = lpfc_sli4_port_sta_fn_reset(phba,
LPFC_MBX_NO_WAIT, en_rn_msg);
if (rc == 0)
return;
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"4215 Failed to recover UE");
break;
}
}
}
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"7624 Firmware not ready: Failing UE recovery,"
" waited %dSec", i);
lpfc_sli4_offline_eratt(phba);
break;
case LPFC_SLI_INTF_IF_TYPE_2:
pci_rd_rc1 = lpfc_readl(
phba->sli4_hba.u.if_type2.STATUSregaddr,
&portstat_reg.word0);
/* consider PCI bus read error as pci_channel_offline */
if (pci_rd_rc1 == -EIO) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3151 PCI bus read access failure: x%x\n",
readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
return;
}
reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2889 Port Overtemperature event, "
"taking port offline Data: x%x x%x\n",
reg_err1, reg_err2);
phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
temp_event_data.event_code = LPFC_CRIT_TEMP;
temp_event_data.data = 0xFFFFFFFF;
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(temp_event_data),
(char *)&temp_event_data,
SCSI_NL_VID_TYPE_PCI
| PCI_VENDOR_ID_EMULEX);
spin_lock_irq(&phba->hbalock);
phba->over_temp_state = HBA_OVER_TEMP;
spin_unlock_irq(&phba->hbalock);
lpfc_sli4_offline_eratt(phba);
return;
}
if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3143 Port Down: Firmware Update "
"Detected\n");
en_rn_msg = false;
} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3144 Port Down: Debug Dump\n");
else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3145 Port Down: Provisioning\n");
/* If resets are disabled then leave the HBA alone and return */
if (!phba->cfg_enable_hba_reset)
return;
/* Check port status register for function reset */
rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
en_rn_msg);
if (rc == 0) {
/* don't report event on forced debug dump */
if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
return;
else
break;
}
/* fall through for not able to recover */
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3152 Unrecoverable error, bring the port "
"offline\n");
lpfc_sli4_offline_eratt(phba);
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
break;
}
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3123 Report dump event to upper layer\n");
/* Send an internal error event to mgmt application */
lpfc_board_errevt_to_mgmt(phba);
event_data = FC_REG_DUMP_EVENT;
shost = lpfc_shost_from_vport(vport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(event_data), (char *) &event_data,
SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
}
/**
* lpfc_handle_eratt - Wrapper func for handling hba error attention
* @phba: pointer to lpfc HBA data structure.
*
* This routine wraps the actual SLI3 or SLI4 hba error attention handling
* routine from the API jump table function pointer from the lpfc_hba struct.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
void
lpfc_handle_eratt(struct lpfc_hba *phba)
{
(*phba->lpfc_handle_eratt)(phba);
}
/**
* lpfc_handle_latt - The HBA link event handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked from the worker thread to handle a HBA host
* attention link event. SLI3 only.
**/
void
lpfc_handle_latt(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct lpfc_sli *psli = &phba->sli;
LPFC_MBOXQ_t *pmb;
volatile uint32_t control;
struct lpfc_dmabuf *mp;
int rc = 0;
pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
rc = 1;
goto lpfc_handle_latt_err_exit;
}
mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!mp) {
rc = 2;
goto lpfc_handle_latt_free_pmb;
}
mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
if (!mp->virt) {
rc = 3;
goto lpfc_handle_latt_free_mp;
}
/* Cleanup any outstanding ELS commands */
lpfc_els_flush_all_cmd(phba);
psli->slistat.link_event++;
lpfc_read_topology(phba, pmb, mp);
pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
pmb->vport = vport;
/* Block ELS IOCBs until we have processed this mbox command */
phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
rc = 4;
goto lpfc_handle_latt_free_mbuf;
}
/* Clear Link Attention in HA REG */
spin_lock_irq(&phba->hbalock);
writel(HA_LATT, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
spin_unlock_irq(&phba->hbalock);
return;
lpfc_handle_latt_free_mbuf:
phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
lpfc_mbuf_free(phba, mp->virt, mp->phys);
lpfc_handle_latt_free_mp:
kfree(mp);
lpfc_handle_latt_free_pmb:
mempool_free(pmb, phba->mbox_mem_pool);
lpfc_handle_latt_err_exit:
/* Enable Link attention interrupts */
spin_lock_irq(&phba->hbalock);
psli->sli_flag |= LPFC_PROCESS_LA;
control = readl(phba->HCregaddr);
control |= HC_LAINT_ENA;
writel(control, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* Clear Link Attention in HA REG */
writel(HA_LATT, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
spin_unlock_irq(&phba->hbalock);
lpfc_linkdown(phba);
phba->link_state = LPFC_HBA_ERROR;
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
return;
}
/**
* lpfc_parse_vpd - Parse VPD (Vital Product Data)
* @phba: pointer to lpfc hba data structure.
* @vpd: pointer to the vital product data.
* @len: length of the vital product data in bytes.
*
* This routine parses the Vital Product Data (VPD). The VPD is treated as
* an array of characters. In this routine, the ModelName, ProgramType, and
* ModelDesc, etc. fields of the phba data structure will be populated.
*
* Return codes
* 0 - pointer to the VPD passed in is NULL
* 1 - success
**/
int
lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
{
uint8_t lenlo, lenhi;
int Length;
int i, j;
int finished = 0;
int index = 0;
if (!vpd)
return 0;
/* Vital Product */
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0455 Vital Product Data: x%x x%x x%x x%x\n",
(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
(uint32_t) vpd[3]);
while (!finished && (index < (len - 4))) {
switch (vpd[index]) {
case 0x82:
case 0x91:
index += 1;
lenlo = vpd[index];
index += 1;
lenhi = vpd[index];
index += 1;
i = ((((unsigned short)lenhi) << 8) + lenlo);
index += i;
break;
case 0x90:
index += 1;
lenlo = vpd[index];
index += 1;
lenhi = vpd[index];
index += 1;
Length = ((((unsigned short)lenhi) << 8) + lenlo);
if (Length > len - index)
Length = len - index;
while (Length > 0) {
/* Look for Serial Number */
if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) {
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->SerialNumber[j++] = vpd[index++];
if (j == 31)
break;
}
phba->SerialNumber[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) {
phba->vpd_flag |= VPD_MODEL_DESC;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->ModelDesc[j++] = vpd[index++];
if (j == 255)
break;
}
phba->ModelDesc[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) {
phba->vpd_flag |= VPD_MODEL_NAME;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->ModelName[j++] = vpd[index++];
if (j == 79)
break;
}
phba->ModelName[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) {
phba->vpd_flag |= VPD_PROGRAM_TYPE;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->ProgramType[j++] = vpd[index++];
if (j == 255)
break;
}
phba->ProgramType[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) {
phba->vpd_flag |= VPD_PORT;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
if ((phba->sli_rev == LPFC_SLI_REV4) &&
(phba->sli4_hba.pport_name_sta ==
LPFC_SLI4_PPNAME_GET)) {
j++;
index++;
} else
phba->Port[j++] = vpd[index++];
if (j == 19)
break;
}
if ((phba->sli_rev != LPFC_SLI_REV4) ||
(phba->sli4_hba.pport_name_sta ==
LPFC_SLI4_PPNAME_NON))
phba->Port[j] = 0;
continue;
}
else {
index += 2;
i = vpd[index];
index += 1;
index += i;
Length -= (3 + i);
}
}
finished = 0;
break;
case 0x78:
finished = 1;
break;
default:
index ++;
break;
}
}
return(1);
}
/**
* lpfc_get_hba_model_desc - Retrieve HBA device model name and description
* @phba: pointer to lpfc hba data structure.
* @mdp: pointer to the data structure to hold the derived model name.
* @descp: pointer to the data structure to hold the derived description.
*
* This routine retrieves HBA's description based on its registered PCI device
* ID. The @descp passed into this function points to an array of 256 chars. It
* shall be returned with the model name, maximum speed, and the host bus type.
* The @mdp passed into this function points to an array of 80 chars. When the
* function returns, the @mdp will be filled with the model name.
**/
static void
lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
{
lpfc_vpd_t *vp;
uint16_t dev_id = phba->pcidev->device;
int max_speed;
int GE = 0;
int oneConnect = 0; /* default is not a oneConnect */
struct {
char *name;
char *bus;
char *function;
} m = {"<Unknown>", "", ""};
if (mdp && mdp[0] != '\0'
&& descp && descp[0] != '\0')
return;
if (phba->lmt & LMT_32Gb)
max_speed = 32;
else if (phba->lmt & LMT_16Gb)
max_speed = 16;
else if (phba->lmt & LMT_10Gb)
max_speed = 10;
else if (phba->lmt & LMT_8Gb)
max_speed = 8;
else if (phba->lmt & LMT_4Gb)
max_speed = 4;
else if (phba->lmt & LMT_2Gb)
max_speed = 2;
else if (phba->lmt & LMT_1Gb)
max_speed = 1;
else
max_speed = 0;
vp = &phba->vpd;
switch (dev_id) {
case PCI_DEVICE_ID_FIREFLY:
m = (typeof(m)){"LP6000", "PCI",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SUPERFLY:
if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
m = (typeof(m)){"LP7000", "PCI", ""};
else
m = (typeof(m)){"LP7000E", "PCI", ""};
m.function = "Obsolete, Unsupported Fibre Channel Adapter";
break;
case PCI_DEVICE_ID_DRAGONFLY:
m = (typeof(m)){"LP8000", "PCI",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_CENTAUR:
if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
m = (typeof(m)){"LP9002", "PCI", ""};
else
m = (typeof(m)){"LP9000", "PCI", ""};
m.function = "Obsolete, Unsupported Fibre Channel Adapter";
break;
case PCI_DEVICE_ID_RFLY:
m = (typeof(m)){"LP952", "PCI",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_PEGASUS:
m = (typeof(m)){"LP9802", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_THOR:
m = (typeof(m)){"LP10000", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_VIPER:
m = (typeof(m)){"LPX1000", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_PFLY:
m = (typeof(m)){"LP982", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_TFLY:
m = (typeof(m)){"LP1050", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_HELIOS:
m = (typeof(m)){"LP11000", "PCI-X2",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_HELIOS_SCSP:
m = (typeof(m)){"LP11000-SP", "PCI-X2",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_HELIOS_DCSP:
m = (typeof(m)){"LP11002-SP", "PCI-X2",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_NEPTUNE:
m = (typeof(m)){"LPe1000", "PCIe",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_NEPTUNE_SCSP:
m = (typeof(m)){"LPe1000-SP", "PCIe",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_NEPTUNE_DCSP:
m = (typeof(m)){"LPe1002-SP", "PCIe",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_BMID:
m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_BSMB:
m = (typeof(m)){"LP111", "PCI-X2",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_ZEPHYR:
m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_ZEPHYR_SCSP:
m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_ZEPHYR_DCSP:
m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
GE = 1;
break;
case PCI_DEVICE_ID_ZMID:
m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_ZSMB:
m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LP101:
m = (typeof(m)){"LP101", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LP10000S:
m = (typeof(m)){"LP10000-S", "PCI",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LP11000S:
m = (typeof(m)){"LP11000-S", "PCI-X2",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LPE11000S:
m = (typeof(m)){"LPe11000-S", "PCIe",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT:
m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT_MID:
m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT_SMB:
m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT_DCSP:
m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT_SCSP:
m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT_S:
m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_HORNET:
m = (typeof(m)){"LP21000", "PCIe",
"Obsolete, Unsupported FCoE Adapter"};
GE = 1;
break;
case PCI_DEVICE_ID_PROTEUS_VF:
m = (typeof(m)){"LPev12000", "PCIe IOV",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_PROTEUS_PF:
m = (typeof(m)){"LPev12000", "PCIe IOV",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_PROTEUS_S:
m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_TIGERSHARK:
oneConnect = 1;
m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
break;
case PCI_DEVICE_ID_TOMCAT:
oneConnect = 1;
m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
break;
case PCI_DEVICE_ID_FALCON:
m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
"EmulexSecure Fibre"};
break;
case PCI_DEVICE_ID_BALIUS:
m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LANCER_FC:
m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LANCER_FC_VF:
m = (typeof(m)){"LPe16000", "PCIe",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LANCER_FCOE:
oneConnect = 1;
m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
break;
case PCI_DEVICE_ID_LANCER_FCOE_VF:
oneConnect = 1;
m = (typeof(m)){"OCe15100", "PCIe",
"Obsolete, Unsupported FCoE"};
break;
case PCI_DEVICE_ID_LANCER_G6_FC:
m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SKYHAWK:
case PCI_DEVICE_ID_SKYHAWK_VF:
oneConnect = 1;
m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
break;
default:
m = (typeof(m)){"Unknown", "", ""};
break;
}
if (mdp && mdp[0] == '\0')
snprintf(mdp, 79,"%s", m.name);
/*
* oneConnect hba requires special processing, they are all initiators
* and we put the port number on the end
*/
if (descp && descp[0] == '\0') {
if (oneConnect)
snprintf(descp, 255,
"Emulex OneConnect %s, %s Initiator %s",
m.name, m.function,
phba->Port);
else if (max_speed == 0)
snprintf(descp, 255,
"Emulex %s %s %s",
m.name, m.bus, m.function);
else
snprintf(descp, 255,
"Emulex %s %d%s %s %s",
m.name, max_speed, (GE) ? "GE" : "Gb",
m.bus, m.function);
}
}
/**
* lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
* @phba: pointer to lpfc hba data structure.
* @pring: pointer to a IOCB ring.
* @cnt: the number of IOCBs to be posted to the IOCB ring.
*
* This routine posts a given number of IOCBs with the associated DMA buffer
* descriptors specified by the cnt argument to the given IOCB ring.
*
* Return codes
* The number of IOCBs NOT able to be posted to the IOCB ring.
**/
int
lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
{
IOCB_t *icmd;
struct lpfc_iocbq *iocb;
struct lpfc_dmabuf *mp1, *mp2;
cnt += pring->missbufcnt;
/* While there are buffers to post */
while (cnt > 0) {
/* Allocate buffer for command iocb */
iocb = lpfc_sli_get_iocbq(phba);
if (iocb == NULL) {
pring->missbufcnt = cnt;
return cnt;
}
icmd = &iocb->iocb;
/* 2 buffers can be posted per command */
/* Allocate buffer to post */
mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
if (mp1)
mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
if (!mp1 || !mp1->virt) {
kfree(mp1);
lpfc_sli_release_iocbq(phba, iocb);
pring->missbufcnt = cnt;
return cnt;
}
INIT_LIST_HEAD(&mp1->list);
/* Allocate buffer to post */
if (cnt > 1) {
mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
if (mp2)
mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
&mp2->phys);
if (!mp2 || !mp2->virt) {
kfree(mp2);
lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
kfree(mp1);
lpfc_sli_release_iocbq(phba, iocb);
pring->missbufcnt = cnt;
return cnt;
}
INIT_LIST_HEAD(&mp2->list);
} else {
mp2 = NULL;
}
icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
icmd->ulpBdeCount = 1;
cnt--;
if (mp2) {
icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
cnt--;
icmd->ulpBdeCount = 2;
}
icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
icmd->ulpLe = 1;
if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
IOCB_ERROR) {
lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
kfree(mp1);
cnt++;
if (mp2) {
lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
kfree(mp2);
cnt++;
}
lpfc_sli_release_iocbq(phba, iocb);
pring->missbufcnt = cnt;
return cnt;
}
lpfc_sli_ringpostbuf_put(phba, pring, mp1);
if (mp2)
lpfc_sli_ringpostbuf_put(phba, pring, mp2);
}
pring->missbufcnt = 0;
return 0;
}
/**
* lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
* @phba: pointer to lpfc hba data structure.
*
* This routine posts initial receive IOCB buffers to the ELS ring. The
* current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
* set to 64 IOCBs. SLI3 only.
*
* Return codes
* 0 - success (currently always success)
**/
static int
lpfc_post_rcv_buf(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
/* Ring 0, ELS / CT buffers */
lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
/* Ring 2 - FCP no buffers needed */
return 0;
}
#define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
/**
* lpfc_sha_init - Set up initial array of hash table entries
* @HashResultPointer: pointer to an array as hash table.
*
* This routine sets up the initial values to the array of hash table entries
* for the LC HBAs.
**/
static void
lpfc_sha_init(uint32_t * HashResultPointer)
{
HashResultPointer[0] = 0x67452301;
HashResultPointer[1] = 0xEFCDAB89;
HashResultPointer[2] = 0x98BADCFE;
HashResultPointer[3] = 0x10325476;
HashResultPointer[4] = 0xC3D2E1F0;
}
/**
* lpfc_sha_iterate - Iterate initial hash table with the working hash table
* @HashResultPointer: pointer to an initial/result hash table.
* @HashWorkingPointer: pointer to an working hash table.
*
* This routine iterates an initial hash table pointed by @HashResultPointer
* with the values from the working hash table pointeed by @HashWorkingPointer.
* The results are putting back to the initial hash table, returned through
* the @HashResultPointer as the result hash table.
**/
static void
lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
{
int t;
uint32_t TEMP;
uint32_t A, B, C, D, E;
t = 16;
do {
HashWorkingPointer[t] =
S(1,
HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
8] ^
HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
} while (++t <= 79);
t = 0;
A = HashResultPointer[0];
B = HashResultPointer[1];
C = HashResultPointer[2];
D = HashResultPointer[3];
E = HashResultPointer[4];
do {
if (t < 20) {
TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
} else if (t < 40) {
TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
} else if (t < 60) {
TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
} else {
TEMP = (B ^ C ^ D) + 0xCA62C1D6;
}
TEMP += S(5, A) + E + HashWorkingPointer[t];
E = D;
D = C;
C = S(30, B);
B = A;
A = TEMP;
} while (++t <= 79);
HashResultPointer[0] += A;
HashResultPointer[1] += B;
HashResultPointer[2] += C;
HashResultPointer[3] += D;
HashResultPointer[4] += E;
}
/**
* lpfc_challenge_key - Create challenge key based on WWPN of the HBA
* @RandomChallenge: pointer to the entry of host challenge random number array.
* @HashWorking: pointer to the entry of the working hash array.
*
* This routine calculates the working hash array referred by @HashWorking
* from the challenge random numbers associated with the host, referred by
* @RandomChallenge. The result is put into the entry of the working hash
* array and returned by reference through @HashWorking.
**/
static void
lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
{
*HashWorking = (*RandomChallenge ^ *HashWorking);
}
/**
* lpfc_hba_init - Perform special handling for LC HBA initialization
* @phba: pointer to lpfc hba data structure.
* @hbainit: pointer to an array of unsigned 32-bit integers.
*
* This routine performs the special handling for LC HBA initialization.
**/
void
lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
{
int t;
uint32_t *HashWorking;
uint32_t *pwwnn = (uint32_t *) phba->wwnn;
HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
if (!HashWorking)
return;
HashWorking[0] = HashWorking[78] = *pwwnn++;
HashWorking[1] = HashWorking[79] = *pwwnn;
for (t = 0; t < 7; t++)
lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
lpfc_sha_init(hbainit);
lpfc_sha_iterate(hbainit, HashWorking);
kfree(HashWorking);
}
/**
* lpfc_cleanup - Performs vport cleanups before deleting a vport
* @vport: pointer to a virtual N_Port data structure.
*
* This routine performs the necessary cleanups before deleting the @vport.
* It invokes the discovery state machine to perform necessary state
* transitions and to release the ndlps associated with the @vport. Note,
* the physical port is treated as @vport 0.
**/
void
lpfc_cleanup(struct lpfc_vport *vport)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_nodelist *ndlp, *next_ndlp;
int i = 0;
if (phba->link_state > LPFC_LINK_DOWN)
lpfc_port_link_failure(vport);
list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
if (!NLP_CHK_NODE_ACT(ndlp)) {
ndlp = lpfc_enable_node(vport, ndlp,
NLP_STE_UNUSED_NODE);
if (!ndlp)
continue;
spin_lock_irq(&phba->ndlp_lock);
NLP_SET_FREE_REQ(ndlp);
spin_unlock_irq(&phba->ndlp_lock);
/* Trigger the release of the ndlp memory */
lpfc_nlp_put(ndlp);
continue;
}
spin_lock_irq(&phba->ndlp_lock);
if (NLP_CHK_FREE_REQ(ndlp)) {
/* The ndlp should not be in memory free mode already */
spin_unlock_irq(&phba->ndlp_lock);
continue;
} else
/* Indicate request for freeing ndlp memory */
NLP_SET_FREE_REQ(ndlp);
spin_unlock_irq(&phba->ndlp_lock);
if (vport->port_type != LPFC_PHYSICAL_PORT &&
ndlp->nlp_DID == Fabric_DID) {
/* Just free up ndlp with Fabric_DID for vports */
lpfc_nlp_put(ndlp);
continue;
}
/* take care of nodes in unused state before the state
* machine taking action.
*/
if (ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
lpfc_nlp_put(ndlp);
continue;
}
if (ndlp->nlp_type & NLP_FABRIC)
lpfc_disc_state_machine(vport, ndlp, NULL,
NLP_EVT_DEVICE_RECOVERY);
if (ndlp->nlp_fc4_type & NLP_FC4_NVME) {
/* Remove the NVME transport reference now and
* continue to remove the node.
*/
lpfc_nlp_put(ndlp);
}
lpfc_disc_state_machine(vport, ndlp, NULL,
NLP_EVT_DEVICE_RM);
}
/* At this point, ALL ndlp's should be gone
* because of the previous NLP_EVT_DEVICE_RM.
* Lets wait for this to happen, if needed.
*/
while (!list_empty(&vport->fc_nodes)) {
if (i++ > 3000) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY,
"0233 Nodelist not empty\n");
list_for_each_entry_safe(ndlp, next_ndlp,
&vport->fc_nodes, nlp_listp) {
lpfc_printf_vlog(ndlp->vport, KERN_ERR,
LOG_NODE,
"0282 did:x%x ndlp:x%p "
"usgmap:x%x refcnt:%d\n",
ndlp->nlp_DID, (void *)ndlp,
ndlp->nlp_usg_map,
kref_read(&ndlp->kref));
}
break;
}
/* Wait for any activity on ndlps to settle */
msleep(10);
}
lpfc_cleanup_vports_rrqs(vport, NULL);
}
/**
* lpfc_stop_vport_timers - Stop all the timers associated with a vport
* @vport: pointer to a virtual N_Port data structure.
*
* This routine stops all the timers associated with a @vport. This function
* is invoked before disabling or deleting a @vport. Note that the physical
* port is treated as @vport 0.
**/
void
lpfc_stop_vport_timers(struct lpfc_vport *vport)
{
del_timer_sync(&vport->els_tmofunc);
del_timer_sync(&vport->delayed_disc_tmo);
lpfc_can_disctmo(vport);
return;
}
/**
* __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
* @phba: pointer to lpfc hba data structure.
*
* This routine stops the SLI4 FCF rediscover wait timer if it's on. The
* caller of this routine should already hold the host lock.
**/
void
__lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
{
/* Clear pending FCF rediscovery wait flag */
phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
/* Now, try to stop the timer */
del_timer(&phba->fcf.redisc_wait);
}
/**
* lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
* @phba: pointer to lpfc hba data structure.
*
* This routine stops the SLI4 FCF rediscover wait timer if it's on. It
* checks whether the FCF rediscovery wait timer is pending with the host
* lock held before proceeding with disabling the timer and clearing the
* wait timer pendig flag.
**/
void
lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
{
spin_lock_irq(&phba->hbalock);
if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
/* FCF rediscovery timer already fired or stopped */
spin_unlock_irq(&phba->hbalock);
return;
}
__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
/* Clear failover in progress flags */
phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_stop_hba_timers - Stop all the timers associated with an HBA
* @phba: pointer to lpfc hba data structure.
*
* This routine stops all the timers associated with a HBA. This function is
* invoked before either putting a HBA offline or unloading the driver.
**/
void
lpfc_stop_hba_timers(struct lpfc_hba *phba)
{
lpfc_stop_vport_timers(phba->pport);
del_timer_sync(&phba->sli.mbox_tmo);
del_timer_sync(&phba->fabric_block_timer);
del_timer_sync(&phba->eratt_poll);
del_timer_sync(&phba->hb_tmofunc);
if (phba->sli_rev == LPFC_SLI_REV4) {
del_timer_sync(&phba->rrq_tmr);
phba->hba_flag &= ~HBA_RRQ_ACTIVE;
}
phba->hb_outstanding = 0;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
/* Stop any LightPulse device specific driver timers */
del_timer_sync(&phba->fcp_poll_timer);
break;
case LPFC_PCI_DEV_OC:
/* Stop any OneConnect device sepcific driver timers */
lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0297 Invalid device group (x%x)\n",
phba->pci_dev_grp);
break;
}
return;
}
/**
* lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
* @phba: pointer to lpfc hba data structure.
*
* This routine marks a HBA's management interface as blocked. Once the HBA's
* management interface is marked as blocked, all the user space access to
* the HBA, whether they are from sysfs interface or libdfc interface will
* all be blocked. The HBA is set to block the management interface when the
* driver prepares the HBA interface for online or offline.
**/
static void
lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
{
unsigned long iflag;
uint8_t actcmd = MBX_HEARTBEAT;
unsigned long timeout;
spin_lock_irqsave(&phba->hbalock, iflag);
phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
spin_unlock_irqrestore(&phba->hbalock, iflag);
if (mbx_action == LPFC_MBX_NO_WAIT)
return;
timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
spin_lock_irqsave(&phba->hbalock, iflag);
if (phba->sli.mbox_active) {
actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
/* Determine how long we might wait for the active mailbox
* command to be gracefully completed by firmware.
*/
timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
phba->sli.mbox_active) * 1000) + jiffies;
}
spin_unlock_irqrestore(&phba->hbalock, iflag);
/* Wait for the outstnading mailbox command to complete */
while (phba->sli.mbox_active) {
/* Check active mailbox complete status every 2ms */
msleep(2);
if (time_after(jiffies, timeout)) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2813 Mgmt IO is Blocked %x "
"- mbox cmd %x still active\n",
phba->sli.sli_flag, actcmd);
break;
}
}
}
/**
* lpfc_sli4_node_prep - Assign RPIs for active nodes.
* @phba: pointer to lpfc hba data structure.
*
* Allocate RPIs for all active remote nodes. This is needed whenever
* an SLI4 adapter is reset and the driver is not unloading. Its purpose
* is to fixup the temporary rpi assignments.
**/
void
lpfc_sli4_node_prep(struct lpfc_hba *phba)
{
struct lpfc_nodelist *ndlp, *next_ndlp;
struct lpfc_vport **vports;
int i, rpi;
unsigned long flags;
if (phba->sli_rev != LPFC_SLI_REV4)
return;
vports = lpfc_create_vport_work_array(phba);
if (vports == NULL)
return;
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
if (vports[i]->load_flag & FC_UNLOADING)
continue;
list_for_each_entry_safe(ndlp, next_ndlp,
&vports[i]->fc_nodes,
nlp_listp) {
if (!NLP_CHK_NODE_ACT(ndlp))
continue;
rpi = lpfc_sli4_alloc_rpi(phba);
if (rpi == LPFC_RPI_ALLOC_ERROR) {
spin_lock_irqsave(&phba->ndlp_lock, flags);
NLP_CLR_NODE_ACT(ndlp);
spin_unlock_irqrestore(&phba->ndlp_lock, flags);
continue;
}
ndlp->nlp_rpi = rpi;
lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NODE,
"0009 rpi:%x DID:%x "
"flg:%x map:%x %p\n", ndlp->nlp_rpi,
ndlp->nlp_DID, ndlp->nlp_flag,
ndlp->nlp_usg_map, ndlp);
}
}
lpfc_destroy_vport_work_array(phba, vports);
}
/**
* lpfc_online - Initialize and bring a HBA online
* @phba: pointer to lpfc hba data structure.
*
* This routine initializes the HBA and brings a HBA online. During this
* process, the management interface is blocked to prevent user space access
* to the HBA interfering with the driver initialization.
*
* Return codes
* 0 - successful
* 1 - failed
**/
int
lpfc_online(struct lpfc_hba *phba)
{
struct lpfc_vport *vport;
struct lpfc_vport **vports;
int i;
bool vpis_cleared = false;
if (!phba)
return 0;
vport = phba->pport;
if (!(vport->fc_flag & FC_OFFLINE_MODE))
return 0;
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0458 Bring Adapter online\n");
lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
if (phba->sli_rev == LPFC_SLI_REV4) {
if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
lpfc_unblock_mgmt_io(phba);
return 1;
}
spin_lock_irq(&phba->hbalock);
if (!phba->sli4_hba.max_cfg_param.vpi_used)
vpis_cleared = true;
spin_unlock_irq(&phba->hbalock);
} else {
lpfc_sli_queue_init(phba);
if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */
lpfc_unblock_mgmt_io(phba);
return 1;
}
}
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL) {
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
struct Scsi_Host *shost;
shost = lpfc_shost_from_vport(vports[i]);
spin_lock_irq(shost->host_lock);
vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
if (phba->sli_rev == LPFC_SLI_REV4) {
vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
if ((vpis_cleared) &&
(vports[i]->port_type !=
LPFC_PHYSICAL_PORT))
vports[i]->vpi = 0;
}
spin_unlock_irq(shost->host_lock);
}
}
lpfc_destroy_vport_work_array(phba, vports);
lpfc_unblock_mgmt_io(phba);
return 0;
}
/**
* lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
* @phba: pointer to lpfc hba data structure.
*
* This routine marks a HBA's management interface as not blocked. Once the
* HBA's management interface is marked as not blocked, all the user space
* access to the HBA, whether they are from sysfs interface or libdfc
* interface will be allowed. The HBA is set to block the management interface
* when the driver prepares the HBA interface for online or offline and then
* set to unblock the management interface afterwards.
**/
void
lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
{
unsigned long iflag;
spin_lock_irqsave(&phba->hbalock, iflag);
phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
spin_unlock_irqrestore(&phba->hbalock, iflag);
}
/**
* lpfc_offline_prep - Prepare a HBA to be brought offline
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to prepare a HBA to be brought offline. It performs
* unregistration login to all the nodes on all vports and flushes the mailbox
* queue to make it ready to be brought offline.
**/
void
lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
{
struct lpfc_vport *vport = phba->pport;
struct lpfc_nodelist *ndlp, *next_ndlp;
struct lpfc_vport **vports;
struct Scsi_Host *shost;
int i;
if (vport->fc_flag & FC_OFFLINE_MODE)
return;
lpfc_block_mgmt_io(phba, mbx_action);
lpfc_linkdown(phba);
/* Issue an unreg_login to all nodes on all vports */
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL) {
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
if (vports[i]->load_flag & FC_UNLOADING)
continue;
shost = lpfc_shost_from_vport(vports[i]);
spin_lock_irq(shost->host_lock);
vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
spin_unlock_irq(shost->host_lock);
shost = lpfc_shost_from_vport(vports[i]);
list_for_each_entry_safe(ndlp, next_ndlp,
&vports[i]->fc_nodes,
nlp_listp) {
if (!NLP_CHK_NODE_ACT(ndlp))
continue;
if (ndlp->nlp_state == NLP_STE_UNUSED_NODE)
continue;
if (ndlp->nlp_type & NLP_FABRIC) {
lpfc_disc_state_machine(vports[i], ndlp,
NULL, NLP_EVT_DEVICE_RECOVERY);
lpfc_disc_state_machine(vports[i], ndlp,
NULL, NLP_EVT_DEVICE_RM);
}
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(shost->host_lock);
/*
* Whenever an SLI4 port goes offline, free the
* RPI. Get a new RPI when the adapter port
* comes back online.
*/
if (phba->sli_rev == LPFC_SLI_REV4) {
lpfc_printf_vlog(ndlp->vport,
KERN_INFO, LOG_NODE,
"0011 lpfc_offline: "
"ndlp:x%p did %x "
"usgmap:x%x rpi:%x\n",
ndlp, ndlp->nlp_DID,
ndlp->nlp_usg_map,
ndlp->nlp_rpi);
lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
}
lpfc_unreg_rpi(vports[i], ndlp);
}
}
}
lpfc_destroy_vport_work_array(phba, vports);
lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
}
/**
* lpfc_offline - Bring a HBA offline
* @phba: pointer to lpfc hba data structure.
*
* This routine actually brings a HBA offline. It stops all the timers
* associated with the HBA, brings down the SLI layer, and eventually
* marks the HBA as in offline state for the upper layer protocol.
**/
void
lpfc_offline(struct lpfc_hba *phba)
{
struct Scsi_Host *shost;
struct lpfc_vport **vports;
int i;
if (phba->pport->fc_flag & FC_OFFLINE_MODE)
return;
/* stop port and all timers associated with this hba */
lpfc_stop_port(phba);
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
lpfc_stop_vport_timers(vports[i]);
lpfc_destroy_vport_work_array(phba, vports);
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0460 Bring Adapter offline\n");
/* Bring down the SLI Layer and cleanup. The HBA is offline
now. */
lpfc_sli_hba_down(phba);
spin_lock_irq(&phba->hbalock);
phba->work_ha = 0;
spin_unlock_irq(&phba->hbalock);
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
shost = lpfc_shost_from_vport(vports[i]);
spin_lock_irq(shost->host_lock);
vports[i]->work_port_events = 0;
vports[i]->fc_flag |= FC_OFFLINE_MODE;
spin_unlock_irq(shost->host_lock);
}
lpfc_destroy_vport_work_array(phba, vports);
}
/**
* lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
* @phba: pointer to lpfc hba data structure.
*
* This routine is to free all the SCSI buffers and IOCBs from the driver
* list back to kernel. It is called from lpfc_pci_remove_one to free
* the internal resources before the device is removed from the system.
**/
static void
lpfc_scsi_free(struct lpfc_hba *phba)
{
struct lpfc_scsi_buf *sb, *sb_next;
if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
return;
spin_lock_irq(&phba->hbalock);
/* Release all the lpfc_scsi_bufs maintained by this host. */
spin_lock(&phba->scsi_buf_list_put_lock);
list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
list) {
list_del(&sb->list);
pci_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
sb->dma_handle);
kfree(sb);
phba->total_scsi_bufs--;
}
spin_unlock(&phba->scsi_buf_list_put_lock);
spin_lock(&phba->scsi_buf_list_get_lock);
list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
list) {
list_del(&sb->list);
pci_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
sb->dma_handle);
kfree(sb);
phba->total_scsi_bufs--;
}
spin_unlock(&phba->scsi_buf_list_get_lock);
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_nvme_free - Free all the NVME buffers and IOCBs from driver lists
* @phba: pointer to lpfc hba data structure.
*
* This routine is to free all the NVME buffers and IOCBs from the driver
* list back to kernel. It is called from lpfc_pci_remove_one to free
* the internal resources before the device is removed from the system.
**/
static void
lpfc_nvme_free(struct lpfc_hba *phba)
{
struct lpfc_nvme_buf *lpfc_ncmd, *lpfc_ncmd_next;
if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
return;
spin_lock_irq(&phba->hbalock);
/* Release all the lpfc_nvme_bufs maintained by this host. */
spin_lock(&phba->nvme_buf_list_put_lock);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&phba->lpfc_nvme_buf_list_put, list) {
list_del(&lpfc_ncmd->list);
pci_pool_free(phba->lpfc_sg_dma_buf_pool, lpfc_ncmd->data,
lpfc_ncmd->dma_handle);
kfree(lpfc_ncmd);
phba->total_nvme_bufs--;
}
spin_unlock(&phba->nvme_buf_list_put_lock);
spin_lock(&phba->nvme_buf_list_get_lock);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&phba->lpfc_nvme_buf_list_get, list) {
list_del(&lpfc_ncmd->list);
pci_pool_free(phba->lpfc_sg_dma_buf_pool, lpfc_ncmd->data,
lpfc_ncmd->dma_handle);
kfree(lpfc_ncmd);
phba->total_nvme_bufs--;
}
spin_unlock(&phba->nvme_buf_list_get_lock);
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
* @phba: pointer to lpfc hba data structure.
*
* This routine first calculates the sizes of the current els and allocated
* scsi sgl lists, and then goes through all sgls to updates the physical
* XRIs assigned due to port function reset. During port initialization, the
* current els and allocated scsi sgl lists are 0s.
*
* Return codes
* 0 - successful (for now, it always returns 0)
**/
int
lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
{
struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
uint16_t i, lxri, xri_cnt, els_xri_cnt;
LIST_HEAD(els_sgl_list);
int rc;
/*
* update on pci function's els xri-sgl list
*/
els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
/* els xri-sgl expanded */
xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3157 ELS xri-sgl count increased from "
"%d to %d\n", phba->sli4_hba.els_xri_cnt,
els_xri_cnt);
/* allocate the additional els sgls */
for (i = 0; i < xri_cnt; i++) {
sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
GFP_KERNEL);
if (sglq_entry == NULL) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2562 Failure to allocate an "
"ELS sgl entry:%d\n", i);
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->buff_type = GEN_BUFF_TYPE;
sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
&sglq_entry->phys);
if (sglq_entry->virt == NULL) {
kfree(sglq_entry);
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2563 Failure to allocate an "
"ELS mbuf:%d\n", i);
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->sgl = sglq_entry->virt;
memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
sglq_entry->state = SGL_FREED;
list_add_tail(&sglq_entry->list, &els_sgl_list);
}
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&els_sgl_list,
&phba->sli4_hba.lpfc_els_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
/* els xri-sgl shrinked */
xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3158 ELS xri-sgl count decreased from "
"%d to %d\n", phba->sli4_hba.els_xri_cnt,
els_xri_cnt);
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
&els_sgl_list);
/* release extra els sgls from list */
for (i = 0; i < xri_cnt; i++) {
list_remove_head(&els_sgl_list,
sglq_entry, struct lpfc_sglq, list);
if (sglq_entry) {
__lpfc_mbuf_free(phba, sglq_entry->virt,
sglq_entry->phys);
kfree(sglq_entry);
}
}
list_splice_init(&els_sgl_list,
&phba->sli4_hba.lpfc_els_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
} else
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3163 ELS xri-sgl count unchanged: %d\n",
els_xri_cnt);
phba->sli4_hba.els_xri_cnt = els_xri_cnt;
/* update xris to els sgls on the list */
sglq_entry = NULL;
sglq_entry_next = NULL;
list_for_each_entry_safe(sglq_entry, sglq_entry_next,
&phba->sli4_hba.lpfc_els_sgl_list, list) {
lxri = lpfc_sli4_next_xritag(phba);
if (lxri == NO_XRI) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2400 Failed to allocate xri for "
"ELS sgl\n");
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->sli4_lxritag = lxri;
sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
}
return 0;
out_free_mem:
lpfc_free_els_sgl_list(phba);
return rc;
}
/**
* lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
* @phba: pointer to lpfc hba data structure.
*
* This routine first calculates the sizes of the current els and allocated
* scsi sgl lists, and then goes through all sgls to updates the physical
* XRIs assigned due to port function reset. During port initialization, the
* current els and allocated scsi sgl lists are 0s.
*
* Return codes
* 0 - successful (for now, it always returns 0)
**/
int
lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
{
struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
uint16_t i, lxri, xri_cnt, els_xri_cnt;
uint16_t nvmet_xri_cnt, tot_cnt;
LIST_HEAD(nvmet_sgl_list);
int rc;
/*
* update on pci function's nvmet xri-sgl list
*/
els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
nvmet_xri_cnt = phba->cfg_nvmet_mrq * phba->cfg_nvmet_mrq_post;
tot_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
if (nvmet_xri_cnt > tot_cnt) {
phba->cfg_nvmet_mrq_post = tot_cnt / phba->cfg_nvmet_mrq;
nvmet_xri_cnt = phba->cfg_nvmet_mrq * phba->cfg_nvmet_mrq_post;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"6301 NVMET post-sgl count changed to %d\n",
phba->cfg_nvmet_mrq_post);
}
if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
/* els xri-sgl expanded */
xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"6302 NVMET xri-sgl cnt grew from %d to %d\n",
phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
/* allocate the additional nvmet sgls */
for (i = 0; i < xri_cnt; i++) {
sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
GFP_KERNEL);
if (sglq_entry == NULL) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6303 Failure to allocate an "
"NVMET sgl entry:%d\n", i);
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->buff_type = NVMET_BUFF_TYPE;
sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
&sglq_entry->phys);
if (sglq_entry->virt == NULL) {
kfree(sglq_entry);
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6304 Failure to allocate an "
"NVMET buf:%d\n", i);
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->sgl = sglq_entry->virt;
memset(sglq_entry->sgl, 0,
phba->cfg_sg_dma_buf_size);
sglq_entry->state = SGL_FREED;
list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
}
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&nvmet_sgl_list,
&phba->sli4_hba.lpfc_nvmet_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
/* nvmet xri-sgl shrunk */
xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"6305 NVMET xri-sgl count decreased from "
"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
nvmet_xri_cnt);
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
&nvmet_sgl_list);
/* release extra nvmet sgls from list */
for (i = 0; i < xri_cnt; i++) {
list_remove_head(&nvmet_sgl_list,
sglq_entry, struct lpfc_sglq, list);
if (sglq_entry) {
lpfc_nvmet_buf_free(phba, sglq_entry->virt,
sglq_entry->phys);
kfree(sglq_entry);
}
}
list_splice_init(&nvmet_sgl_list,
&phba->sli4_hba.lpfc_nvmet_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
} else
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"6306 NVMET xri-sgl count unchanged: %d\n",
nvmet_xri_cnt);
phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
/* update xris to nvmet sgls on the list */
sglq_entry = NULL;
sglq_entry_next = NULL;
list_for_each_entry_safe(sglq_entry, sglq_entry_next,
&phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
lxri = lpfc_sli4_next_xritag(phba);
if (lxri == NO_XRI) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6307 Failed to allocate xri for "
"NVMET sgl\n");
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->sli4_lxritag = lxri;
sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
}
return 0;
out_free_mem:
lpfc_free_nvmet_sgl_list(phba);
return rc;
}
/**
* lpfc_sli4_scsi_sgl_update - update xri-sgl sizing and mapping
* @phba: pointer to lpfc hba data structure.
*
* This routine first calculates the sizes of the current els and allocated
* scsi sgl lists, and then goes through all sgls to updates the physical
* XRIs assigned due to port function reset. During port initialization, the
* current els and allocated scsi sgl lists are 0s.
*
* Return codes
* 0 - successful (for now, it always returns 0)
**/
int
lpfc_sli4_scsi_sgl_update(struct lpfc_hba *phba)
{
struct lpfc_scsi_buf *psb, *psb_next;
uint16_t i, lxri, els_xri_cnt, scsi_xri_cnt;
LIST_HEAD(scsi_sgl_list);
int rc;
/*
* update on pci function's els xri-sgl list
*/
els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
phba->total_scsi_bufs = 0;
/*
* update on pci function's allocated scsi xri-sgl list
*/
/* maximum number of xris available for scsi buffers */
phba->sli4_hba.scsi_xri_max = phba->sli4_hba.max_cfg_param.max_xri -
els_xri_cnt;
if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
return 0;
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
phba->sli4_hba.scsi_xri_max = /* Split them up */
(phba->sli4_hba.scsi_xri_max *
phba->cfg_xri_split) / 100;
spin_lock_irq(&phba->scsi_buf_list_get_lock);
spin_lock(&phba->scsi_buf_list_put_lock);
list_splice_init(&phba->lpfc_scsi_buf_list_get, &scsi_sgl_list);
list_splice(&phba->lpfc_scsi_buf_list_put, &scsi_sgl_list);
spin_unlock(&phba->scsi_buf_list_put_lock);
spin_unlock_irq(&phba->scsi_buf_list_get_lock);
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"6060 Current allocated SCSI xri-sgl count:%d, "
"maximum SCSI xri count:%d (split:%d)\n",
phba->sli4_hba.scsi_xri_cnt,
phba->sli4_hba.scsi_xri_max, phba->cfg_xri_split);
if (phba->sli4_hba.scsi_xri_cnt > phba->sli4_hba.scsi_xri_max) {
/* max scsi xri shrinked below the allocated scsi buffers */
scsi_xri_cnt = phba->sli4_hba.scsi_xri_cnt -
phba->sli4_hba.scsi_xri_max;
/* release the extra allocated scsi buffers */
for (i = 0; i < scsi_xri_cnt; i++) {
list_remove_head(&scsi_sgl_list, psb,
struct lpfc_scsi_buf, list);
if (psb) {
pci_pool_free(phba->lpfc_sg_dma_buf_pool,
psb->data, psb->dma_handle);
kfree(psb);
}
}
spin_lock_irq(&phba->scsi_buf_list_get_lock);
phba->sli4_hba.scsi_xri_cnt -= scsi_xri_cnt;
spin_unlock_irq(&phba->scsi_buf_list_get_lock);
}
/* update xris associated to remaining allocated scsi buffers */
psb = NULL;
psb_next = NULL;
list_for_each_entry_safe(psb, psb_next, &scsi_sgl_list, list) {
lxri = lpfc_sli4_next_xritag(phba);
if (lxri == NO_XRI) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2560 Failed to allocate xri for "
"scsi buffer\n");
rc = -ENOMEM;
goto out_free_mem;
}
psb->cur_iocbq.sli4_lxritag = lxri;
psb->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
}
spin_lock_irq(&phba->scsi_buf_list_get_lock);
spin_lock(&phba->scsi_buf_list_put_lock);
list_splice_init(&scsi_sgl_list, &phba->lpfc_scsi_buf_list_get);
INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
spin_unlock(&phba->scsi_buf_list_put_lock);
spin_unlock_irq(&phba->scsi_buf_list_get_lock);
return 0;
out_free_mem:
lpfc_scsi_free(phba);
return rc;
}
static uint64_t
lpfc_get_wwpn(struct lpfc_hba *phba)
{
uint64_t wwn;
int rc;
LPFC_MBOXQ_t *mboxq;
MAILBOX_t *mb;
mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!mboxq)
return (uint64_t)-1;
/* First get WWN of HBA instance */
lpfc_read_nv(phba, mboxq);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6019 Mailbox failed , mbxCmd x%x "
"READ_NV, mbxStatus x%x\n",
bf_get(lpfc_mqe_command, &mboxq->u.mqe),
bf_get(lpfc_mqe_status, &mboxq->u.mqe));
mempool_free(mboxq, phba->mbox_mem_pool);
return (uint64_t) -1;
}
mb = &mboxq->u.mb;
memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
/* wwn is WWPN of HBA instance */
mempool_free(mboxq, phba->mbox_mem_pool);
if (phba->sli_rev == LPFC_SLI_REV4)
return be64_to_cpu(wwn);
else
return (((wwn & 0xffffffff00000000) >> 32) |
((wwn & 0x00000000ffffffff) << 32));
}
/**
* lpfc_sli4_nvme_sgl_update - update xri-sgl sizing and mapping
* @phba: pointer to lpfc hba data structure.
*
* This routine first calculates the sizes of the current els and allocated
* scsi sgl lists, and then goes through all sgls to updates the physical
* XRIs assigned due to port function reset. During port initialization, the
* current els and allocated scsi sgl lists are 0s.
*
* Return codes
* 0 - successful (for now, it always returns 0)
**/
int
lpfc_sli4_nvme_sgl_update(struct lpfc_hba *phba)
{
struct lpfc_nvme_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
uint16_t i, lxri, els_xri_cnt;
uint16_t nvme_xri_cnt, nvme_xri_max;
LIST_HEAD(nvme_sgl_list);
int rc;
phba->total_nvme_bufs = 0;
if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
return 0;
/*
* update on pci function's allocated nvme xri-sgl list
*/
/* maximum number of xris available for nvme buffers */
els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
nvme_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
phba->sli4_hba.nvme_xri_max = nvme_xri_max;
phba->sli4_hba.nvme_xri_max -= phba->sli4_hba.scsi_xri_max;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"6074 Current allocated NVME xri-sgl count:%d, "
"maximum NVME xri count:%d\n",
phba->sli4_hba.nvme_xri_cnt,
phba->sli4_hba.nvme_xri_max);
spin_lock_irq(&phba->nvme_buf_list_get_lock);
spin_lock(&phba->nvme_buf_list_put_lock);
list_splice_init(&phba->lpfc_nvme_buf_list_get, &nvme_sgl_list);
list_splice(&phba->lpfc_nvme_buf_list_put, &nvme_sgl_list);
spin_unlock(&phba->nvme_buf_list_put_lock);
spin_unlock_irq(&phba->nvme_buf_list_get_lock);
if (phba->sli4_hba.nvme_xri_cnt > phba->sli4_hba.nvme_xri_max) {
/* max nvme xri shrunk below the allocated nvme buffers */
spin_lock_irq(&phba->nvme_buf_list_get_lock);
nvme_xri_cnt = phba->sli4_hba.nvme_xri_cnt -
phba->sli4_hba.nvme_xri_max;
spin_unlock_irq(&phba->nvme_buf_list_get_lock);
/* release the extra allocated nvme buffers */
for (i = 0; i < nvme_xri_cnt; i++) {
list_remove_head(&nvme_sgl_list, lpfc_ncmd,
struct lpfc_nvme_buf, list);
if (lpfc_ncmd) {
pci_pool_free(phba->lpfc_sg_dma_buf_pool,
lpfc_ncmd->data,
lpfc_ncmd->dma_handle);
kfree(lpfc_ncmd);
}
}
spin_lock_irq(&phba->nvme_buf_list_get_lock);
phba->sli4_hba.nvme_xri_cnt -= nvme_xri_cnt;
spin_unlock_irq(&phba->nvme_buf_list_get_lock);
}
/* update xris associated to remaining allocated nvme buffers */
lpfc_ncmd = NULL;
lpfc_ncmd_next = NULL;
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&nvme_sgl_list, list) {
lxri = lpfc_sli4_next_xritag(phba);
if (lxri == NO_XRI) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6075 Failed to allocate xri for "
"nvme buffer\n");
rc = -ENOMEM;
goto out_free_mem;
}
lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
}
spin_lock_irq(&phba->nvme_buf_list_get_lock);
spin_lock(&phba->nvme_buf_list_put_lock);
list_splice_init(&nvme_sgl_list, &phba->lpfc_nvme_buf_list_get);
INIT_LIST_HEAD(&phba->lpfc_nvme_buf_list_put);
spin_unlock(&phba->nvme_buf_list_put_lock);
spin_unlock_irq(&phba->nvme_buf_list_get_lock);
return 0;
out_free_mem:
lpfc_nvme_free(phba);
return rc;
}
/**
* lpfc_create_port - Create an FC port
* @phba: pointer to lpfc hba data structure.
* @instance: a unique integer ID to this FC port.
* @dev: pointer to the device data structure.
*
* This routine creates a FC port for the upper layer protocol. The FC port
* can be created on top of either a physical port or a virtual port provided
* by the HBA. This routine also allocates a SCSI host data structure (shost)
* and associates the FC port created before adding the shost into the SCSI
* layer.
*
* Return codes
* @vport - pointer to the virtual N_Port data structure.
* NULL - port create failed.
**/
struct lpfc_vport *
lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
{
struct lpfc_vport *vport;
struct Scsi_Host *shost = NULL;
int error = 0;
int i;
uint64_t wwn;
bool use_no_reset_hba = false;
wwn = lpfc_get_wwpn(phba);
for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
if (wwn == lpfc_no_hba_reset[i]) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6020 Setting use_no_reset port=%llx\n",
wwn);
use_no_reset_hba = true;
break;
}
}
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
if (dev != &phba->pcidev->dev) {
shost = scsi_host_alloc(&lpfc_vport_template,
sizeof(struct lpfc_vport));
} else {
if (!use_no_reset_hba)
shost = scsi_host_alloc(&lpfc_template,
sizeof(struct lpfc_vport));
else
shost = scsi_host_alloc(&lpfc_template_no_hr,
sizeof(struct lpfc_vport));
}
} else if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
shost = scsi_host_alloc(&lpfc_template_nvme,
sizeof(struct lpfc_vport));
}
if (!shost)
goto out;
vport = (struct lpfc_vport *) shost->hostdata;
vport->phba = phba;
vport->load_flag |= FC_LOADING;
vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
vport->fc_rscn_flush = 0;
lpfc_get_vport_cfgparam(vport);
shost->unique_id = instance;
shost->max_id = LPFC_MAX_TARGET;
shost->max_lun = vport->cfg_max_luns;
shost->this_id = -1;
shost->max_cmd_len = 16;
shost->nr_hw_queues = phba->cfg_fcp_io_channel;
if (phba->sli_rev == LPFC_SLI_REV4) {
shost->dma_boundary =
phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
shost->sg_tablesize = phba->cfg_sg_seg_cnt;
}
/*
* Set initial can_queue value since 0 is no longer supported and
* scsi_add_host will fail. This will be adjusted later based on the
* max xri value determined in hba setup.
*/
shost->can_queue = phba->cfg_hba_queue_depth - 10;
if (dev != &phba->pcidev->dev) {
shost->transportt = lpfc_vport_transport_template;
vport->port_type = LPFC_NPIV_PORT;
} else {
shost->transportt = lpfc_transport_template;
vport->port_type = LPFC_PHYSICAL_PORT;
}
/* Initialize all internally managed lists. */
INIT_LIST_HEAD(&vport->fc_nodes);
INIT_LIST_HEAD(&vport->rcv_buffer_list);
spin_lock_init(&vport->work_port_lock);
setup_timer(&vport->fc_disctmo, lpfc_disc_timeout,
(unsigned long)vport);
setup_timer(&vport->els_tmofunc, lpfc_els_timeout,
(unsigned long)vport);
setup_timer(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo,
(unsigned long)vport);
error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
if (error)
goto out_put_shost;
spin_lock_irq(&phba->hbalock);
list_add_tail(&vport->listentry, &phba->port_list);
spin_unlock_irq(&phba->hbalock);
return vport;
out_put_shost:
scsi_host_put(shost);
out:
return NULL;
}
/**
* destroy_port - destroy an FC port
* @vport: pointer to an lpfc virtual N_Port data structure.
*
* This routine destroys a FC port from the upper layer protocol. All the
* resources associated with the port are released.
**/
void
destroy_port(struct lpfc_vport *vport)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
lpfc_debugfs_terminate(vport);
fc_remove_host(shost);
scsi_remove_host(shost);
spin_lock_irq(&phba->hbalock);
list_del_init(&vport->listentry);
spin_unlock_irq(&phba->hbalock);
lpfc_cleanup(vport);
return;
}
/**
* lpfc_get_instance - Get a unique integer ID
*
* This routine allocates a unique integer ID from lpfc_hba_index pool. It
* uses the kernel idr facility to perform the task.
*
* Return codes:
* instance - a unique integer ID allocated as the new instance.
* -1 - lpfc get instance failed.
**/
int
lpfc_get_instance(void)
{
int ret;
ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
return ret < 0 ? -1 : ret;
}
/**
* lpfc_scan_finished - method for SCSI layer to detect whether scan is done
* @shost: pointer to SCSI host data structure.
* @time: elapsed time of the scan in jiffies.
*
* This routine is called by the SCSI layer with a SCSI host to determine
* whether the scan host is finished.
*
* Note: there is no scan_start function as adapter initialization will have
* asynchronously kicked off the link initialization.
*
* Return codes
* 0 - SCSI host scan is not over yet.
* 1 - SCSI host scan is over.
**/
int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_hba *phba = vport->phba;
int stat = 0;
spin_lock_irq(shost->host_lock);
if (vport->load_flag & FC_UNLOADING) {
stat = 1;
goto finished;
}
if (time >= msecs_to_jiffies(30 * 1000)) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0461 Scanning longer than 30 "
"seconds. Continuing initialization\n");
stat = 1;
goto finished;
}
if (time >= msecs_to_jiffies(15 * 1000) &&
phba->link_state <= LPFC_LINK_DOWN) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0465 Link down longer than 15 "
"seconds. Continuing initialization\n");
stat = 1;
goto finished;
}
if (vport->port_state != LPFC_VPORT_READY)
goto finished;
if (vport->num_disc_nodes || vport->fc_prli_sent)
goto finished;
if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
goto finished;
if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
goto finished;
stat = 1;
finished:
spin_unlock_irq(shost->host_lock);
return stat;
}
/**
* lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
* @shost: pointer to SCSI host data structure.
*
* This routine initializes a given SCSI host attributes on a FC port. The
* SCSI host can be either on top of a physical port or a virtual port.
**/
void lpfc_host_attrib_init(struct Scsi_Host *shost)
{
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_hba *phba = vport->phba;
/*
* Set fixed host attributes. Must done after lpfc_sli_hba_setup().
*/
fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
fc_host_supported_classes(shost) = FC_COS_CLASS3;
memset(fc_host_supported_fc4s(shost), 0,
sizeof(fc_host_supported_fc4s(shost)));
fc_host_supported_fc4s(shost)[2] = 1;
fc_host_supported_fc4s(shost)[7] = 1;
lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
sizeof fc_host_symbolic_name(shost));
fc_host_supported_speeds(shost) = 0;
if (phba->lmt & LMT_32Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
if (phba->lmt & LMT_16Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
if (phba->lmt & LMT_10Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
if (phba->lmt & LMT_8Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
if (phba->lmt & LMT_4Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
if (phba->lmt & LMT_2Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
if (phba->lmt & LMT_1Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
fc_host_maxframe_size(shost) =
(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
/* This value is also unchanging */
memset(fc_host_active_fc4s(shost), 0,
sizeof(fc_host_active_fc4s(shost)));
fc_host_active_fc4s(shost)[2] = 1;
fc_host_active_fc4s(shost)[7] = 1;
fc_host_max_npiv_vports(shost) = phba->max_vpi;
spin_lock_irq(shost->host_lock);
vport->load_flag &= ~FC_LOADING;
spin_unlock_irq(shost->host_lock);
}
/**
* lpfc_stop_port_s3 - Stop SLI3 device port
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to stop an SLI3 device port, it stops the device
* from generating interrupts and stops the device driver's timers for the
* device.
**/
static void
lpfc_stop_port_s3(struct lpfc_hba *phba)
{
/* Clear all interrupt enable conditions */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* Clear all pending interrupts */
writel(0xffffffff, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
/* Reset some HBA SLI setup states */
lpfc_stop_hba_timers(phba);
phba->pport->work_port_events = 0;
}
/**
* lpfc_stop_port_s4 - Stop SLI4 device port
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to stop an SLI4 device port, it stops the device
* from generating interrupts and stops the device driver's timers for the
* device.
**/
static void
lpfc_stop_port_s4(struct lpfc_hba *phba)
{
/* Reset some HBA SLI4 setup states */
lpfc_stop_hba_timers(phba);
phba->pport->work_port_events = 0;
phba->sli4_hba.intr_enable = 0;
}
/**
* lpfc_stop_port - Wrapper function for stopping hba port
* @phba: Pointer to HBA context object.
*
* This routine wraps the actual SLI3 or SLI4 hba stop port routine from
* the API jump table function pointer from the lpfc_hba struct.
**/
void
lpfc_stop_port(struct lpfc_hba *phba)
{
phba->lpfc_stop_port(phba);
}
/**
* lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
* @phba: Pointer to hba for which this call is being executed.
*
* This routine starts the timer waiting for the FCF rediscovery to complete.
**/
void
lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
{
unsigned long fcf_redisc_wait_tmo =
(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
/* Start fcf rediscovery wait period timer */
mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
spin_lock_irq(&phba->hbalock);
/* Allow action to new fcf asynchronous event */
phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
/* Mark the FCF rediscovery pending state */
phba->fcf.fcf_flag |= FCF_REDISC_PEND;
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
* @ptr: Map to lpfc_hba data structure pointer.
*
* This routine is invoked when waiting for FCF table rediscover has been
* timed out. If new FCF record(s) has (have) been discovered during the
* wait period, a new FCF event shall be added to the FCOE async event
* list, and then worker thread shall be waked up for processing from the
* worker thread context.
**/
static void
lpfc_sli4_fcf_redisc_wait_tmo(unsigned long ptr)
{
struct lpfc_hba *phba = (struct lpfc_hba *)ptr;
/* Don't send FCF rediscovery event if timer cancelled */
spin_lock_irq(&phba->hbalock);
if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
spin_unlock_irq(&phba->hbalock);
return;
}
/* Clear FCF rediscovery timer pending flag */
phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
/* FCF rediscovery event to worker thread */
phba->fcf.fcf_flag |= FCF_REDISC_EVT;
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
"2776 FCF rediscover quiescent timer expired\n");
/* wake up worker thread */
lpfc_worker_wake_up(phba);
}
/**
* lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async link completion queue entry.
*
* This routine is to parse the SLI4 link-attention link fault code and
* translate it into the base driver's read link attention mailbox command
* status.
*
* Return: Link-attention status in terms of base driver's coding.
**/
static uint16_t
lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
struct lpfc_acqe_link *acqe_link)
{
uint16_t latt_fault;
switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
case LPFC_ASYNC_LINK_FAULT_NONE:
case LPFC_ASYNC_LINK_FAULT_LOCAL:
case LPFC_ASYNC_LINK_FAULT_REMOTE:
latt_fault = 0;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0398 Invalid link fault code: x%x\n",
bf_get(lpfc_acqe_link_fault, acqe_link));
latt_fault = MBXERR_ERROR;
break;
}
return latt_fault;
}
/**
* lpfc_sli4_parse_latt_type - Parse sli4 link attention type
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async link completion queue entry.
*
* This routine is to parse the SLI4 link attention type and translate it
* into the base driver's link attention type coding.
*
* Return: Link attention type in terms of base driver's coding.
**/
static uint8_t
lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
struct lpfc_acqe_link *acqe_link)
{
uint8_t att_type;
switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
case LPFC_ASYNC_LINK_STATUS_DOWN:
case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
att_type = LPFC_ATT_LINK_DOWN;
break;
case LPFC_ASYNC_LINK_STATUS_UP:
/* Ignore physical link up events - wait for logical link up */
att_type = LPFC_ATT_RESERVED;
break;
case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
att_type = LPFC_ATT_LINK_UP;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0399 Invalid link attention type: x%x\n",
bf_get(lpfc_acqe_link_status, acqe_link));
att_type = LPFC_ATT_RESERVED;
break;
}
return att_type;
}
/**
* lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
* @phba: pointer to lpfc hba data structure.
*
* This routine is to get an SLI3 FC port's link speed in Mbps.
*
* Return: link speed in terms of Mbps.
**/
uint32_t
lpfc_sli_port_speed_get(struct lpfc_hba *phba)
{
uint32_t link_speed;
if (!lpfc_is_link_up(phba))
return 0;
if (phba->sli_rev <= LPFC_SLI_REV3) {
switch (phba->fc_linkspeed) {
case LPFC_LINK_SPEED_1GHZ:
link_speed = 1000;
break;
case LPFC_LINK_SPEED_2GHZ:
link_speed = 2000;
break;
case LPFC_LINK_SPEED_4GHZ:
link_speed = 4000;
break;
case LPFC_LINK_SPEED_8GHZ:
link_speed = 8000;
break;
case LPFC_LINK_SPEED_10GHZ:
link_speed = 10000;
break;
case LPFC_LINK_SPEED_16GHZ:
link_speed = 16000;
break;
default:
link_speed = 0;
}
} else {
if (phba->sli4_hba.link_state.logical_speed)
link_speed =
phba->sli4_hba.link_state.logical_speed;
else
link_speed = phba->sli4_hba.link_state.speed;
}
return link_speed;
}
/**
* lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
* @phba: pointer to lpfc hba data structure.
* @evt_code: asynchronous event code.
* @speed_code: asynchronous event link speed code.
*
* This routine is to parse the giving SLI4 async event link speed code into
* value of Mbps for the link speed.
*
* Return: link speed in terms of Mbps.
**/
static uint32_t
lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
uint8_t speed_code)
{
uint32_t port_speed;
switch (evt_code) {
case LPFC_TRAILER_CODE_LINK:
switch (speed_code) {
case LPFC_ASYNC_LINK_SPEED_ZERO:
port_speed = 0;
break;
case LPFC_ASYNC_LINK_SPEED_10MBPS:
port_speed = 10;
break;
case LPFC_ASYNC_LINK_SPEED_100MBPS:
port_speed = 100;
break;
case LPFC_ASYNC_LINK_SPEED_1GBPS:
port_speed = 1000;
break;
case LPFC_ASYNC_LINK_SPEED_10GBPS:
port_speed = 10000;
break;
case LPFC_ASYNC_LINK_SPEED_20GBPS:
port_speed = 20000;
break;
case LPFC_ASYNC_LINK_SPEED_25GBPS:
port_speed = 25000;
break;
case LPFC_ASYNC_LINK_SPEED_40GBPS:
port_speed = 40000;
break;
default:
port_speed = 0;
}
break;
case LPFC_TRAILER_CODE_FC:
switch (speed_code) {
case LPFC_FC_LA_SPEED_UNKNOWN:
port_speed = 0;
break;
case LPFC_FC_LA_SPEED_1G:
port_speed = 1000;
break;
case LPFC_FC_LA_SPEED_2G:
port_speed = 2000;
break;
case LPFC_FC_LA_SPEED_4G:
port_speed = 4000;
break;
case LPFC_FC_LA_SPEED_8G:
port_speed = 8000;
break;
case LPFC_FC_LA_SPEED_10G:
port_speed = 10000;
break;
case LPFC_FC_LA_SPEED_16G:
port_speed = 16000;
break;
case LPFC_FC_LA_SPEED_32G:
port_speed = 32000;
break;
default:
port_speed = 0;
}
break;
default:
port_speed = 0;
}
return port_speed;
}
/**
* lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async link completion queue entry.
*
* This routine is to handle the SLI4 asynchronous FCoE link event.
**/
static void
lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
struct lpfc_acqe_link *acqe_link)
{
struct lpfc_dmabuf *mp;
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
struct lpfc_mbx_read_top *la;
uint8_t att_type;
int rc;
att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
return;
phba->fcoe_eventtag = acqe_link->event_tag;
pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0395 The mboxq allocation failed\n");
return;
}
mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!mp) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0396 The lpfc_dmabuf allocation failed\n");
goto out_free_pmb;
}
mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
if (!mp->virt) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0397 The mbuf allocation failed\n");
goto out_free_dmabuf;
}
/* Cleanup any outstanding ELS commands */
lpfc_els_flush_all_cmd(phba);
/* Block ELS IOCBs until we have done process link event */
phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
/* Update link event statistics */
phba->sli.slistat.link_event++;
/* Create lpfc_handle_latt mailbox command from link ACQE */
lpfc_read_topology(phba, pmb, mp);
pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
pmb->vport = phba->pport;
/* Keep the link status for extra SLI4 state machine reference */
phba->sli4_hba.link_state.speed =
lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
bf_get(lpfc_acqe_link_speed, acqe_link));
phba->sli4_hba.link_state.duplex =
bf_get(lpfc_acqe_link_duplex, acqe_link);
phba->sli4_hba.link_state.status =
bf_get(lpfc_acqe_link_status, acqe_link);
phba->sli4_hba.link_state.type =
bf_get(lpfc_acqe_link_type, acqe_link);
phba->sli4_hba.link_state.number =
bf_get(lpfc_acqe_link_number, acqe_link);
phba->sli4_hba.link_state.fault =
bf_get(lpfc_acqe_link_fault, acqe_link);
phba->sli4_hba.link_state.logical_speed =
bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2900 Async FC/FCoE Link event - Speed:%dGBit "
"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
"Logical speed:%dMbps Fault:%d\n",
phba->sli4_hba.link_state.speed,
phba->sli4_hba.link_state.topology,
phba->sli4_hba.link_state.status,
phba->sli4_hba.link_state.type,
phba->sli4_hba.link_state.number,
phba->sli4_hba.link_state.logical_speed,
phba->sli4_hba.link_state.fault);
/*
* For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
* topology info. Note: Optional for non FC-AL ports.
*/
if (!(phba->hba_flag & HBA_FCOE_MODE)) {
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED)
goto out_free_dmabuf;
return;
}
/*
* For FCoE Mode: fill in all the topology information we need and call
* the READ_TOPOLOGY completion routine to continue without actually
* sending the READ_TOPOLOGY mailbox command to the port.
*/
/* Parse and translate status field */
mb = &pmb->u.mb;
mb->mbxStatus = lpfc_sli4_parse_latt_fault(phba, acqe_link);
/* Parse and translate link attention fields */
la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
la->eventTag = acqe_link->event_tag;
bf_set(lpfc_mbx_read_top_att_type, la, att_type);
bf_set(lpfc_mbx_read_top_link_spd, la,
(bf_get(lpfc_acqe_link_speed, acqe_link)));
/* Fake the the following irrelvant fields */
bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
bf_set(lpfc_mbx_read_top_il, la, 0);
bf_set(lpfc_mbx_read_top_pb, la, 0);
bf_set(lpfc_mbx_read_top_fa, la, 0);
bf_set(lpfc_mbx_read_top_mm, la, 0);
/* Invoke the lpfc_handle_latt mailbox command callback function */
lpfc_mbx_cmpl_read_topology(phba, pmb);
return;
out_free_dmabuf:
kfree(mp);
out_free_pmb:
mempool_free(pmb, phba->mbox_mem_pool);
}
/**
* lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
* @phba: pointer to lpfc hba data structure.
* @acqe_fc: pointer to the async fc completion queue entry.
*
* This routine is to handle the SLI4 asynchronous FC event. It will simply log
* that the event was received and then issue a read_topology mailbox command so
* that the rest of the driver will treat it the same as SLI3.
**/
static void
lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
{
struct lpfc_dmabuf *mp;
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
struct lpfc_mbx_read_top *la;
int rc;
if (bf_get(lpfc_trailer_type, acqe_fc) !=
LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2895 Non FC link Event detected.(%d)\n",
bf_get(lpfc_trailer_type, acqe_fc));
return;
}
/* Keep the link status for extra SLI4 state machine reference */
phba->sli4_hba.link_state.speed =
lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
phba->sli4_hba.link_state.topology =
bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
phba->sli4_hba.link_state.status =
bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
phba->sli4_hba.link_state.type =
bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
phba->sli4_hba.link_state.number =
bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
phba->sli4_hba.link_state.fault =
bf_get(lpfc_acqe_link_fault, acqe_fc);
phba->sli4_hba.link_state.logical_speed =
bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2896 Async FC event - Speed:%dGBaud Topology:x%x "
"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
"%dMbps Fault:%d\n",
phba->sli4_hba.link_state.speed,
phba->sli4_hba.link_state.topology,
phba->sli4_hba.link_state.status,
phba->sli4_hba.link_state.type,
phba->sli4_hba.link_state.number,
phba->sli4_hba.link_state.logical_speed,
phba->sli4_hba.link_state.fault);
pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2897 The mboxq allocation failed\n");
return;
}
mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!mp) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2898 The lpfc_dmabuf allocation failed\n");
goto out_free_pmb;
}
mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
if (!mp->virt) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2899 The mbuf allocation failed\n");
goto out_free_dmabuf;
}
/* Cleanup any outstanding ELS commands */
lpfc_els_flush_all_cmd(phba);
/* Block ELS IOCBs until we have done process link event */
phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
/* Update link event statistics */
phba->sli.slistat.link_event++;
/* Create lpfc_handle_latt mailbox command from link ACQE */
lpfc_read_topology(phba, pmb, mp);
pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
pmb->vport = phba->pport;
if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
/* Parse and translate status field */
mb = &pmb->u.mb;
mb->mbxStatus = lpfc_sli4_parse_latt_fault(phba,
(void *)acqe_fc);
/* Parse and translate link attention fields */
la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
la->eventTag = acqe_fc->event_tag;
if (phba->sli4_hba.link_state.status ==
LPFC_FC_LA_TYPE_UNEXP_WWPN) {
bf_set(lpfc_mbx_read_top_att_type, la,
LPFC_FC_LA_TYPE_UNEXP_WWPN);
} else {
bf_set(lpfc_mbx_read_top_att_type, la,
LPFC_FC_LA_TYPE_LINK_DOWN);
}
/* Invoke the mailbox command callback function */
lpfc_mbx_cmpl_read_topology(phba, pmb);
return;
}
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED)
goto out_free_dmabuf;
return;
out_free_dmabuf:
kfree(mp);
out_free_pmb:
mempool_free(pmb, phba->mbox_mem_pool);
}
/**
* lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
* @phba: pointer to lpfc hba data structure.
* @acqe_fc: pointer to the async SLI completion queue entry.
*
* This routine is to handle the SLI4 asynchronous SLI events.
**/
static void
lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
{
char port_name;
char message[128];
uint8_t status;
uint8_t evt_type;
uint8_t operational = 0;
struct temp_event temp_event_data;
struct lpfc_acqe_misconfigured_event *misconfigured;
struct Scsi_Host *shost;
evt_type = bf_get(lpfc_trailer_type, acqe_sli);
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2901 Async SLI event - Event Data1:x%08x Event Data2:"
"x%08x SLI Event Type:%d\n",
acqe_sli->event_data1, acqe_sli->event_data2,
evt_type);
port_name = phba->Port[0];
if (port_name == 0x00)
port_name = '?'; /* get port name is empty */
switch (evt_type) {
case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
temp_event_data.data = (uint32_t)acqe_sli->event_data1;
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"3190 Over Temperature:%d Celsius- Port Name %c\n",
acqe_sli->event_data1, port_name);
phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(temp_event_data),
(char *)&temp_event_data,
SCSI_NL_VID_TYPE_PCI
| PCI_VENDOR_ID_EMULEX);
break;
case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
temp_event_data.event_code = LPFC_NORMAL_TEMP;
temp_event_data.data = (uint32_t)acqe_sli->event_data1;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3191 Normal Temperature:%d Celsius - Port Name %c\n",
acqe_sli->event_data1, port_name);
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(temp_event_data),
(char *)&temp_event_data,
SCSI_NL_VID_TYPE_PCI
| PCI_VENDOR_ID_EMULEX);
break;
case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
misconfigured = (struct lpfc_acqe_misconfigured_event *)
&acqe_sli->event_data1;
/* fetch the status for this port */
switch (phba->sli4_hba.lnk_info.lnk_no) {
case LPFC_LINK_NUMBER_0:
status = bf_get(lpfc_sli_misconfigured_port0_state,
&misconfigured->theEvent);
operational = bf_get(lpfc_sli_misconfigured_port0_op,
&misconfigured->theEvent);
break;
case LPFC_LINK_NUMBER_1:
status = bf_get(lpfc_sli_misconfigured_port1_state,
&misconfigured->theEvent);
operational = bf_get(lpfc_sli_misconfigured_port1_op,
&misconfigured->theEvent);
break;
case LPFC_LINK_NUMBER_2:
status = bf_get(lpfc_sli_misconfigured_port2_state,
&misconfigured->theEvent);
operational = bf_get(lpfc_sli_misconfigured_port2_op,
&misconfigured->theEvent);
break;
case LPFC_LINK_NUMBER_3:
status = bf_get(lpfc_sli_misconfigured_port3_state,
&misconfigured->theEvent);
operational = bf_get(lpfc_sli_misconfigured_port3_op,
&misconfigured->theEvent);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"3296 "
"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
"event: Invalid link %d",
phba->sli4_hba.lnk_info.lnk_no);
return;
}
/* Skip if optic state unchanged */
if (phba->sli4_hba.lnk_info.optic_state == status)
return;
switch (status) {
case LPFC_SLI_EVENT_STATUS_VALID:
sprintf(message, "Physical Link is functional");
break;
case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
sprintf(message, "Optics faulted/incorrectly "
"installed/not installed - Reseat optics, "
"if issue not resolved, replace.");
break;
case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
sprintf(message,
"Optics of two types installed - Remove one "
"optic or install matching pair of optics.");
break;
case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
sprintf(message, "Incompatible optics - Replace with "
"compatible optics for card to function.");
break;
case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
sprintf(message, "Unqualified optics - Replace with "
"Avago optics for Warranty and Technical "
"Support - Link is%s operational",
(operational) ? " not" : "");
break;
case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
sprintf(message, "Uncertified optics - Replace with "
"Avago-certified optics to enable link "
"operation - Link is%s operational",
(operational) ? " not" : "");
break;
default:
/* firmware is reporting a status we don't know about */
sprintf(message, "Unknown event status x%02x", status);
break;
}
phba->sli4_hba.lnk_info.optic_state = status;
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"3176 Port Name %c %s\n", port_name, message);
break;
case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3192 Remote DPort Test Initiated - "
"Event Data1:x%08x Event Data2: x%08x\n",
acqe_sli->event_data1, acqe_sli->event_data2);
break;
default:
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3193 Async SLI event - Event Data1:x%08x Event Data2:"
"x%08x SLI Event Type:%d\n",
acqe_sli->event_data1, acqe_sli->event_data2,
evt_type);
break;
}
}
/**
* lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
* @vport: pointer to vport data structure.
*
* This routine is to perform Clear Virtual Link (CVL) on a vport in
* response to a CVL event.
*
* Return the pointer to the ndlp with the vport if successful, otherwise
* return NULL.
**/
static struct lpfc_nodelist *
lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
{
struct lpfc_nodelist *ndlp;
struct Scsi_Host *shost;
struct lpfc_hba *phba;
if (!vport)
return NULL;
phba = vport->phba;
if (!phba)
return NULL;
ndlp = lpfc_findnode_did(vport, Fabric_DID);
if (!ndlp) {
/* Cannot find existing Fabric ndlp, so allocate a new one */
ndlp = lpfc_nlp_init(vport, Fabric_DID);
if (!ndlp)
return 0;
/* Set the node type */
ndlp->nlp_type |= NLP_FABRIC;
/* Put ndlp onto node list */
lpfc_enqueue_node(vport, ndlp);
} else if (!NLP_CHK_NODE_ACT(ndlp)) {
/* re-setup ndlp without removing from node list */
ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
if (!ndlp)
return 0;
}
if ((phba->pport->port_state < LPFC_FLOGI) &&
(phba->pport->port_state != LPFC_VPORT_FAILED))
return NULL;
/* If virtual link is not yet instantiated ignore CVL */
if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
&& (vport->port_state != LPFC_VPORT_FAILED))
return NULL;
shost = lpfc_shost_from_vport(vport);
if (!shost)
return NULL;
lpfc_linkdown_port(vport);
lpfc_cleanup_pending_mbox(vport);
spin_lock_irq(shost->host_lock);
vport->fc_flag |= FC_VPORT_CVL_RCVD;
spin_unlock_irq(shost->host_lock);
return ndlp;
}
/**
* lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
* @vport: pointer to lpfc hba data structure.
*
* This routine is to perform Clear Virtual Link (CVL) on all vports in
* response to a FCF dead event.
**/
static void
lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
int i;
vports = lpfc_create_vport_work_array(phba);
if (vports)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
lpfc_sli4_perform_vport_cvl(vports[i]);
lpfc_destroy_vport_work_array(phba, vports);
}
/**
* lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async fcoe completion queue entry.
*
* This routine is to handle the SLI4 asynchronous fcoe event.
**/
static void
lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
struct lpfc_acqe_fip *acqe_fip)
{
uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
int rc;
struct lpfc_vport *vport;
struct lpfc_nodelist *ndlp;
struct Scsi_Host *shost;
int active_vlink_present;
struct lpfc_vport **vports;
int i;
phba->fc_eventTag = acqe_fip->event_tag;
phba->fcoe_eventtag = acqe_fip->event_tag;
switch (event_type) {
case LPFC_FIP_EVENT_TYPE_NEW_FCF:
case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
LOG_DISCOVERY,
"2546 New FCF event, evt_tag:x%x, "
"index:x%x\n",
acqe_fip->event_tag,
acqe_fip->index);
else
lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
LOG_DISCOVERY,
"2788 FCF param modified event, "
"evt_tag:x%x, index:x%x\n",
acqe_fip->event_tag,
acqe_fip->index);
if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
/*
* During period of FCF discovery, read the FCF
* table record indexed by the event to update
* FCF roundrobin failover eligible FCF bmask.
*/
lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
LOG_DISCOVERY,
"2779 Read FCF (x%x) for updating "
"roundrobin FCF failover bmask\n",
acqe_fip->index);
rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
}
/* If the FCF discovery is in progress, do nothing. */
spin_lock_irq(&phba->hbalock);
if (phba->hba_flag & FCF_TS_INPROG) {
spin_unlock_irq(&phba->hbalock);
break;
}
/* If fast FCF failover rescan event is pending, do nothing */
if (phba->fcf.fcf_flag & FCF_REDISC_EVT) {
spin_unlock_irq(&phba->hbalock);
break;
}
/* If the FCF has been in discovered state, do nothing. */
if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
spin_unlock_irq(&phba->hbalock);
break;
}
spin_unlock_irq(&phba->hbalock);
/* Otherwise, scan the entire FCF table and re-discover SAN */
lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
"2770 Start FCF table scan per async FCF "
"event, evt_tag:x%x, index:x%x\n",
acqe_fip->event_tag, acqe_fip->index);
rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
LPFC_FCOE_FCF_GET_FIRST);
if (rc)
lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY,
"2547 Issue FCF scan read FCF mailbox "
"command failed (x%x)\n", rc);
break;
case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2548 FCF Table full count 0x%x tag 0x%x\n",
bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
acqe_fip->event_tag);
break;
case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY,
"2549 FCF (x%x) disconnected from network, "
"tag:x%x\n", acqe_fip->index, acqe_fip->event_tag);
/*
* If we are in the middle of FCF failover process, clear
* the corresponding FCF bit in the roundrobin bitmap.
*/
spin_lock_irq(&phba->hbalock);
if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
(phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
spin_unlock_irq(&phba->hbalock);
/* Update FLOGI FCF failover eligible FCF bmask */
lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
break;
}
spin_unlock_irq(&phba->hbalock);
/* If the event is not for currently used fcf do nothing */
if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
break;
/*
* Otherwise, request the port to rediscover the entire FCF
* table for a fast recovery from case that the current FCF
* is no longer valid as we are not in the middle of FCF
* failover process already.
*/
spin_lock_irq(&phba->hbalock);
/* Mark the fast failover process in progress */
phba->fcf.fcf_flag |= FCF_DEAD_DISC;
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
"2771 Start FCF fast failover process due to "
"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
"\n", acqe_fip->event_tag, acqe_fip->index);
rc = lpfc_sli4_redisc_fcf_table(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
LOG_DISCOVERY,
"2772 Issue FCF rediscover mabilbox "
"command failed, fail through to FCF "
"dead event\n");
spin_lock_irq(&phba->hbalock);
phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
spin_unlock_irq(&phba->hbalock);
/*
* Last resort will fail over by treating this
* as a link down to FCF registration.
*/
lpfc_sli4_fcf_dead_failthrough(phba);
} else {
/* Reset FCF roundrobin bmask for new discovery */
lpfc_sli4_clear_fcf_rr_bmask(phba);
/*
* Handling fast FCF failover to a DEAD FCF event is
* considered equalivant to receiving CVL to all vports.
*/
lpfc_sli4_perform_all_vport_cvl(phba);
}
break;
case LPFC_FIP_EVENT_TYPE_CVL:
phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY,
"2718 Clear Virtual Link Received for VPI 0x%x"
" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
vport = lpfc_find_vport_by_vpid(phba,
acqe_fip->index);
ndlp = lpfc_sli4_perform_vport_cvl(vport);
if (!ndlp)
break;
active_vlink_present = 0;
vports = lpfc_create_vport_work_array(phba);
if (vports) {
for (i = 0; i <= phba->max_vports && vports[i] != NULL;
i++) {
if ((!(vports[i]->fc_flag &
FC_VPORT_CVL_RCVD)) &&
(vports[i]->port_state > LPFC_FDISC)) {
active_vlink_present = 1;
break;
}
}
lpfc_destroy_vport_work_array(phba, vports);
}
/*
* Don't re-instantiate if vport is marked for deletion.
* If we are here first then vport_delete is going to wait
* for discovery to complete.
*/
if (!(vport->load_flag & FC_UNLOADING) &&
active_vlink_present) {
/*
* If there are other active VLinks present,
* re-instantiate the Vlink using FDISC.
*/
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000));
shost = lpfc_shost_from_vport(vport);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(shost->host_lock);
ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
vport->port_state = LPFC_FDISC;
} else {
/*
* Otherwise, we request port to rediscover
* the entire FCF table for a fast recovery
* from possible case that the current FCF
* is no longer valid if we are not already
* in the FCF failover process.
*/
spin_lock_irq(&phba->hbalock);
if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
spin_unlock_irq(&phba->hbalock);
break;
}
/* Mark the fast failover process in progress */
phba->fcf.fcf_flag |= FCF_ACVL_DISC;
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
LOG_DISCOVERY,
"2773 Start FCF failover per CVL, "
"evt_tag:x%x\n", acqe_fip->event_tag);
rc = lpfc_sli4_redisc_fcf_table(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
LOG_DISCOVERY,
"2774 Issue FCF rediscover "
"mabilbox command failed, "
"through to CVL event\n");
spin_lock_irq(&phba->hbalock);
phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
spin_unlock_irq(&phba->hbalock);
/*
* Last resort will be re-try on the
* the current registered FCF entry.
*/
lpfc_retry_pport_discovery(phba);
} else
/*
* Reset FCF roundrobin bmask for new
* discovery.
*/
lpfc_sli4_clear_fcf_rr_bmask(phba);
}
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0288 Unknown FCoE event type 0x%x event tag "
"0x%x\n", event_type, acqe_fip->event_tag);
break;
}
}
/**
* lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async dcbx completion queue entry.
*
* This routine is to handle the SLI4 asynchronous dcbx event.
**/
static void
lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
struct lpfc_acqe_dcbx *acqe_dcbx)
{
phba->fc_eventTag = acqe_dcbx->event_tag;
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0290 The SLI4 DCBX asynchronous event is not "
"handled yet\n");
}
/**
* lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async grp5 completion queue entry.
*
* This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
* is an asynchronous notified of a logical link speed change. The Port
* reports the logical link speed in units of 10Mbps.
**/
static void
lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
struct lpfc_acqe_grp5 *acqe_grp5)
{
uint16_t prev_ll_spd;
phba->fc_eventTag = acqe_grp5->event_tag;
phba->fcoe_eventtag = acqe_grp5->event_tag;
prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
phba->sli4_hba.link_state.logical_speed =
(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2789 GRP5 Async Event: Updating logical link speed "
"from %dMbps to %dMbps\n", prev_ll_spd,
phba->sli4_hba.link_state.logical_speed);
}
/**
* lpfc_sli4_async_event_proc - Process all the pending asynchronous event
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked by the worker thread to process all the pending
* SLI4 asynchronous events.
**/
void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event;
/* First, declare the async event has been handled */
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~ASYNC_EVENT;
spin_unlock_irq(&phba->hbalock);
/* Now, handle all the async events */
while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
/* Get the first event from the head of the event queue */
spin_lock_irq(&phba->hbalock);
list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
cq_event, struct lpfc_cq_event, list);
spin_unlock_irq(&phba->hbalock);
/* Process the asynchronous event */
switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
case LPFC_TRAILER_CODE_LINK:
lpfc_sli4_async_link_evt(phba,
&cq_event->cqe.acqe_link);
break;
case LPFC_TRAILER_CODE_FCOE:
lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
break;
case LPFC_TRAILER_CODE_DCBX:
lpfc_sli4_async_dcbx_evt(phba,
&cq_event->cqe.acqe_dcbx);
break;
case LPFC_TRAILER_CODE_GRP5:
lpfc_sli4_async_grp5_evt(phba,
&cq_event->cqe.acqe_grp5);
break;
case LPFC_TRAILER_CODE_FC:
lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
break;
case LPFC_TRAILER_CODE_SLI:
lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"1804 Invalid asynchrous event code: "
"x%x\n", bf_get(lpfc_trailer_code,
&cq_event->cqe.mcqe_cmpl));
break;
}
/* Free the completion event processed to the free pool */
lpfc_sli4_cq_event_release(phba, cq_event);
}
}
/**
* lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked by the worker thread to process FCF table
* rediscovery pending completion event.
**/
void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
{
int rc;
spin_lock_irq(&phba->hbalock);
/* Clear FCF rediscovery timeout event */
phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
/* Clear driver fast failover FCF record flag */
phba->fcf.failover_rec.flag = 0;
/* Set state for FCF fast failover */
phba->fcf.fcf_flag |= FCF_REDISC_FOV;
spin_unlock_irq(&phba->hbalock);
/* Scan FCF table from the first entry to re-discover SAN */
lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
"2777 Start post-quiescent FCF table scan\n");
rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
if (rc)
lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY,
"2747 Issue FCF scan read FCF mailbox "
"command failed 0x%x\n", rc);
}
/**
* lpfc_api_table_setup - Set up per hba pci-device group func api jump table
* @phba: pointer to lpfc hba data structure.
* @dev_grp: The HBA PCI-Device group number.
*
* This routine is invoked to set up the per HBA PCI-Device group function
* API jump table entries.
*
* Return: 0 if success, otherwise -ENODEV
**/
int
lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
{
int rc;
/* Set up lpfc PCI-device group */
phba->pci_dev_grp = dev_grp;
/* The LPFC_PCI_DEV_OC uses SLI4 */
if (dev_grp == LPFC_PCI_DEV_OC)
phba->sli_rev = LPFC_SLI_REV4;
/* Set up device INIT API function jump table */
rc = lpfc_init_api_table_setup(phba, dev_grp);
if (rc)
return -ENODEV;
/* Set up SCSI API function jump table */
rc = lpfc_scsi_api_table_setup(phba, dev_grp);
if (rc)
return -ENODEV;
/* Set up SLI API function jump table */
rc = lpfc_sli_api_table_setup(phba, dev_grp);
if (rc)
return -ENODEV;
/* Set up MBOX API function jump table */
rc = lpfc_mbox_api_table_setup(phba, dev_grp);
if (rc)
return -ENODEV;
return 0;
}
/**
* lpfc_log_intr_mode - Log the active interrupt mode
* @phba: pointer to lpfc hba data structure.
* @intr_mode: active interrupt mode adopted.
*
* This routine it invoked to log the currently used active interrupt mode
* to the device.
**/
static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
{
switch (intr_mode) {
case 0:
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0470 Enable INTx interrupt mode.\n");
break;
case 1:
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0481 Enabled MSI interrupt mode.\n");
break;
case 2:
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0480 Enabled MSI-X interrupt mode.\n");
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0482 Illegal interrupt mode.\n");
break;
}
return;
}
/**
* lpfc_enable_pci_dev - Enable a generic PCI device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the PCI device that is common to all
* PCI devices.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_enable_pci_dev(struct lpfc_hba *phba)
{
struct pci_dev *pdev;
/* Obtain PCI device reference */
if (!phba->pcidev)
goto out_error;
else
pdev = phba->pcidev;
/* Enable PCI device */
if (pci_enable_device_mem(pdev))
goto out_error;
/* Request PCI resource for the device */
if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
goto out_disable_device;
/* Set up device as PCI master and save state for EEH */
pci_set_master(pdev);
pci_try_set_mwi(pdev);
pci_save_state(pdev);
/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
if (pci_is_pcie(pdev))
pdev->needs_freset = 1;
return 0;
out_disable_device:
pci_disable_device(pdev);
out_error:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1401 Failed to enable pci device\n");
return -ENODEV;
}
/**
* lpfc_disable_pci_dev - Disable a generic PCI device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to disable the PCI device that is common to all
* PCI devices.
**/
static void
lpfc_disable_pci_dev(struct lpfc_hba *phba)
{
struct pci_dev *pdev;
/* Obtain PCI device reference */
if (!phba->pcidev)
return;
else
pdev = phba->pcidev;
/* Release PCI resource and disable PCI device */
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
return;
}
/**
* lpfc_reset_hba - Reset a hba
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to reset a hba device. It brings the HBA
* offline, performs a board restart, and then brings the board back
* online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
* on outstanding mailbox commands.
**/
void
lpfc_reset_hba(struct lpfc_hba *phba)
{
/* If resets are disabled then set error state and return. */
if (!phba->cfg_enable_hba_reset) {
phba->link_state = LPFC_HBA_ERROR;
return;
}
if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
else
lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
lpfc_offline(phba);
lpfc_sli_brdrestart(phba);
lpfc_online(phba);
lpfc_unblock_mgmt_io(phba);
}
/**
* lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
* @phba: pointer to lpfc hba data structure.
*
* This function enables the PCI SR-IOV virtual functions to a physical
* function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
* enable the number of virtual functions to the physical function. As
* not all devices support SR-IOV, the return code from the pci_enable_sriov()
* API call does not considered as an error condition for most of the device.
**/
uint16_t
lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
{
struct pci_dev *pdev = phba->pcidev;
uint16_t nr_virtfn;
int pos;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
if (pos == 0)
return 0;
pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
return nr_virtfn;
}
/**
* lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
* @phba: pointer to lpfc hba data structure.
* @nr_vfn: number of virtual functions to be enabled.
*
* This function enables the PCI SR-IOV virtual functions to a physical
* function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
* enable the number of virtual functions to the physical function. As
* not all devices support SR-IOV, the return code from the pci_enable_sriov()
* API call does not considered as an error condition for most of the device.
**/
int
lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
{
struct pci_dev *pdev = phba->pcidev;
uint16_t max_nr_vfn;
int rc;
max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
if (nr_vfn > max_nr_vfn) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3057 Requested vfs (%d) greater than "
"supported vfs (%d)", nr_vfn, max_nr_vfn);
return -EINVAL;
}
rc = pci_enable_sriov(pdev, nr_vfn);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"2806 Failed to enable sriov on this device "
"with vfn number nr_vf:%d, rc:%d\n",
nr_vfn, rc);
} else
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"2807 Successful enable sriov on this device "
"with vfn number nr_vf:%d\n", nr_vfn);
return rc;
}
/**
* lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the driver internal resources before the
* device specific resource setup to support the HBA device it attached to.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
/*
* Driver resources common to all SLI revisions
*/
atomic_set(&phba->fast_event_count, 0);
spin_lock_init(&phba->hbalock);
/* Initialize ndlp management spinlock */
spin_lock_init(&phba->ndlp_lock);
INIT_LIST_HEAD(&phba->port_list);
INIT_LIST_HEAD(&phba->work_list);
init_waitqueue_head(&phba->wait_4_mlo_m_q);
/* Initialize the wait queue head for the kernel thread */
init_waitqueue_head(&phba->work_waitq);
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"1403 Protocols supported %s %s %s\n",
((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
"SCSI" : " "),
((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
"NVME" : " "),
(phba->nvmet_support ? "NVMET" : " "));
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
/* Initialize the scsi buffer list used by driver for scsi IO */
spin_lock_init(&phba->scsi_buf_list_get_lock);
INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
spin_lock_init(&phba->scsi_buf_list_put_lock);
INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
}
if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
(phba->nvmet_support == 0)) {
/* Initialize the NVME buffer list used by driver for NVME IO */
spin_lock_init(&phba->nvme_buf_list_get_lock);
INIT_LIST_HEAD(&phba->lpfc_nvme_buf_list_get);
spin_lock_init(&phba->nvme_buf_list_put_lock);
INIT_LIST_HEAD(&phba->lpfc_nvme_buf_list_put);
}
/* Initialize the fabric iocb list */
INIT_LIST_HEAD(&phba->fabric_iocb_list);
/* Initialize list to save ELS buffers */
INIT_LIST_HEAD(&phba->elsbuf);
/* Initialize FCF connection rec list */
INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
/* Initialize OAS configuration list */
spin_lock_init(&phba->devicelock);
INIT_LIST_HEAD(&phba->luns);
/* MBOX heartbeat timer */
setup_timer(&psli->mbox_tmo, lpfc_mbox_timeout, (unsigned long)phba);
/* Fabric block timer */
setup_timer(&phba->fabric_block_timer, lpfc_fabric_block_timeout,
(unsigned long)phba);
/* EA polling mode timer */
setup_timer(&phba->eratt_poll, lpfc_poll_eratt,
(unsigned long)phba);
/* Heartbeat timer */
setup_timer(&phba->hb_tmofunc, lpfc_hb_timeout, (unsigned long)phba);
return 0;
}
/**
* lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the driver internal resources specific to
* support the SLI-3 HBA device it attached to.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
{
int rc;
/*
* Initialize timers used by driver
*/
/* FCP polling mode timer */
setup_timer(&phba->fcp_poll_timer, lpfc_poll_timeout,
(unsigned long)phba);
/* Host attention work mask setup */
phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
/* Get all the module params for configuring this host */
lpfc_get_cfgparam(phba);
/* Set up phase-1 common device driver resources */
rc = lpfc_setup_driver_resource_phase1(phba);
if (rc)
return -ENODEV;
if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) {
phba->menlo_flag |= HBA_MENLO_SUPPORT;
/* check for menlo minimum sg count */
if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT)
phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT;
}
if (!phba->sli.sli3_ring)
phba->sli.sli3_ring = kzalloc(LPFC_SLI3_MAX_RING *
sizeof(struct lpfc_sli_ring), GFP_KERNEL);
if (!phba->sli.sli3_ring)
return -ENOMEM;
/*
* Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
* used to create the sg_dma_buf_pool must be dynamically calculated.
*/
/* Initialize the host templates the configured values. */
lpfc_vport_template.sg_tablesize = phba->cfg_sg_seg_cnt;
lpfc_template_no_hr.sg_tablesize = phba->cfg_sg_seg_cnt;
lpfc_template.sg_tablesize = phba->cfg_sg_seg_cnt;
/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
if (phba->cfg_enable_bg) {
/*
* The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
* the FCP rsp, and a BDE for each. Sice we have no control
* over how many protection data segments the SCSI Layer
* will hand us (ie: there could be one for every block
* in the IO), we just allocate enough BDEs to accomidate
* our max amount and we need to limit lpfc_sg_seg_cnt to
* minimize the risk of running out.
*/
phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp) +
(LPFC_MAX_SG_SEG_CNT * sizeof(struct ulp_bde64));
if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
} else {
/*
* The scsi_buf for a regular I/O will hold the FCP cmnd,
* the FCP rsp, a BDE for each, and a BDE for up to
* cfg_sg_seg_cnt data segments.
*/
phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp) +
((phba->cfg_sg_seg_cnt + 2) * sizeof(struct ulp_bde64));
/* Total BDEs in BPL for scsi_sg_list */
phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
"9088 sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
phba->cfg_total_seg_cnt);
phba->max_vpi = LPFC_MAX_VPI;
/* This will be set to correct value after config_port mbox */
phba->max_vports = 0;
/*
* Initialize the SLI Layer to run with lpfc HBAs.
*/
lpfc_sli_setup(phba);
lpfc_sli_queue_init(phba);
/* Allocate device driver memory */
if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
return -ENOMEM;
/*
* Enable sr-iov virtual functions if supported and configured
* through the module parameter.
*/
if (phba->cfg_sriov_nr_virtfn > 0) {
rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
phba->cfg_sriov_nr_virtfn);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"2808 Requested number of SR-IOV "
"virtual functions (%d) is not "
"supported\n",
phba->cfg_sriov_nr_virtfn);
phba->cfg_sriov_nr_virtfn = 0;
}
}
return 0;
}
/**
* lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the driver internal resources set up
* specific for supporting the SLI-3 HBA device it attached to.
**/
static void
lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
{
/* Free device driver memory allocated */
lpfc_mem_free_all(phba);
return;
}
/**
* lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the driver internal resources specific to
* support the SLI-4 HBA device it attached to.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *mboxq;
MAILBOX_t *mb;
int rc, i, max_buf_size;
uint8_t pn_page[LPFC_MAX_SUPPORTED_PAGES] = {0};
struct lpfc_mqe *mqe;
int longs;
int fof_vectors = 0;
uint64_t wwn;
phba->sli4_hba.num_online_cpu = num_online_cpus();
phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
phba->sli4_hba.curr_disp_cpu = 0;
/* Get all the module params for configuring this host */
lpfc_get_cfgparam(phba);
/* Set up phase-1 common device driver resources */
rc = lpfc_setup_driver_resource_phase1(phba);
if (rc)
return -ENODEV;
/* Before proceed, wait for POST done and device ready */
rc = lpfc_sli4_post_status_check(phba);
if (rc)
return -ENODEV;
/*
* Initialize timers used by driver
*/
setup_timer(&phba->rrq_tmr, lpfc_rrq_timeout, (unsigned long)phba);
/* FCF rediscover timer */
setup_timer(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo,
(unsigned long)phba);
/*
* Control structure for handling external multi-buffer mailbox
* command pass-through.
*/
memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
sizeof(struct lpfc_mbox_ext_buf_ctx));
INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
phba->max_vpi = LPFC_MAX_VPI;
/* This will be set to correct value after the read_config mbox */
phba->max_vports = 0;
/* Program the default value of vlan_id and fc_map */
phba->valid_vlan = 0;
phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
/*
* For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
* we will associate a new ring, for each EQ/CQ/WQ tuple.
* The WQ create will allocate the ring.
*/
/*
* It doesn't matter what family our adapter is in, we are
* limited to 2 Pages, 512 SGEs, for our SGL.
* There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
*/
max_buf_size = (2 * SLI4_PAGE_SIZE);
if (phba->cfg_sg_seg_cnt > LPFC_MAX_SGL_SEG_CNT - 2)
phba->cfg_sg_seg_cnt = LPFC_MAX_SGL_SEG_CNT - 2;
/*
* Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
* used to create the sg_dma_buf_pool must be calculated.
*/
if (phba->cfg_enable_bg) {
/*
* The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
* the FCP rsp, and a SGE. Sice we have no control
* over how many protection segments the SCSI Layer
* will hand us (ie: there could be one for every block
* in the IO), just allocate enough SGEs to accomidate
* our max amount and we need to limit lpfc_sg_seg_cnt
* to minimize the risk of running out.
*/
phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp) + max_buf_size;
/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SLI4_SEG_CNT_DIF)
phba->cfg_sg_seg_cnt =
LPFC_MAX_SG_SLI4_SEG_CNT_DIF;
} else {
/*
* The scsi_buf for a regular I/O holds the FCP cmnd,
* the FCP rsp, a SGE for each, and a SGE for up to
* cfg_sg_seg_cnt data segments.
*/
phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp) +
((phba->cfg_sg_seg_cnt + 2) *
sizeof(struct sli4_sge));
/* Total SGEs for scsi_sg_list */
phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
/*
* NOTE: if (phba->cfg_sg_seg_cnt + 2) <= 256 we only
* need to post 1 page for the SGL.
*/
}
/* Initialize the host templates with the updated values. */
lpfc_vport_template.sg_tablesize = phba->cfg_sg_seg_cnt;
lpfc_template.sg_tablesize = phba->cfg_sg_seg_cnt;
lpfc_template_no_hr.sg_tablesize = phba->cfg_sg_seg_cnt;
if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ)
phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
else
phba->cfg_sg_dma_buf_size =
SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
"9087 sg_tablesize:%d dmabuf_size:%d total_sge:%d\n",
phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
phba->cfg_total_seg_cnt);
/* Initialize buffer queue management fields */
INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
/*
* Initialize the SLI Layer to run with lpfc SLI4 HBAs.
*/
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
/* Initialize the Abort scsi buffer list used by driver */
spin_lock_init(&phba->sli4_hba.abts_scsi_buf_list_lock);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_scsi_buf_list);
}
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
/* Initialize the Abort nvme buffer list used by driver */
spin_lock_init(&phba->sli4_hba.abts_nvme_buf_list_lock);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvme_buf_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
/* Fast-path XRI aborted CQ Event work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue);
}
/* This abort list used by worker thread */
spin_lock_init(&phba->sli4_hba.sgl_list_lock);
spin_lock_init(&phba->sli4_hba.nvmet_io_lock);
/*
* Initialize driver internal slow-path work queues
*/
/* Driver internel slow-path CQ Event pool */
INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
/* Response IOCB work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
/* Asynchronous event CQ Event work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
/* Fast-path XRI aborted CQ Event work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
/* Slow-path XRI aborted CQ Event work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
/* Receive queue CQ Event work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
/* Initialize extent block lists. */
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
/* Initialize mboxq lists. If the early init routines fail
* these lists need to be correctly initialized.
*/
INIT_LIST_HEAD(&phba->sli.mboxq);
INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
/* initialize optic_state to 0xFF */
phba->sli4_hba.lnk_info.optic_state = 0xff;
/* Allocate device driver memory */
rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
if (rc)
return -ENOMEM;
/* IF Type 2 ports get initialized now. */
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
LPFC_SLI_INTF_IF_TYPE_2) {
rc = lpfc_pci_function_reset(phba);
if (unlikely(rc)) {
rc = -ENODEV;
goto out_free_mem;
}
phba->temp_sensor_support = 1;
}
/* Create the bootstrap mailbox command */
rc = lpfc_create_bootstrap_mbox(phba);
if (unlikely(rc))
goto out_free_mem;
/* Set up the host's endian order with the device. */
rc = lpfc_setup_endian_order(phba);
if (unlikely(rc))
goto out_free_bsmbx;
/* Set up the hba's configuration parameters. */
rc = lpfc_sli4_read_config(phba);
if (unlikely(rc))
goto out_free_bsmbx;
rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
if (unlikely(rc))
goto out_free_bsmbx;
/* IF Type 0 ports get initialized now. */
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
LPFC_SLI_INTF_IF_TYPE_0) {
rc = lpfc_pci_function_reset(phba);
if (unlikely(rc))
goto out_free_bsmbx;
}
mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!mboxq) {
rc = -ENOMEM;
goto out_free_bsmbx;
}
/* Check for NVMET being configured */
phba->nvmet_support = 0;
if (lpfc_enable_nvmet_cnt) {
/* First get WWN of HBA instance */
lpfc_read_nv(phba, mboxq);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6016 Mailbox failed , mbxCmd x%x "
"READ_NV, mbxStatus x%x\n",
bf_get(lpfc_mqe_command, &mboxq->u.mqe),
bf_get(lpfc_mqe_status, &mboxq->u.mqe));
mempool_free(mboxq, phba->mbox_mem_pool);
rc = -EIO;
goto out_free_bsmbx;
}
mb = &mboxq->u.mb;
memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
sizeof(uint64_t));
wwn = cpu_to_be64(wwn);
phba->sli4_hba.wwnn.u.name = wwn;
memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
sizeof(uint64_t));
/* wwn is WWPN of HBA instance */
wwn = cpu_to_be64(wwn);
phba->sli4_hba.wwpn.u.name = wwn;
/* Check to see if it matches any module parameter */
for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
if (wwn == lpfc_enable_nvmet[i]) {
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6017 NVME Target %016llx\n",
wwn);
phba->nvmet_support = 1; /* a match */
#else
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6021 Can't enable NVME Target."
" NVME_TARGET_FC infrastructure"
" is not in kernel\n");
#endif
}
}
}
lpfc_nvme_mod_param_dep(phba);
/* Get the Supported Pages if PORT_CAPABILITIES is supported by port. */
lpfc_supported_pages(mboxq);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (!rc) {
mqe = &mboxq->u.mqe;
memcpy(&pn_page[0], ((uint8_t *)&mqe->un.supp_pages.word3),
LPFC_MAX_SUPPORTED_PAGES);
for (i = 0; i < LPFC_MAX_SUPPORTED_PAGES; i++) {
switch (pn_page[i]) {
case LPFC_SLI4_PARAMETERS:
phba->sli4_hba.pc_sli4_params.supported = 1;
break;
default:
break;
}
}
/* Read the port's SLI4 Parameters capabilities if supported. */
if (phba->sli4_hba.pc_sli4_params.supported)
rc = lpfc_pc_sli4_params_get(phba, mboxq);
if (rc) {
mempool_free(mboxq, phba->mbox_mem_pool);
rc = -EIO;
goto out_free_bsmbx;
}
}
/*
* Get sli4 parameters that override parameters from Port capabilities.
* If this call fails, it isn't critical unless the SLI4 parameters come
* back in conflict.
*/
rc = lpfc_get_sli4_parameters(phba, mboxq);
if (rc) {
if (phba->sli4_hba.extents_in_use &&
phba->sli4_hba.rpi_hdrs_in_use) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2999 Unsupported SLI4 Parameters "
"Extents and RPI headers enabled.\n");
}
mempool_free(mboxq, phba->mbox_mem_pool);
goto out_free_bsmbx;
}
mempool_free(mboxq, phba->mbox_mem_pool);
/* Verify OAS is supported */
lpfc_sli4_oas_verify(phba);
if (phba->cfg_fof)
fof_vectors = 1;
/* Verify all the SLI4 queues */
rc = lpfc_sli4_queue_verify(phba);
if (rc)
goto out_free_bsmbx;
/* Create driver internal CQE event pool */
rc = lpfc_sli4_cq_event_pool_create(phba);
if (rc)
goto out_free_bsmbx;
/* Initialize sgl lists per host */
lpfc_init_sgl_list(phba);
/* Allocate and initialize active sgl array */
rc = lpfc_init_active_sgl_array(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1430 Failed to initialize sgl list.\n");
goto out_destroy_cq_event_pool;
}
rc = lpfc_sli4_init_rpi_hdrs(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1432 Failed to initialize rpi headers.\n");
goto out_free_active_sgl;
}
/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
phba->fcf.fcf_rr_bmask = kzalloc(longs * sizeof(unsigned long),
GFP_KERNEL);
if (!phba->fcf.fcf_rr_bmask) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2759 Failed allocate memory for FCF round "
"robin failover bmask\n");
rc = -ENOMEM;
goto out_remove_rpi_hdrs;
}
phba->sli4_hba.hba_eq_hdl = kcalloc(fof_vectors + phba->io_channel_irqs,
sizeof(struct lpfc_hba_eq_hdl),
GFP_KERNEL);
if (!phba->sli4_hba.hba_eq_hdl) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2572 Failed allocate memory for "
"fast-path per-EQ handle array\n");
rc = -ENOMEM;
goto out_free_fcf_rr_bmask;
}
phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_present_cpu,
sizeof(struct lpfc_vector_map_info),
GFP_KERNEL);
if (!phba->sli4_hba.cpu_map) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3327 Failed allocate memory for msi-x "
"interrupt vector mapping\n");
rc = -ENOMEM;
goto out_free_hba_eq_hdl;
}
if (lpfc_used_cpu == NULL) {
lpfc_used_cpu = kcalloc(lpfc_present_cpu, sizeof(uint16_t),
GFP_KERNEL);
if (!lpfc_used_cpu) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3335 Failed allocate memory for msi-x "
"interrupt vector mapping\n");
kfree(phba->sli4_hba.cpu_map);
rc = -ENOMEM;
goto out_free_hba_eq_hdl;
}
for (i = 0; i < lpfc_present_cpu; i++)
lpfc_used_cpu[i] = LPFC_VECTOR_MAP_EMPTY;
}
/*
* Enable sr-iov virtual functions if supported and configured
* through the module parameter.
*/
if (phba->cfg_sriov_nr_virtfn > 0) {
rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
phba->cfg_sriov_nr_virtfn);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3020 Requested number of SR-IOV "
"virtual functions (%d) is not "
"supported\n",
phba->cfg_sriov_nr_virtfn);
phba->cfg_sriov_nr_virtfn = 0;
}
}
return 0;
out_free_hba_eq_hdl:
kfree(phba->sli4_hba.hba_eq_hdl);
out_free_fcf_rr_bmask:
kfree(phba->fcf.fcf_rr_bmask);
out_remove_rpi_hdrs:
lpfc_sli4_remove_rpi_hdrs(phba);
out_free_active_sgl:
lpfc_free_active_sgl(phba);
out_destroy_cq_event_pool:
lpfc_sli4_cq_event_pool_destroy(phba);
out_free_bsmbx:
lpfc_destroy_bootstrap_mbox(phba);
out_free_mem:
lpfc_mem_free(phba);
return rc;
}
/**
* lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the driver internal resources set up
* specific for supporting the SLI-4 HBA device it attached to.
**/
static void
lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
{
struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
/* Free memory allocated for msi-x interrupt vector to CPU mapping */
kfree(phba->sli4_hba.cpu_map);
phba->sli4_hba.num_present_cpu = 0;
phba->sli4_hba.num_online_cpu = 0;
phba->sli4_hba.curr_disp_cpu = 0;
/* Free memory allocated for fast-path work queue handles */
kfree(phba->sli4_hba.hba_eq_hdl);
/* Free the allocated rpi headers. */
lpfc_sli4_remove_rpi_hdrs(phba);
lpfc_sli4_remove_rpis(phba);
/* Free eligible FCF index bmask */
kfree(phba->fcf.fcf_rr_bmask);
/* Free the ELS sgl list */
lpfc_free_active_sgl(phba);
lpfc_free_els_sgl_list(phba);
lpfc_free_nvmet_sgl_list(phba);
/* Free the completion queue EQ event pool */
lpfc_sli4_cq_event_release_all(phba);
lpfc_sli4_cq_event_pool_destroy(phba);
/* Release resource identifiers. */
lpfc_sli4_dealloc_resource_identifiers(phba);
/* Free the bsmbx region. */
lpfc_destroy_bootstrap_mbox(phba);
/* Free the SLI Layer memory with SLI4 HBAs */
lpfc_mem_free_all(phba);
/* Free the current connect table */
list_for_each_entry_safe(conn_entry, next_conn_entry,
&phba->fcf_conn_rec_list, list) {
list_del_init(&conn_entry->list);
kfree(conn_entry);
}
return;
}
/**
* lpfc_init_api_table_setup - Set up init api function jump table
* @phba: The hba struct for which this call is being executed.
* @dev_grp: The HBA PCI-Device group number.
*
* This routine sets up the device INIT interface API function jump table
* in @phba struct.
*
* Returns: 0 - success, -ENODEV - failure.
**/
int
lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
{
phba->lpfc_hba_init_link = lpfc_hba_init_link;
phba->lpfc_hba_down_link = lpfc_hba_down_link;
phba->lpfc_selective_reset = lpfc_selective_reset;
switch (dev_grp) {
case LPFC_PCI_DEV_LP:
phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
phba->lpfc_stop_port = lpfc_stop_port_s3;
break;
case LPFC_PCI_DEV_OC:
phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
phba->lpfc_stop_port = lpfc_stop_port_s4;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1431 Invalid HBA PCI-device group: 0x%x\n",
dev_grp);
return -ENODEV;
break;
}
return 0;
}
/**
* lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the driver internal resources after the
* device specific resource setup to support the HBA device it attached to.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
{
int error;
/* Startup the kernel thread for this host adapter. */
phba->worker_thread = kthread_run(lpfc_do_work, phba,
"lpfc_worker_%d", phba->brd_no);
if (IS_ERR(phba->worker_thread)) {
error = PTR_ERR(phba->worker_thread);
return error;
}
return 0;
}
/**
* lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the driver internal resources set up after
* the device specific resource setup for supporting the HBA device it
* attached to.
**/
static void
lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
{
/* Stop kernel worker thread */
kthread_stop(phba->worker_thread);
}
/**
* lpfc_free_iocb_list - Free iocb list.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to free the driver's IOCB list and memory.
**/
static void
lpfc_free_iocb_list(struct lpfc_hba *phba)
{
struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
spin_lock_irq(&phba->hbalock);
list_for_each_entry_safe(iocbq_entry, iocbq_next,
&phba->lpfc_iocb_list, list) {
list_del(&iocbq_entry->list);
kfree(iocbq_entry);
phba->total_iocbq_bufs--;
}
spin_unlock_irq(&phba->hbalock);
return;
}
/**
* lpfc_init_iocb_list - Allocate and initialize iocb list.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate and initizlize the driver's IOCB
* list and set up the IOCB tag array accordingly.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
{
struct lpfc_iocbq *iocbq_entry = NULL;
uint16_t iotag;
int i;
/* Initialize and populate the iocb list per host. */
INIT_LIST_HEAD(&phba->lpfc_iocb_list);
for (i = 0; i < iocb_count; i++) {
iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
if (iocbq_entry == NULL) {
printk(KERN_ERR "%s: only allocated %d iocbs of "
"expected %d count. Unloading driver.\n",
__func__, i, LPFC_IOCB_LIST_CNT);
goto out_free_iocbq;
}
iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
if (iotag == 0) {
kfree(iocbq_entry);
printk(KERN_ERR "%s: failed to allocate IOTAG. "
"Unloading driver.\n", __func__);
goto out_free_iocbq;
}
iocbq_entry->sli4_lxritag = NO_XRI;
iocbq_entry->sli4_xritag = NO_XRI;
spin_lock_irq(&phba->hbalock);
list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
phba->total_iocbq_bufs++;
spin_unlock_irq(&phba->hbalock);
}
return 0;
out_free_iocbq:
lpfc_free_iocb_list(phba);
return -ENOMEM;
}
/**
* lpfc_free_sgl_list - Free a given sgl list.
* @phba: pointer to lpfc hba data structure.
* @sglq_list: pointer to the head of sgl list.
*
* This routine is invoked to free a give sgl list and memory.
**/
void
lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
{
struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
list_del(&sglq_entry->list);
lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
kfree(sglq_entry);
}
}
/**
* lpfc_free_els_sgl_list - Free els sgl list.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to free the driver's els sgl list and memory.
**/
static void
lpfc_free_els_sgl_list(struct lpfc_hba *phba)
{
LIST_HEAD(sglq_list);
/* Retrieve all els sgls from driver list */
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
/* Now free the sgl list */
lpfc_free_sgl_list(phba, &sglq_list);
}
/**
* lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to free the driver's nvmet sgl list and memory.
**/
static void
lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
{
struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
LIST_HEAD(sglq_list);
/* Retrieve all nvmet sgls from driver list */
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
/* Now free the sgl list */
list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
list_del(&sglq_entry->list);
lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
kfree(sglq_entry);
}
}
/**
* lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate the driver's active sgl memory.
* This array will hold the sglq_entry's for active IOs.
**/
static int
lpfc_init_active_sgl_array(struct lpfc_hba *phba)
{
int size;
size = sizeof(struct lpfc_sglq *);
size *= phba->sli4_hba.max_cfg_param.max_xri;
phba->sli4_hba.lpfc_sglq_active_list =
kzalloc(size, GFP_KERNEL);
if (!phba->sli4_hba.lpfc_sglq_active_list)
return -ENOMEM;
return 0;
}
/**
* lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to walk through the array of active sglq entries
* and free all of the resources.
* This is just a place holder for now.
**/
static void
lpfc_free_active_sgl(struct lpfc_hba *phba)
{
kfree(phba->sli4_hba.lpfc_sglq_active_list);
}
/**
* lpfc_init_sgl_list - Allocate and initialize sgl list.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate and initizlize the driver's sgl
* list and set up the sgl xritag tag array accordingly.
*
**/
static void
lpfc_init_sgl_list(struct lpfc_hba *phba)
{
/* Initialize and populate the sglq list per host/VF. */
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
/* els xri-sgl book keeping */
phba->sli4_hba.els_xri_cnt = 0;
/* scsi xri-buffer book keeping */
phba->sli4_hba.scsi_xri_cnt = 0;
/* nvme xri-buffer book keeping */
phba->sli4_hba.nvme_xri_cnt = 0;
}
/**
* lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to post rpi header templates to the
* port for those SLI4 ports that do not support extents. This routine
* posts a PAGE_SIZE memory region to the port to hold up to
* PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine
* and should be called only when interrupts are disabled.
*
* Return codes
* 0 - successful
* -ERROR - otherwise.
**/
int
lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
{
int rc = 0;
struct lpfc_rpi_hdr *rpi_hdr;
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
if (!phba->sli4_hba.rpi_hdrs_in_use)
return rc;
if (phba->sli4_hba.extents_in_use)
return -EIO;
rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
if (!rpi_hdr) {
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
"0391 Error during rpi post operation\n");
lpfc_sli4_remove_rpis(phba);
rc = -ENODEV;
}
return rc;
}
/**
* lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate a single 4KB memory region to
* support rpis and stores them in the phba. This single region
* provides support for up to 64 rpis. The region is used globally
* by the device.
*
* Returns:
* A valid rpi hdr on success.
* A NULL pointer on any failure.
**/
struct lpfc_rpi_hdr *
lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
{
uint16_t rpi_limit, curr_rpi_range;
struct lpfc_dmabuf *dmabuf;
struct lpfc_rpi_hdr *rpi_hdr;
uint32_t rpi_count;
/*
* If the SLI4 port supports extents, posting the rpi header isn't
* required. Set the expected maximum count and let the actual value
* get set when extents are fully allocated.
*/
if (!phba->sli4_hba.rpi_hdrs_in_use)
return NULL;
if (phba->sli4_hba.extents_in_use)
return NULL;
/* The limit on the logical index is just the max_rpi count. */
rpi_limit = phba->sli4_hba.max_cfg_param.rpi_base +
phba->sli4_hba.max_cfg_param.max_rpi - 1;
spin_lock_irq(&phba->hbalock);
/*
* Establish the starting RPI in this header block. The starting
* rpi is normalized to a zero base because the physical rpi is
* port based.
*/
curr_rpi_range = phba->sli4_hba.next_rpi;
spin_unlock_irq(&phba->hbalock);
/*
* The port has a limited number of rpis. The increment here
* is LPFC_RPI_HDR_COUNT - 1 to account for the starting value
* and to allow the full max_rpi range per port.
*/
if ((curr_rpi_range + (LPFC_RPI_HDR_COUNT - 1)) > rpi_limit)
rpi_count = rpi_limit - curr_rpi_range;
else
rpi_count = LPFC_RPI_HDR_COUNT;
if (!rpi_count)
return NULL;
/*
* First allocate the protocol header region for the port. The
* port expects a 4KB DMA-mapped memory region that is 4K aligned.
*/
dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!dmabuf)
return NULL;
dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev,
LPFC_HDR_TEMPLATE_SIZE,
&dmabuf->phys, GFP_KERNEL);
if (!dmabuf->virt) {
rpi_hdr = NULL;
goto err_free_dmabuf;
}
if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
rpi_hdr = NULL;
goto err_free_coherent;
}
/* Save the rpi header data for cleanup later. */
rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
if (!rpi_hdr)
goto err_free_coherent;
rpi_hdr->dmabuf = dmabuf;
rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
rpi_hdr->page_count = 1;
spin_lock_irq(&phba->hbalock);
/* The rpi_hdr stores the logical index only. */
rpi_hdr->start_rpi = curr_rpi_range;
list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
/*
* The next_rpi stores the next logical module-64 rpi value used
* to post physical rpis in subsequent rpi postings.
*/
phba->sli4_hba.next_rpi += rpi_count;
spin_unlock_irq(&phba->hbalock);
return rpi_hdr;
err_free_coherent:
dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
dmabuf->virt, dmabuf->phys);
err_free_dmabuf:
kfree(dmabuf);
return NULL;
}
/**
* lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to remove all memory resources allocated
* to support rpis for SLI4 ports not supporting extents. This routine
* presumes the caller has released all rpis consumed by fabric or port
* logins and is prepared to have the header pages removed.
**/
void
lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
{
struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
if (!phba->sli4_hba.rpi_hdrs_in_use)
goto exit;
list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
&phba->sli4_hba.lpfc_rpi_hdr_list, list) {
list_del(&rpi_hdr->list);
dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
kfree(rpi_hdr->dmabuf);
kfree(rpi_hdr);
}
exit:
/* There are no rpis available to the port now. */
phba->sli4_hba.next_rpi = 0;
}
/**
* lpfc_hba_alloc - Allocate driver hba data structure for a device.
* @pdev: pointer to pci device data structure.
*
* This routine is invoked to allocate the driver hba data structure for an
* HBA device. If the allocation is successful, the phba reference to the
* PCI device data structure is set.
*
* Return codes
* pointer to @phba - successful
* NULL - error
**/
static struct lpfc_hba *
lpfc_hba_alloc(struct pci_dev *pdev)
{
struct lpfc_hba *phba;
/* Allocate memory for HBA structure */
phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
if (!phba) {
dev_err(&pdev->dev, "failed to allocate hba struct\n");
return NULL;
}
/* Set reference to PCI device in HBA structure */
phba->pcidev = pdev;
/* Assign an unused board number */
phba->brd_no = lpfc_get_instance();
if (phba->brd_no < 0) {
kfree(phba);
return NULL;
}
phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
spin_lock_init(&phba->ct_ev_lock);
INIT_LIST_HEAD(&phba->ct_ev_waiters);
return phba;
}
/**
* lpfc_hba_free - Free driver hba data structure with a device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to free the driver hba data structure with an
* HBA device.
**/
static void
lpfc_hba_free(struct lpfc_hba *phba)
{
/* Release the driver assigned board number */
idr_remove(&lpfc_hba_index, phba->brd_no);
/* Free memory allocated with sli3 rings */
kfree(phba->sli.sli3_ring);
phba->sli.sli3_ring = NULL;
kfree(phba);
return;
}
/**
* lpfc_create_shost - Create hba physical port with associated scsi host.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to create HBA physical port and associate a SCSI
* host with it.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_create_shost(struct lpfc_hba *phba)
{
struct lpfc_vport *vport;
struct Scsi_Host *shost;
/* Initialize HBA FC structure */
phba->fc_edtov = FF_DEF_EDTOV;
phba->fc_ratov = FF_DEF_RATOV;
phba->fc_altov = FF_DEF_ALTOV;
phba->fc_arbtov = FF_DEF_ARBTOV;
atomic_set(&phba->sdev_cnt, 0);
vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
if (!vport)
return -ENODEV;
shost = lpfc_shost_from_vport(vport);
phba->pport = vport;
if (phba->nvmet_support) {
/* Only 1 vport (pport) will support NVME target */
if (phba->txrdy_payload_pool == NULL) {
phba->txrdy_payload_pool = pci_pool_create(
"txrdy_pool", phba->pcidev,
TXRDY_PAYLOAD_LEN, 16, 0);
if (phba->txrdy_payload_pool) {
phba->targetport = NULL;
phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
lpfc_printf_log(phba, KERN_INFO,
LOG_INIT | LOG_NVME_DISC,
"6076 NVME Target Found\n");
}
}
}
lpfc_debugfs_initialize(vport);
/* Put reference to SCSI host to driver's device private data */
pci_set_drvdata(phba->pcidev, shost);
/*
* At this point we are fully registered with PSA. In addition,
* any initial discovery should be completed.
*/
vport->load_flag |= FC_ALLOW_FDMI;
if (phba->cfg_enable_SmartSAN ||
(phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) {
/* Setup appropriate attribute masks */
vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
if (phba->cfg_enable_SmartSAN)
vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
else
vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
}
return 0;
}
/**
* lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to destroy HBA physical port and the associated
* SCSI host.
**/
static void
lpfc_destroy_shost(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
/* Destroy physical port that associated with the SCSI host */
destroy_port(vport);
return;
}
/**
* lpfc_setup_bg - Setup Block guard structures and debug areas.
* @phba: pointer to lpfc hba data structure.
* @shost: the shost to be used to detect Block guard settings.
*
* This routine sets up the local Block guard protocol settings for @shost.
* This routine also allocates memory for debugging bg buffers.
**/
static void
lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
{
uint32_t old_mask;
uint32_t old_guard;
int pagecnt = 10;
if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"1478 Registering BlockGuard with the "
"SCSI layer\n");
old_mask = phba->cfg_prot_mask;
old_guard = phba->cfg_prot_guard;
/* Only allow supported values */
phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
SHOST_DIX_TYPE0_PROTECTION |
SHOST_DIX_TYPE1_PROTECTION);
phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
SHOST_DIX_GUARD_CRC);
/* DIF Type 1 protection for profiles AST1/C1 is end to end */
if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
if ((old_mask != phba->cfg_prot_mask) ||
(old_guard != phba->cfg_prot_guard))
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1475 Registering BlockGuard with the "
"SCSI layer: mask %d guard %d\n",
phba->cfg_prot_mask,
phba->cfg_prot_guard);
scsi_host_set_prot(shost, phba->cfg_prot_mask);
scsi_host_set_guard(shost, phba->cfg_prot_guard);
} else
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1479 Not Registering BlockGuard with the SCSI "
"layer, Bad protection parameters: %d %d\n",
old_mask, old_guard);
}
if (!_dump_buf_data) {
while (pagecnt) {
spin_lock_init(&_dump_buf_lock);
_dump_buf_data =
(char *) __get_free_pages(GFP_KERNEL, pagecnt);
if (_dump_buf_data) {
lpfc_printf_log(phba, KERN_ERR, LOG_BG,
"9043 BLKGRD: allocated %d pages for "
"_dump_buf_data at 0x%p\n",
(1 << pagecnt), _dump_buf_data);
_dump_buf_data_order = pagecnt;
memset(_dump_buf_data, 0,
((1 << PAGE_SHIFT) << pagecnt));
break;
} else
--pagecnt;
}
if (!_dump_buf_data_order)
lpfc_printf_log(phba, KERN_ERR, LOG_BG,
"9044 BLKGRD: ERROR unable to allocate "
"memory for hexdump\n");
} else
lpfc_printf_log(phba, KERN_ERR, LOG_BG,
"9045 BLKGRD: already allocated _dump_buf_data=0x%p"
"\n", _dump_buf_data);
if (!_dump_buf_dif) {
while (pagecnt) {
_dump_buf_dif =
(char *) __get_free_pages(GFP_KERNEL, pagecnt);
if (_dump_buf_dif) {
lpfc_printf_log(phba, KERN_ERR, LOG_BG,
"9046 BLKGRD: allocated %d pages for "
"_dump_buf_dif at 0x%p\n",
(1 << pagecnt), _dump_buf_dif);
_dump_buf_dif_order = pagecnt;
memset(_dump_buf_dif, 0,
((1 << PAGE_SHIFT) << pagecnt));
break;
} else
--pagecnt;
}
if (!_dump_buf_dif_order)
lpfc_printf_log(phba, KERN_ERR, LOG_BG,
"9047 BLKGRD: ERROR unable to allocate "
"memory for hexdump\n");
} else
lpfc_printf_log(phba, KERN_ERR, LOG_BG,
"9048 BLKGRD: already allocated _dump_buf_dif=0x%p\n",
_dump_buf_dif);
}
/**
* lpfc_post_init_setup - Perform necessary device post initialization setup.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to perform all the necessary post initialization
* setup for the device.
**/
static void
lpfc_post_init_setup(struct lpfc_hba *phba)
{
struct Scsi_Host *shost;
struct lpfc_adapter_event_header adapter_event;
/* Get the default values for Model Name and Description */
lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
/*
* hba setup may have changed the hba_queue_depth so we need to
* adjust the value of can_queue.
*/
shost = pci_get_drvdata(phba->pcidev);
shost->can_queue = phba->cfg_hba_queue_depth - 10;
if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
lpfc_setup_bg(phba, shost);
lpfc_host_attrib_init(shost);
if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
spin_lock_irq(shost->host_lock);
lpfc_poll_start_timer(phba);
spin_unlock_irq(shost->host_lock);
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0428 Perform SCSI scan\n");
/* Send board arrival event to upper layer */
adapter_event.event_type = FC_REG_ADAPTER_EVENT;
adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(adapter_event),
(char *) &adapter_event,
LPFC_NL_VENDOR_ID);
return;
}
/**
* lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the PCI device memory space for device
* with SLI-3 interface spec.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
{
struct pci_dev *pdev;
unsigned long bar0map_len, bar2map_len;
int i, hbq_count;
void *ptr;
int error = -ENODEV;
/* Obtain PCI device reference */
if (!phba->pcidev)
return error;
else
pdev = phba->pcidev;
/* Set the device DMA mask size */
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0
|| pci_set_consistent_dma_mask(pdev,DMA_BIT_MASK(64)) != 0) {
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0
|| pci_set_consistent_dma_mask(pdev,DMA_BIT_MASK(32)) != 0) {
return error;
}
}
/* Get the bus address of Bar0 and Bar2 and the number of bytes
* required by each mapping.
*/
phba->pci_bar0_map = pci_resource_start(pdev, 0);
bar0map_len = pci_resource_len(pdev, 0);
phba->pci_bar2_map = pci_resource_start(pdev, 2);
bar2map_len = pci_resource_len(pdev, 2);
/* Map HBA SLIM to a kernel virtual address. */
phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
if (!phba->slim_memmap_p) {
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for SLIM memory.\n");
goto out;
}
/* Map HBA Control Registers to a kernel virtual address. */
phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
if (!phba->ctrl_regs_memmap_p) {
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for HBA control registers.\n");
goto out_iounmap_slim;
}
/* Allocate memory for SLI-2 structures */
phba->slim2p.virt = dma_zalloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
&phba->slim2p.phys, GFP_KERNEL);
if (!phba->slim2p.virt)
goto out_iounmap;
phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
phba->mbox_ext = (phba->slim2p.virt +
offsetof(struct lpfc_sli2_slim, mbx_ext_words));
phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
phba->IOCBs = (phba->slim2p.virt +
offsetof(struct lpfc_sli2_slim, IOCBs));
phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
lpfc_sli_hbq_size(),
&phba->hbqslimp.phys,
GFP_KERNEL);
if (!phba->hbqslimp.virt)
goto out_free_slim;
hbq_count = lpfc_sli_hbq_count();
ptr = phba->hbqslimp.virt;
for (i = 0; i < hbq_count; ++i) {
phba->hbqs[i].hbq_virt = ptr;
INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
ptr += (lpfc_hbq_defs[i]->entry_count *
sizeof(struct lpfc_hbq_entry));
}
phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
phba->MBslimaddr = phba->slim_memmap_p;
phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
return 0;
out_free_slim:
dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
phba->slim2p.virt, phba->slim2p.phys);
out_iounmap:
iounmap(phba->ctrl_regs_memmap_p);
out_iounmap_slim:
iounmap(phba->slim_memmap_p);
out:
return error;
}
/**
* lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the PCI device memory space for device
* with SLI-3 interface spec.
**/
static void
lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
{
struct pci_dev *pdev;
/* Obtain PCI device reference */
if (!phba->pcidev)
return;
else
pdev = phba->pcidev;
/* Free coherent DMA memory allocated */
dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
phba->hbqslimp.virt, phba->hbqslimp.phys);
dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
phba->slim2p.virt, phba->slim2p.phys);
/* I/O memory unmap */
iounmap(phba->ctrl_regs_memmap_p);
iounmap(phba->slim_memmap_p);
return;
}
/**
* lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to wait for SLI4 device Power On Self Test (POST)
* done and check status.
*
* Return 0 if successful, otherwise -ENODEV.
**/
int
lpfc_sli4_post_status_check(struct lpfc_hba *phba)
{
struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
struct lpfc_register reg_data;
int i, port_error = 0;
uint32_t if_type;
memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
memset(&reg_data, 0, sizeof(reg_data));
if (!phba->sli4_hba.PSMPHRregaddr)
return -ENODEV;
/* Wait up to 30 seconds for the SLI Port POST done and ready */
for (i = 0; i < 3000; i++) {
if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
&portsmphr_reg.word0) ||
(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
/* Port has a fatal POST error, break out */
port_error = -ENODEV;
break;
}
if (LPFC_POST_STAGE_PORT_READY ==
bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
break;
msleep(10);
}
/*
* If there was a port error during POST, then don't proceed with
* other register reads as the data may not be valid. Just exit.
*/
if (port_error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1408 Port Failed POST - portsmphr=0x%x, "
"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
portsmphr_reg.word0,
bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
} else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2534 Device Info: SLIFamily=0x%x, "
"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
"SLIHint_2=0x%x, FT=0x%x\n",
bf_get(lpfc_sli_intf_sli_family,
&phba->sli4_hba.sli_intf),
bf_get(lpfc_sli_intf_slirev,
&phba->sli4_hba.sli_intf),
bf_get(lpfc_sli_intf_if_type,
&phba->sli4_hba.sli_intf),
bf_get(lpfc_sli_intf_sli_hint1,
&phba->sli4_hba.sli_intf),
bf_get(lpfc_sli_intf_sli_hint2,
&phba->sli4_hba.sli_intf),
bf_get(lpfc_sli_intf_func_type,
&phba->sli4_hba.sli_intf));
/*
* Check for other Port errors during the initialization
* process. Fail the load if the port did not come up
* correctly.
*/
if_type = bf_get(lpfc_sli_intf_if_type,
&phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
phba->sli4_hba.ue_mask_lo =
readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
phba->sli4_hba.ue_mask_hi =
readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
uerrlo_reg.word0 =
readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
uerrhi_reg.word0 =
readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
(~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1422 Unrecoverable Error "
"Detected during POST "
"uerr_lo_reg=0x%x, "
"uerr_hi_reg=0x%x, "
"ue_mask_lo_reg=0x%x, "
"ue_mask_hi_reg=0x%x\n",
uerrlo_reg.word0,
uerrhi_reg.word0,
phba->sli4_hba.ue_mask_lo,
phba->sli4_hba.ue_mask_hi);
port_error = -ENODEV;
}
break;
case LPFC_SLI_INTF_IF_TYPE_2:
/* Final checks. The port status should be clean. */
if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
&reg_data.word0) ||
(bf_get(lpfc_sliport_status_err, &reg_data) &&
!bf_get(lpfc_sliport_status_rn, &reg_data))) {
phba->work_status[0] =
readl(phba->sli4_hba.u.if_type2.
ERR1regaddr);
phba->work_status[1] =
readl(phba->sli4_hba.u.if_type2.
ERR2regaddr);
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2888 Unrecoverable port error "
"following POST: port status reg "
"0x%x, port_smphr reg 0x%x, "
"error 1=0x%x, error 2=0x%x\n",
reg_data.word0,
portsmphr_reg.word0,
phba->work_status[0],
phba->work_status[1]);
port_error = -ENODEV;
}
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
break;
}
}
return port_error;
}
/**
* lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
* @phba: pointer to lpfc hba data structure.
* @if_type: The SLI4 interface type getting configured.
*
* This routine is invoked to set up SLI4 BAR0 PCI config space register
* memory map.
**/
static void
lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
{
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
phba->sli4_hba.u.if_type0.UERRLOregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
phba->sli4_hba.u.if_type0.UERRHIregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
phba->sli4_hba.SLIINTFregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
break;
case LPFC_SLI_INTF_IF_TYPE_2:
phba->sli4_hba.u.if_type2.ERR1regaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_ER1_OFFSET;
phba->sli4_hba.u.if_type2.ERR2regaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_ER2_OFFSET;
phba->sli4_hba.u.if_type2.CTRLregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_CTL_OFFSET;
phba->sli4_hba.u.if_type2.STATUSregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_STA_OFFSET;
phba->sli4_hba.SLIINTFregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
phba->sli4_hba.PSMPHRregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_SEM_OFFSET;
phba->sli4_hba.RQDBregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_ULP0_RQ_DOORBELL;
phba->sli4_hba.WQDBregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_ULP0_WQ_DOORBELL;
phba->sli4_hba.EQCQDBregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
phba->sli4_hba.MQDBregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
phba->sli4_hba.BMBXregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
dev_printk(KERN_ERR, &phba->pcidev->dev,
"FATAL - unsupported SLI4 interface type - %d\n",
if_type);
break;
}
}
/**
* lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up SLI4 BAR1 control status register (CSR)
* memory map.
**/
static void
lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba)
{
phba->sli4_hba.PSMPHRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
LPFC_SLIPORT_IF0_SMPHR;
phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
LPFC_HST_ISR0;
phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
LPFC_HST_IMR0;
phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
LPFC_HST_ISCR0;
}
/**
* lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
* @phba: pointer to lpfc hba data structure.
* @vf: virtual function number
*
* This routine is invoked to set up SLI4 BAR2 doorbell register memory map
* based on the given viftual function number, @vf.
*
* Return 0 if successful, otherwise -ENODEV.
**/
static int
lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
{
if (vf > LPFC_VIR_FUNC_MAX)
return -ENODEV;
phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
vf * LPFC_VFR_PAGE_SIZE +
LPFC_ULP0_RQ_DOORBELL);
phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
vf * LPFC_VFR_PAGE_SIZE +
LPFC_ULP0_WQ_DOORBELL);
phba->sli4_hba.EQCQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
vf * LPFC_VFR_PAGE_SIZE + LPFC_EQCQ_DOORBELL);
phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
return 0;
}
/**
* lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to create the bootstrap mailbox
* region consistent with the SLI-4 interface spec. This
* routine allocates all memory necessary to communicate
* mailbox commands to the port and sets up all alignment
* needs. No locks are expected to be held when calling
* this routine.
*
* Return codes
* 0 - successful
* -ENOMEM - could not allocated memory.
**/
static int
lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
{
uint32_t bmbx_size;
struct lpfc_dmabuf *dmabuf;
struct dma_address *dma_address;
uint32_t pa_addr;
uint64_t phys_addr;
dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!dmabuf)
return -ENOMEM;
/*
* The bootstrap mailbox region is comprised of 2 parts
* plus an alignment restriction of 16 bytes.
*/
bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, bmbx_size,
&dmabuf->phys, GFP_KERNEL);
if (!dmabuf->virt) {
kfree(dmabuf);
return -ENOMEM;
}
/*
* Initialize the bootstrap mailbox pointers now so that the register
* operations are simple later. The mailbox dma address is required
* to be 16-byte aligned. Also align the virtual memory as each
* maibox is copied into the bmbx mailbox region before issuing the
* command to the port.
*/
phba->sli4_hba.bmbx.dmabuf = dmabuf;
phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
LPFC_ALIGN_16_BYTE);
phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
LPFC_ALIGN_16_BYTE);
/*
* Set the high and low physical addresses now. The SLI4 alignment
* requirement is 16 bytes and the mailbox is posted to the port
* as two 30-bit addresses. The other data is a bit marking whether
* the 30-bit address is the high or low address.
* Upcast bmbx aphys to 64bits so shift instruction compiles
* clean on 32 bit machines.
*/
dma_address = &phba->sli4_hba.bmbx.dma_address;
phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
LPFC_BMBX_BIT1_ADDR_HI);
pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
LPFC_BMBX_BIT1_ADDR_LO);
return 0;
}
/**
* lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to teardown the bootstrap mailbox
* region and release all host resources. This routine requires
* the caller to ensure all mailbox commands recovered, no
* additional mailbox comands are sent, and interrupts are disabled
* before calling this routine.
*
**/
static void
lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
{
dma_free_coherent(&phba->pcidev->dev,
phba->sli4_hba.bmbx.bmbx_size,
phba->sli4_hba.bmbx.dmabuf->virt,
phba->sli4_hba.bmbx.dmabuf->phys);
kfree(phba->sli4_hba.bmbx.dmabuf);
memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
}
/**
* lpfc_sli4_read_config - Get the config parameters.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to read the configuration parameters from the HBA.
* The configuration parameters are used to set the base and maximum values
* for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
* allocation for the port.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
int
lpfc_sli4_read_config(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *pmb;
struct lpfc_mbx_read_config *rd_config;
union lpfc_sli4_cfg_shdr *shdr;
uint32_t shdr_status, shdr_add_status;
struct lpfc_mbx_get_func_cfg *get_func_cfg;
struct lpfc_rsrc_desc_fcfcoe *desc;
char *pdesc_0;
uint16_t forced_link_speed;
uint32_t if_type;
int length, i, rc = 0, rc2;
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2011 Unable to allocate memory for issuing "
"SLI_CONFIG_SPECIAL mailbox command\n");
return -ENOMEM;
}
lpfc_read_config(phba, pmb);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2012 Mailbox failed , mbxCmd x%x "
"READ_CONFIG, mbxStatus x%x\n",
bf_get(lpfc_mqe_command, &pmb->u.mqe),
bf_get(lpfc_mqe_status, &pmb->u.mqe));
rc = -EIO;
} else {
rd_config = &pmb->u.mqe.un.rd_config;
if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
phba->sli4_hba.lnk_info.lnk_tp =
bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
phba->sli4_hba.lnk_info.lnk_no =
bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3081 lnk_type:%d, lnk_numb:%d\n",
phba->sli4_hba.lnk_info.lnk_tp,
phba->sli4_hba.lnk_info.lnk_no);
} else
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"3082 Mailbox (x%x) returned ldv:x0\n",
bf_get(lpfc_mqe_command, &pmb->u.mqe));
phba->sli4_hba.extents_in_use =
bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
phba->sli4_hba.max_cfg_param.max_xri =
bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
phba->sli4_hba.max_cfg_param.xri_base =
bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
phba->sli4_hba.max_cfg_param.max_vpi =
bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
phba->sli4_hba.max_cfg_param.vpi_base =
bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
phba->sli4_hba.max_cfg_param.max_rpi =
bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
phba->sli4_hba.max_cfg_param.rpi_base =
bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
phba->sli4_hba.max_cfg_param.max_vfi =
bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
phba->sli4_hba.max_cfg_param.vfi_base =
bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
phba->sli4_hba.max_cfg_param.max_fcfi =
bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
phba->sli4_hba.max_cfg_param.max_eq =
bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
phba->sli4_hba.max_cfg_param.max_rq =
bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
phba->sli4_hba.max_cfg_param.max_wq =
bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
phba->sli4_hba.max_cfg_param.max_cq =
bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
phba->max_vports = phba->max_vpi;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2003 cfg params Extents? %d "
"XRI(B:%d M:%d), "
"VPI(B:%d M:%d) "
"VFI(B:%d M:%d) "
"RPI(B:%d M:%d) "
"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d\n",
phba->sli4_hba.extents_in_use,
phba->sli4_hba.max_cfg_param.xri_base,
phba->sli4_hba.max_cfg_param.max_xri,
phba->sli4_hba.max_cfg_param.vpi_base,
phba->sli4_hba.max_cfg_param.max_vpi,
phba->sli4_hba.max_cfg_param.vfi_base,
phba->sli4_hba.max_cfg_param.max_vfi,
phba->sli4_hba.max_cfg_param.rpi_base,
phba->sli4_hba.max_cfg_param.max_rpi,
phba->sli4_hba.max_cfg_param.max_fcfi,
phba->sli4_hba.max_cfg_param.max_eq,
phba->sli4_hba.max_cfg_param.max_cq,
phba->sli4_hba.max_cfg_param.max_wq,
phba->sli4_hba.max_cfg_param.max_rq);
}
if (rc)
goto read_cfg_out;
/* Update link speed if forced link speed is supported */
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
forced_link_speed =
bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
if (forced_link_speed) {
phba->hba_flag |= HBA_FORCED_LINK_SPEED;
switch (forced_link_speed) {
case LINK_SPEED_1G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_1G;
break;
case LINK_SPEED_2G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_2G;
break;
case LINK_SPEED_4G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_4G;
break;
case LINK_SPEED_8G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_8G;
break;
case LINK_SPEED_10G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_10G;
break;
case LINK_SPEED_16G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_16G;
break;
case LINK_SPEED_32G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_32G;
break;
case 0xffff:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_AUTO;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0047 Unrecognized link "
"speed : %d\n",
forced_link_speed);
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_AUTO;
}
}
}
/* Reset the DFT_HBA_Q_DEPTH to the max xri */
length = phba->sli4_hba.max_cfg_param.max_xri -
lpfc_sli4_get_els_iocb_cnt(phba);
if (phba->cfg_hba_queue_depth > length) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3361 HBA queue depth changed from %d to %d\n",
phba->cfg_hba_queue_depth, length);
phba->cfg_hba_queue_depth = length;
}
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) !=
LPFC_SLI_INTF_IF_TYPE_2)
goto read_cfg_out;
/* get the pf# and vf# for SLI4 if_type 2 port */
length = (sizeof(struct lpfc_mbx_get_func_cfg) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
length, LPFC_SLI4_MBX_EMBED);
rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *)
&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (rc2 || shdr_status || shdr_add_status) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"3026 Mailbox failed , mbxCmd x%x "
"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
bf_get(lpfc_mqe_command, &pmb->u.mqe),
bf_get(lpfc_mqe_status, &pmb->u.mqe));
goto read_cfg_out;
}
/* search for fc_fcoe resrouce descriptor */
get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
goto read_cfg_out;
for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
phba->sli4_hba.iov.pf_number =
bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
phba->sli4_hba.iov.vf_number =
bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
break;
}
}
if (i < LPFC_RSRC_DESC_MAX_NUM)
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
phba->sli4_hba.iov.vf_number);
else
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"3028 GET_FUNCTION_CONFIG: failed to find "
"Resrouce Descriptor:x%x\n",
LPFC_RSRC_DESC_TYPE_FCFCOE);
read_cfg_out:
mempool_free(pmb, phba->mbox_mem_pool);
return rc;
}
/**
* lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to setup the port-side endian order when
* the port if_type is 0. This routine has no function for other
* if_types.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
static int
lpfc_setup_endian_order(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *mboxq;
uint32_t if_type, rc = 0;
uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
HOST_ENDIAN_HIGH_WORD1};
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0492 Unable to allocate memory for "
"issuing SLI_CONFIG_SPECIAL mailbox "
"command\n");
return -ENOMEM;
}
/*
* The SLI4_CONFIG_SPECIAL mailbox command requires the first
* two words to contain special data values and no other data.
*/
memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0493 SLI_CONFIG_SPECIAL mailbox "
"failed with status x%x\n",
rc);
rc = -EIO;
}
mempool_free(mboxq, phba->mbox_mem_pool);
break;
case LPFC_SLI_INTF_IF_TYPE_2:
case LPFC_SLI_INTF_IF_TYPE_1:
default:
break;
}
return rc;
}
/**
* lpfc_sli4_queue_verify - Verify and update EQ counts
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to check the user settable queue counts for EQs.
* After this routine is called the counts will be set to valid values that
* adhere to the constraints of the system's interrupt vectors and the port's
* queue resources.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
**/
static int
lpfc_sli4_queue_verify(struct lpfc_hba *phba)
{
int io_channel;
int fof_vectors = phba->cfg_fof ? 1 : 0;
/*
* Sanity check for configured queue parameters against the run-time
* device parameters
*/
/* Sanity check on HBA EQ parameters */
io_channel = phba->io_channel_irqs;
if (phba->sli4_hba.num_online_cpu < io_channel) {
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"3188 Reducing IO channels to match number of "
"online CPUs: from %d to %d\n",
io_channel, phba->sli4_hba.num_online_cpu);
io_channel = phba->sli4_hba.num_online_cpu;
}
if (io_channel + fof_vectors > phba->sli4_hba.max_cfg_param.max_eq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2575 Reducing IO channels to match number of "
"available EQs: from %d to %d\n",
io_channel,
phba->sli4_hba.max_cfg_param.max_eq);
io_channel = phba->sli4_hba.max_cfg_param.max_eq - fof_vectors;
}
/* The actual number of FCP / NVME event queues adopted */
if (io_channel != phba->io_channel_irqs)
phba->io_channel_irqs = io_channel;
if (phba->cfg_fcp_io_channel > io_channel)
phba->cfg_fcp_io_channel = io_channel;
if (phba->cfg_nvme_io_channel > io_channel)
phba->cfg_nvme_io_channel = io_channel;
if (phba->cfg_nvme_io_channel < phba->cfg_nvmet_mrq)
phba->cfg_nvmet_mrq = phba->cfg_nvme_io_channel;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2574 IO channels: irqs %d fcp %d nvme %d MRQ: %d\n",
phba->io_channel_irqs, phba->cfg_fcp_io_channel,
phba->cfg_nvme_io_channel, phba->cfg_nvmet_mrq);
/* Get EQ depth from module parameter, fake the default for now */
phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
/* Get CQ depth from module parameter, fake the default for now */
phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
return 0;
}
static int
lpfc_alloc_nvme_wq_cq(struct lpfc_hba *phba, int wqidx)
{
struct lpfc_queue *qdesc;
int cnt;
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0508 Failed allocate fast-path NVME CQ (%d)\n",
wqidx);
return 1;
}
phba->sli4_hba.nvme_cq[wqidx] = qdesc;
cnt = LPFC_NVME_WQSIZE;
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_WQE128_SIZE, cnt);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0509 Failed allocate fast-path NVME WQ (%d)\n",
wqidx);
return 1;
}
phba->sli4_hba.nvme_wq[wqidx] = qdesc;
list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
return 0;
}
static int
lpfc_alloc_fcp_wq_cq(struct lpfc_hba *phba, int wqidx)
{
struct lpfc_queue *qdesc;
uint32_t wqesize;
/* Create Fast Path FCP CQs */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0499 Failed allocate fast-path FCP CQ (%d)\n", wqidx);
return 1;
}
phba->sli4_hba.fcp_cq[wqidx] = qdesc;
/* Create Fast Path FCP WQs */
wqesize = (phba->fcp_embed_io) ?
LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
qdesc = lpfc_sli4_queue_alloc(phba, wqesize, phba->sli4_hba.wq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0503 Failed allocate fast-path FCP WQ (%d)\n",
wqidx);
return 1;
}
phba->sli4_hba.fcp_wq[wqidx] = qdesc;
list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
return 0;
}
/**
* lpfc_sli4_queue_create - Create all the SLI4 queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
* operation. For each SLI4 queue type, the parameters such as queue entry
* count (queue depth) shall be taken from the module parameter. For now,
* we just use some constant number as place holder.
*
* Return codes
* 0 - successful
* -ENOMEM - No availble memory
* -EIO - The mailbox failed to complete successfully.
**/
int
lpfc_sli4_queue_create(struct lpfc_hba *phba)
{
struct lpfc_queue *qdesc;
int idx, io_channel;
/*
* Create HBA Record arrays.
* Both NVME and FCP will share that same vectors / EQs
*/
io_channel = phba->io_channel_irqs;
if (!io_channel)
return -ERANGE;
phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
phba->sli4_hba.hba_eq = kcalloc(io_channel,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.hba_eq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2576 Failed allocate memory for "
"fast-path EQ record array\n");
goto out_error;
}
if (phba->cfg_fcp_io_channel) {
phba->sli4_hba.fcp_cq = kcalloc(phba->cfg_fcp_io_channel,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.fcp_cq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2577 Failed allocate memory for "
"fast-path CQ record array\n");
goto out_error;
}
phba->sli4_hba.fcp_wq = kcalloc(phba->cfg_fcp_io_channel,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.fcp_wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2578 Failed allocate memory for "
"fast-path FCP WQ record array\n");
goto out_error;
}
/*
* Since the first EQ can have multiple CQs associated with it,
* this array is used to quickly see if we have a FCP fast-path
* CQ match.
*/
phba->sli4_hba.fcp_cq_map = kcalloc(phba->cfg_fcp_io_channel,
sizeof(uint16_t),
GFP_KERNEL);
if (!phba->sli4_hba.fcp_cq_map) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2545 Failed allocate memory for "
"fast-path CQ map\n");
goto out_error;
}
}
if (phba->cfg_nvme_io_channel) {
phba->sli4_hba.nvme_cq = kcalloc(phba->cfg_nvme_io_channel,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.nvme_cq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6077 Failed allocate memory for "
"fast-path CQ record array\n");
goto out_error;
}
phba->sli4_hba.nvme_wq = kcalloc(phba->cfg_nvme_io_channel,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.nvme_wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2581 Failed allocate memory for "
"fast-path NVME WQ record array\n");
goto out_error;
}
/*
* Since the first EQ can have multiple CQs associated with it,
* this array is used to quickly see if we have a NVME fast-path
* CQ match.
*/
phba->sli4_hba.nvme_cq_map = kcalloc(phba->cfg_nvme_io_channel,
sizeof(uint16_t),
GFP_KERNEL);
if (!phba->sli4_hba.nvme_cq_map) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6078 Failed allocate memory for "
"fast-path CQ map\n");
goto out_error;
}
if (phba->nvmet_support) {
phba->sli4_hba.nvmet_cqset = kcalloc(
phba->cfg_nvmet_mrq,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.nvmet_cqset) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3121 Fail allocate memory for "
"fast-path CQ set array\n");
goto out_error;
}
phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
phba->cfg_nvmet_mrq,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.nvmet_mrq_hdr) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3122 Fail allocate memory for "
"fast-path RQ set hdr array\n");
goto out_error;
}
phba->sli4_hba.nvmet_mrq_data = kcalloc(
phba->cfg_nvmet_mrq,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.nvmet_mrq_data) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3124 Fail allocate memory for "
"fast-path RQ set data array\n");
goto out_error;
}
}
}
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
/* Create HBA Event Queues (EQs) */
for (idx = 0; idx < io_channel; idx++) {
/* Create EQs */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.eq_esize,
phba->sli4_hba.eq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0497 Failed allocate EQ (%d)\n", idx);
goto out_error;
}
phba->sli4_hba.hba_eq[idx] = qdesc;
}
/* FCP and NVME io channels are not required to be balanced */
for (idx = 0; idx < phba->cfg_fcp_io_channel; idx++)
if (lpfc_alloc_fcp_wq_cq(phba, idx))
goto out_error;
for (idx = 0; idx < phba->cfg_nvme_io_channel; idx++)
if (lpfc_alloc_nvme_wq_cq(phba, idx))
goto out_error;
if (phba->nvmet_support) {
for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
qdesc = lpfc_sli4_queue_alloc(phba,
phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3142 Failed allocate NVME "
"CQ Set (%d)\n", idx);
goto out_error;
}
phba->sli4_hba.nvmet_cqset[idx] = qdesc;
}
}
/*
* Create Slow Path Completion Queues (CQs)
*/
/* Create slow-path Mailbox Command Complete Queue */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0500 Failed allocate slow-path mailbox CQ\n");
goto out_error;
}
phba->sli4_hba.mbx_cq = qdesc;
/* Create slow-path ELS Complete Queue */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0501 Failed allocate slow-path ELS CQ\n");
goto out_error;
}
phba->sli4_hba.els_cq = qdesc;
/*
* Create Slow Path Work Queues (WQs)
*/
/* Create Mailbox Command Queue */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.mq_esize,
phba->sli4_hba.mq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0505 Failed allocate slow-path MQ\n");
goto out_error;
}
phba->sli4_hba.mbx_wq = qdesc;
/*
* Create ELS Work Queues
*/
/* Create slow-path ELS Work Queue */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.wq_esize,
phba->sli4_hba.wq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0504 Failed allocate slow-path ELS WQ\n");
goto out_error;
}
phba->sli4_hba.els_wq = qdesc;
list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
/* Create NVME LS Complete Queue */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6079 Failed allocate NVME LS CQ\n");
goto out_error;
}
phba->sli4_hba.nvmels_cq = qdesc;
/* Create NVME LS Work Queue */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.wq_esize,
phba->sli4_hba.wq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6080 Failed allocate NVME LS WQ\n");
goto out_error;
}
phba->sli4_hba.nvmels_wq = qdesc;
list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
}
/*
* Create Receive Queue (RQ)
*/
/* Create Receive Queue for header */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.rq_esize,
phba->sli4_hba.rq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0506 Failed allocate receive HRQ\n");
goto out_error;
}
phba->sli4_hba.hdr_rq = qdesc;
/* Create Receive Queue for data */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.rq_esize,
phba->sli4_hba.rq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0507 Failed allocate receive DRQ\n");
goto out_error;
}
phba->sli4_hba.dat_rq = qdesc;
if (phba->nvmet_support) {
for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
/* Create NVMET Receive Queue for header */
qdesc = lpfc_sli4_queue_alloc(phba,
phba->sli4_hba.rq_esize,
phba->sli4_hba.rq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3146 Failed allocate "
"receive HRQ\n");
goto out_error;
}
phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
/* Only needed for header of RQ pair */
qdesc->rqbp = kzalloc(sizeof(struct lpfc_rqb),
GFP_KERNEL);
if (qdesc->rqbp == NULL) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6131 Failed allocate "
"Header RQBP\n");
goto out_error;
}
/* Create NVMET Receive Queue for data */
qdesc = lpfc_sli4_queue_alloc(phba,
phba->sli4_hba.rq_esize,
phba->sli4_hba.rq_ecount);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3156 Failed allocate "
"receive DRQ\n");
goto out_error;
}
phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
}
}
/* Create the Queues needed for Flash Optimized Fabric operations */
if (phba->cfg_fof)
lpfc_fof_queue_create(phba);
return 0;
out_error:
lpfc_sli4_queue_destroy(phba);
return -ENOMEM;
}
static inline void
__lpfc_sli4_release_queue(struct lpfc_queue **qp)
{
if (*qp != NULL) {
lpfc_sli4_queue_free(*qp);
*qp = NULL;
}
}
static inline void
lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
{
int idx;
if (*qs == NULL)
return;
for (idx = 0; idx < max; idx++)
__lpfc_sli4_release_queue(&(*qs)[idx]);
kfree(*qs);
*qs = NULL;
}
static inline void
lpfc_sli4_release_queue_map(uint16_t **qmap)
{
if (*qmap != NULL) {
kfree(*qmap);
*qmap = NULL;
}
}
/**
* lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to release all the SLI4 queues with the FCoE HBA
* operation.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
void
lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
{
if (phba->cfg_fof)
lpfc_fof_queue_destroy(phba);
/* Release HBA eqs */
lpfc_sli4_release_queues(&phba->sli4_hba.hba_eq, phba->io_channel_irqs);
/* Release FCP cqs */
lpfc_sli4_release_queues(&phba->sli4_hba.fcp_cq,
phba->cfg_fcp_io_channel);
/* Release FCP wqs */
lpfc_sli4_release_queues(&phba->sli4_hba.fcp_wq,
phba->cfg_fcp_io_channel);
/* Release FCP CQ mapping array */
lpfc_sli4_release_queue_map(&phba->sli4_hba.fcp_cq_map);
/* Release NVME cqs */
lpfc_sli4_release_queues(&phba->sli4_hba.nvme_cq,
phba->cfg_nvme_io_channel);
/* Release NVME wqs */
lpfc_sli4_release_queues(&phba->sli4_hba.nvme_wq,
phba->cfg_nvme_io_channel);
/* Release NVME CQ mapping array */
lpfc_sli4_release_queue_map(&phba->sli4_hba.nvme_cq_map);
lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
phba->cfg_nvmet_mrq);
lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
phba->cfg_nvmet_mrq);
lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
phba->cfg_nvmet_mrq);
/* Release mailbox command work queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
/* Release ELS work queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
/* Release ELS work queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
/* Release unsolicited receive queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
/* Release ELS complete queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
/* Release NVME LS complete queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
/* Release mailbox command complete queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
/* Everything on this list has been freed */
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
}
int
lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
struct lpfc_queue *drq, int count)
{
int rc, i;
struct lpfc_rqe hrqe;
struct lpfc_rqe drqe;
struct lpfc_rqb *rqbp;
struct rqb_dmabuf *rqb_buffer;
LIST_HEAD(rqb_buf_list);
rqbp = hrq->rqbp;
for (i = 0; i < count; i++) {
rqb_buffer = (rqbp->rqb_alloc_buffer)(phba);
if (!rqb_buffer)
break;
rqb_buffer->hrq = hrq;
rqb_buffer->drq = drq;
list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
}
while (!list_empty(&rqb_buf_list)) {
list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
hbuf.list);
hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
if (rc < 0) {
(rqbp->rqb_free_buffer)(phba, rqb_buffer);
} else {
list_add_tail(&rqb_buffer->hbuf.list,
&rqbp->rqb_buffer_list);
rqbp->buffer_count++;
}
}
return 1;
}
int
lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
{
struct lpfc_rqb *rqbp;
struct lpfc_dmabuf *h_buf;
struct rqb_dmabuf *rqb_buffer;
rqbp = rq->rqbp;
while (!list_empty(&rqbp->rqb_buffer_list)) {
list_remove_head(&rqbp->rqb_buffer_list, h_buf,
struct lpfc_dmabuf, list);
rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
(rqbp->rqb_free_buffer)(phba, rqb_buffer);
rqbp->buffer_count--;
}
return 1;
}
static int
lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
int qidx, uint32_t qtype)
{
struct lpfc_sli_ring *pring;
int rc;
if (!eq || !cq || !wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6085 Fast-path %s (%d) not allocated\n",
((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
return -ENOMEM;
}
/* create the Cq first */
rc = lpfc_cq_create(phba, cq, eq,
(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6086 Failed setup of CQ (%d), rc = 0x%x\n",
qidx, (uint32_t)rc);
return rc;
}
if (qtype != LPFC_MBOX) {
/* Setup nvme_cq_map for fast lookup */
if (cq_map)
*cq_map = cq->queue_id;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
qidx, cq->queue_id, qidx, eq->queue_id);
/* create the wq */
rc = lpfc_wq_create(phba, wq, cq, qtype);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6123 Fail setup fastpath WQ (%d), rc = 0x%x\n",
qidx, (uint32_t)rc);
/* no need to tear down cq - caller will do so */
return rc;
}
/* Bind this CQ/WQ to the NVME ring */
pring = wq->pring;
pring->sli.sli4.wqp = (void *)wq;
cq->pring = pring;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
} else {
rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0539 Failed setup of slow-path MQ: "
"rc = 0x%x\n", rc);
/* no need to tear down cq - caller will do so */
return rc;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
phba->sli4_hba.mbx_wq->queue_id,
phba->sli4_hba.mbx_cq->queue_id);
}
return 0;
}
/**
* lpfc_sli4_queue_setup - Set up all the SLI4 queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up all the SLI4 queues for the FCoE HBA
* operation.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
int
lpfc_sli4_queue_setup(struct lpfc_hba *phba)
{
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
LPFC_MBOXQ_t *mboxq;
int qidx;
uint32_t length, io_channel;
int rc = -ENOMEM;
/* Check for dual-ULP support */
mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3249 Unable to allocate memory for "
"QUERY_FW_CFG mailbox command\n");
return -ENOMEM;
}
length = (sizeof(struct lpfc_mbx_query_fw_config) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_QUERY_FW_CFG,
length, LPFC_SLI4_MBX_EMBED);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *)
&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3250 QUERY_FW_CFG mailbox failed with status "
"x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
if (rc != MBX_TIMEOUT)
mempool_free(mboxq, phba->mbox_mem_pool);
rc = -ENXIO;
goto out_error;
}
phba->sli4_hba.fw_func_mode =
mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
phba->sli4_hba.physical_port =
mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
if (rc != MBX_TIMEOUT)
mempool_free(mboxq, phba->mbox_mem_pool);
/*
* Set up HBA Event Queues (EQs)
*/
io_channel = phba->io_channel_irqs;
/* Set up HBA event queue */
if (io_channel && !phba->sli4_hba.hba_eq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3147 Fast-path EQs not allocated\n");
rc = -ENOMEM;
goto out_error;
}
for (qidx = 0; qidx < io_channel; qidx++) {
if (!phba->sli4_hba.hba_eq[qidx]) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0522 Fast-path EQ (%d) not "
"allocated\n", qidx);
rc = -ENOMEM;
goto out_destroy;
}
rc = lpfc_eq_create(phba, phba->sli4_hba.hba_eq[qidx],
phba->cfg_fcp_imax);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0523 Failed setup of fast-path EQ "
"(%d), rc = 0x%x\n", qidx,
(uint32_t)rc);
goto out_destroy;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2584 HBA EQ setup: queue[%d]-id=%d\n",
qidx, phba->sli4_hba.hba_eq[qidx]->queue_id);
}
if (phba->cfg_nvme_io_channel) {
if (!phba->sli4_hba.nvme_cq || !phba->sli4_hba.nvme_wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6084 Fast-path NVME %s array not allocated\n",
(phba->sli4_hba.nvme_cq) ? "CQ" : "WQ");
rc = -ENOMEM;
goto out_destroy;
}
for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) {
rc = lpfc_create_wq_cq(phba,
phba->sli4_hba.hba_eq[
qidx % io_channel],
phba->sli4_hba.nvme_cq[qidx],
phba->sli4_hba.nvme_wq[qidx],
&phba->sli4_hba.nvme_cq_map[qidx],
qidx, LPFC_NVME);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6123 Failed to setup fastpath "
"NVME WQ/CQ (%d), rc = 0x%x\n",
qidx, (uint32_t)rc);
goto out_destroy;
}
}
}
if (phba->cfg_fcp_io_channel) {
/* Set up fast-path FCP Response Complete Queue */
if (!phba->sli4_hba.fcp_cq || !phba->sli4_hba.fcp_wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3148 Fast-path FCP %s array not allocated\n",
phba->sli4_hba.fcp_cq ? "WQ" : "CQ");
rc = -ENOMEM;
goto out_destroy;
}
for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) {
rc = lpfc_create_wq_cq(phba,
phba->sli4_hba.hba_eq[
qidx % io_channel],
phba->sli4_hba.fcp_cq[qidx],
phba->sli4_hba.fcp_wq[qidx],
&phba->sli4_hba.fcp_cq_map[qidx],
qidx, LPFC_FCP);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0535 Failed to setup fastpath "
"FCP WQ/CQ (%d), rc = 0x%x\n",
qidx, (uint32_t)rc);
goto out_destroy;
}
}
}
/*
* Set up Slow Path Complete Queues (CQs)
*/
/* Set up slow-path MBOX CQ/MQ */
if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0528 %s not allocated\n",
phba->sli4_hba.mbx_cq ?
"Mailbox WQ" : "Mailbox CQ");
rc = -ENOMEM;
goto out_destroy;
}
rc = lpfc_create_wq_cq(phba, phba->sli4_hba.hba_eq[0],
phba->sli4_hba.mbx_cq,
phba->sli4_hba.mbx_wq,
NULL, 0, LPFC_MBOX);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
(uint32_t)rc);
goto out_destroy;
}
if (phba->nvmet_support) {
if (!phba->sli4_hba.nvmet_cqset) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3165 Fast-path NVME CQ Set "
"array not allocated\n");
rc = -ENOMEM;
goto out_destroy;
}
if (phba->cfg_nvmet_mrq > 1) {
rc = lpfc_cq_create_set(phba,
phba->sli4_hba.nvmet_cqset,
phba->sli4_hba.hba_eq,
LPFC_WCQ, LPFC_NVMET);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3164 Failed setup of NVME CQ "
"Set, rc = 0x%x\n",
(uint32_t)rc);
goto out_destroy;
}
} else {
/* Set up NVMET Receive Complete Queue */
rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
phba->sli4_hba.hba_eq[0],
LPFC_WCQ, LPFC_NVMET);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6089 Failed setup NVMET CQ: "
"rc = 0x%x\n", (uint32_t)rc);
goto out_destroy;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"6090 NVMET CQ setup: cq-id=%d, "
"parent eq-id=%d\n",
phba->sli4_hba.nvmet_cqset[0]->queue_id,
phba->sli4_hba.hba_eq[0]->queue_id);
}
}
/* Set up slow-path ELS WQ/CQ */
if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0530 ELS %s not allocated\n",
phba->sli4_hba.els_cq ? "WQ" : "CQ");
rc = -ENOMEM;
goto out_destroy;
}
rc = lpfc_create_wq_cq(phba, phba->sli4_hba.hba_eq[0],
phba->sli4_hba.els_cq,
phba->sli4_hba.els_wq,
NULL, 0, LPFC_ELS);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0529 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
(uint32_t)rc);
goto out_destroy;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
phba->sli4_hba.els_wq->queue_id,
phba->sli4_hba.els_cq->queue_id);
if (phba->cfg_nvme_io_channel) {
/* Set up NVME LS Complete Queue */
if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6091 LS %s not allocated\n",
phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
rc = -ENOMEM;
goto out_destroy;
}
rc = lpfc_create_wq_cq(phba, phba->sli4_hba.hba_eq[0],
phba->sli4_hba.nvmels_cq,
phba->sli4_hba.nvmels_wq,
NULL, 0, LPFC_NVME_LS);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0529 Failed setup of NVVME LS WQ/CQ: "
"rc = 0x%x\n", (uint32_t)rc);
goto out_destroy;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"6096 ELS WQ setup: wq-id=%d, "
"parent cq-id=%d\n",
phba->sli4_hba.nvmels_wq->queue_id,
phba->sli4_hba.nvmels_cq->queue_id);
}
/*
* Create NVMET Receive Queue (RQ)
*/
if (phba->nvmet_support) {
if ((!phba->sli4_hba.nvmet_cqset) ||
(!phba->sli4_hba.nvmet_mrq_hdr) ||
(!phba->sli4_hba.nvmet_mrq_data)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6130 MRQ CQ Queues not "
"allocated\n");
rc = -ENOMEM;
goto out_destroy;
}
if (phba->cfg_nvmet_mrq > 1) {
rc = lpfc_mrq_create(phba,
phba->sli4_hba.nvmet_mrq_hdr,
phba->sli4_hba.nvmet_mrq_data,
phba->sli4_hba.nvmet_cqset,
LPFC_NVMET);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6098 Failed setup of NVMET "
"MRQ: rc = 0x%x\n",
(uint32_t)rc);
goto out_destroy;
}
} else {
rc = lpfc_rq_create(phba,
phba->sli4_hba.nvmet_mrq_hdr[0],
phba->sli4_hba.nvmet_mrq_data[0],
phba->sli4_hba.nvmet_cqset[0],
LPFC_NVMET);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6057 Failed setup of NVMET "
"Receive Queue: rc = 0x%x\n",
(uint32_t)rc);
goto out_destroy;
}
lpfc_printf_log(
phba, KERN_INFO, LOG_INIT,
"6099 NVMET RQ setup: hdr-rq-id=%d, "
"dat-rq-id=%d parent cq-id=%d\n",
phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
phba->sli4_hba.nvmet_cqset[0]->queue_id);
}
}
if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0540 Receive Queue not allocated\n");
rc = -ENOMEM;
goto out_destroy;
}
lpfc_rq_adjust_repost(phba, phba->sli4_hba.hdr_rq, LPFC_ELS_HBQ);
lpfc_rq_adjust_repost(phba, phba->sli4_hba.dat_rq, LPFC_ELS_HBQ);
rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
phba->sli4_hba.els_cq, LPFC_USOL);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0541 Failed setup of Receive Queue: "
"rc = 0x%x\n", (uint32_t)rc);
goto out_destroy;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
"parent cq-id=%d\n",
phba->sli4_hba.hdr_rq->queue_id,
phba->sli4_hba.dat_rq->queue_id,
phba->sli4_hba.els_cq->queue_id);
if (phba->cfg_fof) {
rc = lpfc_fof_queue_setup(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0549 Failed setup of FOF Queues: "
"rc = 0x%x\n", rc);
goto out_destroy;
}
}
for (qidx = 0; qidx < io_channel; qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
lpfc_modify_hba_eq_delay(phba, qidx);
return 0;
out_destroy:
lpfc_sli4_queue_unset(phba);
out_error:
return rc;
}
/**
* lpfc_sli4_queue_unset - Unset all the SLI4 queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset all the SLI4 queues with the FCoE HBA
* operation.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
void
lpfc_sli4_queue_unset(struct lpfc_hba *phba)
{
int qidx;
/* Unset the queues created for Flash Optimized Fabric operations */
if (phba->cfg_fof)
lpfc_fof_queue_destroy(phba);
/* Unset mailbox command work queue */
if (phba->sli4_hba.mbx_wq)
lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
/* Unset NVME LS work queue */
if (phba->sli4_hba.nvmels_wq)
lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
/* Unset ELS work queue */
if (phba->sli4_hba.els_cq)
lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
/* Unset unsolicited receive queue */
if (phba->sli4_hba.hdr_rq)
lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
phba->sli4_hba.dat_rq);
/* Unset FCP work queue */
if (phba->sli4_hba.fcp_wq)
for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++)
lpfc_wq_destroy(phba, phba->sli4_hba.fcp_wq[qidx]);
/* Unset NVME work queue */
if (phba->sli4_hba.nvme_wq) {
for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++)
lpfc_wq_destroy(phba, phba->sli4_hba.nvme_wq[qidx]);
}
/* Unset mailbox command complete queue */
if (phba->sli4_hba.mbx_cq)
lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
/* Unset ELS complete queue */
if (phba->sli4_hba.els_cq)
lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
/* Unset NVME LS complete queue */
if (phba->sli4_hba.nvmels_cq)
lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
/* Unset NVME response complete queue */
if (phba->sli4_hba.nvme_cq)
for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++)
lpfc_cq_destroy(phba, phba->sli4_hba.nvme_cq[qidx]);
/* Unset NVMET MRQ queue */
if (phba->sli4_hba.nvmet_mrq_hdr) {
for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
lpfc_rq_destroy(phba,
phba->sli4_hba.nvmet_mrq_hdr[qidx],
phba->sli4_hba.nvmet_mrq_data[qidx]);
}
/* Unset NVMET CQ Set complete queue */
if (phba->sli4_hba.nvmet_cqset) {
for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
lpfc_cq_destroy(phba,
phba->sli4_hba.nvmet_cqset[qidx]);
}
/* Unset FCP response complete queue */
if (phba->sli4_hba.fcp_cq)
for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++)
lpfc_cq_destroy(phba, phba->sli4_hba.fcp_cq[qidx]);
/* Unset fast-path event queue */
if (phba->sli4_hba.hba_eq)
for (qidx = 0; qidx < phba->io_channel_irqs; qidx++)
lpfc_eq_destroy(phba, phba->sli4_hba.hba_eq[qidx]);
}
/**
* lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate and set up a pool of completion queue
* events. The body of the completion queue event is a completion queue entry
* CQE. For now, this pool is used for the interrupt service routine to queue
* the following HBA completion queue events for the worker thread to process:
* - Mailbox asynchronous events
* - Receive queue completion unsolicited events
* Later, this can be used for all the slow-path events.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
**/
static int
lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event;
int i;
for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
if (!cq_event)
goto out_pool_create_fail;
list_add_tail(&cq_event->list,
&phba->sli4_hba.sp_cqe_event_pool);
}
return 0;
out_pool_create_fail:
lpfc_sli4_cq_event_pool_destroy(phba);
return -ENOMEM;
}
/**
* lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to free the pool of completion queue events at
* driver unload time. Note that, it is the responsibility of the driver
* cleanup routine to free all the outstanding completion-queue events
* allocated from this pool back into the pool before invoking this routine
* to destroy the pool.
**/
static void
lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event, *next_cq_event;
list_for_each_entry_safe(cq_event, next_cq_event,
&phba->sli4_hba.sp_cqe_event_pool, list) {
list_del(&cq_event->list);
kfree(cq_event);
}
}
/**
* __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
* @phba: pointer to lpfc hba data structure.
*
* This routine is the lock free version of the API invoked to allocate a
* completion-queue event from the free pool.
*
* Return: Pointer to the newly allocated completion-queue event if successful
* NULL otherwise.
**/
struct lpfc_cq_event *
__lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event = NULL;
list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
struct lpfc_cq_event, list);
return cq_event;
}
/**
* lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
* @phba: pointer to lpfc hba data structure.
*
* This routine is the lock version of the API invoked to allocate a
* completion-queue event from the free pool.
*
* Return: Pointer to the newly allocated completion-queue event if successful
* NULL otherwise.
**/
struct lpfc_cq_event *
lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event;
unsigned long iflags;
spin_lock_irqsave(&phba->hbalock, iflags);
cq_event = __lpfc_sli4_cq_event_alloc(phba);
spin_unlock_irqrestore(&phba->hbalock, iflags);
return cq_event;
}
/**
* __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
* @phba: pointer to lpfc hba data structure.
* @cq_event: pointer to the completion queue event to be freed.
*
* This routine is the lock free version of the API invoked to release a
* completion-queue event back into the free pool.
**/
void
__lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
struct lpfc_cq_event *cq_event)
{
list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
}
/**
* lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
* @phba: pointer to lpfc hba data structure.
* @cq_event: pointer to the completion queue event to be freed.
*
* This routine is the lock version of the API invoked to release a
* completion-queue event back into the free pool.
**/
void
lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
struct lpfc_cq_event *cq_event)
{
unsigned long iflags;
spin_lock_irqsave(&phba->hbalock, iflags);
__lpfc_sli4_cq_event_release(phba, cq_event);
spin_unlock_irqrestore(&phba->hbalock, iflags);
}
/**
* lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
* @phba: pointer to lpfc hba data structure.
*
* This routine is to free all the pending completion-queue events to the
* back into the free pool for device reset.
**/
static void
lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
{
LIST_HEAD(cqelist);
struct lpfc_cq_event *cqe;
unsigned long iflags;
/* Retrieve all the pending WCQEs from pending WCQE lists */
spin_lock_irqsave(&phba->hbalock, iflags);
/* Pending FCP XRI abort events */
list_splice_init(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
&cqelist);
/* Pending ELS XRI abort events */
list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
&cqelist);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
/* Pending NVME XRI abort events */
list_splice_init(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue,
&cqelist);
}
/* Pending asynnc events */
list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
&cqelist);
spin_unlock_irqrestore(&phba->hbalock, iflags);
while (!list_empty(&cqelist)) {
list_remove_head(&cqelist, cqe, struct lpfc_cq_event, list);
lpfc_sli4_cq_event_release(phba, cqe);
}
}
/**
* lpfc_pci_function_reset - Reset pci function.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to request a PCI function reset. It will destroys
* all resources assigned to the PCI function which originates this request.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
int
lpfc_pci_function_reset(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *mboxq;
uint32_t rc = 0, if_type;
uint32_t shdr_status, shdr_add_status;
uint32_t rdy_chk;
uint32_t port_reset = 0;
union lpfc_sli4_cfg_shdr *shdr;
struct lpfc_register reg_data;
uint16_t devid;
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0494 Unable to allocate memory for "
"issuing SLI_FUNCTION_RESET mailbox "
"command\n");
return -ENOMEM;
}
/* Setup PCI function reset mailbox-ioctl command */
lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
LPFC_SLI4_MBX_EMBED);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *)
&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
&shdr->response);
if (rc != MBX_TIMEOUT)
mempool_free(mboxq, phba->mbox_mem_pool);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0495 SLI_FUNCTION_RESET mailbox "
"failed with status x%x add_status x%x,"
" mbx status x%x\n",
shdr_status, shdr_add_status, rc);
rc = -ENXIO;
}
break;
case LPFC_SLI_INTF_IF_TYPE_2:
wait:
/*
* Poll the Port Status Register and wait for RDY for
* up to 30 seconds. If the port doesn't respond, treat
* it as an error.
*/
for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
if (lpfc_readl(phba->sli4_hba.u.if_type2.
STATUSregaddr, &reg_data.word0)) {
rc = -ENODEV;
goto out;
}
if (bf_get(lpfc_sliport_status_rdy, &reg_data))
break;
msleep(20);
}
if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
phba->work_status[0] = readl(
phba->sli4_hba.u.if_type2.ERR1regaddr);
phba->work_status[1] = readl(
phba->sli4_hba.u.if_type2.ERR2regaddr);
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2890 Port not ready, port status reg "
"0x%x error 1=0x%x, error 2=0x%x\n",
reg_data.word0,
phba->work_status[0],
phba->work_status[1]);
rc = -ENODEV;
goto out;
}
if (!port_reset) {
/*
* Reset the port now
*/
reg_data.word0 = 0;
bf_set(lpfc_sliport_ctrl_end, &reg_data,
LPFC_SLIPORT_LITTLE_ENDIAN);
bf_set(lpfc_sliport_ctrl_ip, &reg_data,
LPFC_SLIPORT_INIT_PORT);
writel(reg_data.word0, phba->sli4_hba.u.if_type2.
CTRLregaddr);
/* flush */
pci_read_config_word(phba->pcidev,
PCI_DEVICE_ID, &devid);
port_reset = 1;
msleep(20);
goto wait;
} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
rc = -ENODEV;
goto out;
}
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
break;
}
out:
/* Catch the not-ready port failure after a port reset. */
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3317 HBA not functional: IP Reset Failed "
"try: echo fw_reset > board_mode\n");
rc = -ENODEV;
}
return rc;
}
/**
* lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the PCI device memory space for device
* with SLI-4 interface spec.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
{
struct pci_dev *pdev;
unsigned long bar0map_len, bar1map_len, bar2map_len;
int error = -ENODEV;
uint32_t if_type;
/* Obtain PCI device reference */
if (!phba->pcidev)
return error;
else
pdev = phba->pcidev;
/* Set the device DMA mask size */
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0
|| pci_set_consistent_dma_mask(pdev,DMA_BIT_MASK(64)) != 0) {
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0
|| pci_set_consistent_dma_mask(pdev,DMA_BIT_MASK(32)) != 0) {
return error;
}
}
/*
* The BARs and register set definitions and offset locations are
* dependent on the if_type.
*/
if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
&phba->sli4_hba.sli_intf.word0)) {
return error;
}
/* There is no SLI3 failback for SLI4 devices. */
if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
LPFC_SLI_INTF_VALID) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2894 SLI_INTF reg contents invalid "
"sli_intf reg 0x%x\n",
phba->sli4_hba.sli_intf.word0);
return error;
}
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
/*
* Get the bus address of SLI4 device Bar regions and the
* number of bytes required by each mapping. The mapping of the
* particular PCI BARs regions is dependent on the type of
* SLI4 device.
*/
if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
/*
* Map SLI4 PCI Config Space Register base to a kernel virtual
* addr
*/
phba->sli4_hba.conf_regs_memmap_p =
ioremap(phba->pci_bar0_map, bar0map_len);
if (!phba->sli4_hba.conf_regs_memmap_p) {
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for SLI4 PCI config "
"registers.\n");
goto out;
}
phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
/* Set up BAR0 PCI config space register memory map */
lpfc_sli4_bar0_register_memmap(phba, if_type);
} else {
phba->pci_bar0_map = pci_resource_start(pdev, 1);
bar0map_len = pci_resource_len(pdev, 1);
if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
dev_printk(KERN_ERR, &pdev->dev,
"FATAL - No BAR0 mapping for SLI4, if_type 2\n");
goto out;
}
phba->sli4_hba.conf_regs_memmap_p =
ioremap(phba->pci_bar0_map, bar0map_len);
if (!phba->sli4_hba.conf_regs_memmap_p) {
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for SLI4 PCI config "
"registers.\n");
goto out;
}
lpfc_sli4_bar0_register_memmap(phba, if_type);
}
if ((if_type == LPFC_SLI_INTF_IF_TYPE_0) &&
(pci_resource_start(pdev, PCI_64BIT_BAR2))) {
/*
* Map SLI4 if type 0 HBA Control Register base to a kernel
* virtual address and setup the registers.
*/
phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
phba->sli4_hba.ctrl_regs_memmap_p =
ioremap(phba->pci_bar1_map, bar1map_len);
if (!phba->sli4_hba.ctrl_regs_memmap_p) {
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for SLI4 HBA control registers.\n");
goto out_iounmap_conf;
}
phba->pci_bar2_memmap_p = phba->sli4_hba.ctrl_regs_memmap_p;
lpfc_sli4_bar1_register_memmap(phba);
}
if ((if_type == LPFC_SLI_INTF_IF_TYPE_0) &&
(pci_resource_start(pdev, PCI_64BIT_BAR4))) {
/*
* Map SLI4 if type 0 HBA Doorbell Register base to a kernel
* virtual address and setup the registers.
*/
phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
phba->sli4_hba.drbl_regs_memmap_p =
ioremap(phba->pci_bar2_map, bar2map_len);
if (!phba->sli4_hba.drbl_regs_memmap_p) {
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for SLI4 HBA doorbell registers.\n");
goto out_iounmap_ctrl;
}
phba->pci_bar4_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
if (error)
goto out_iounmap_all;
}
return 0;
out_iounmap_all:
iounmap(phba->sli4_hba.drbl_regs_memmap_p);
out_iounmap_ctrl:
iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
out_iounmap_conf:
iounmap(phba->sli4_hba.conf_regs_memmap_p);
out:
return error;
}
/**
* lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the PCI device memory space for device
* with SLI-4 interface spec.
**/
static void
lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
{
uint32_t if_type;
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
iounmap(phba->sli4_hba.drbl_regs_memmap_p);
iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
iounmap(phba->sli4_hba.conf_regs_memmap_p);
break;
case LPFC_SLI_INTF_IF_TYPE_2:
iounmap(phba->sli4_hba.conf_regs_memmap_p);
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
dev_printk(KERN_ERR, &phba->pcidev->dev,
"FATAL - unsupported SLI4 interface type - %d\n",
if_type);
break;
}
}
/**
* lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the MSI-X interrupt vectors to device
* with SLI-3 interface specs.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli_enable_msix(struct lpfc_hba *phba)
{
int rc;
LPFC_MBOXQ_t *pmb;
/* Set up MSI-X multi-message vectors */
rc = pci_alloc_irq_vectors(phba->pcidev,
LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
if (rc < 0) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0420 PCI enable MSI-X failed (%d)\n", rc);
goto vec_fail_out;
}
/*
* Assign MSI-X vectors to interrupt handlers
*/
/* vector-0 is associated to slow-path handler */
rc = request_irq(pci_irq_vector(phba->pcidev, 0),
&lpfc_sli_sp_intr_handler, 0,
LPFC_SP_DRIVER_HANDLER_NAME, phba);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0421 MSI-X slow-path request_irq failed "
"(%d)\n", rc);
goto msi_fail_out;
}
/* vector-1 is associated to fast-path handler */
rc = request_irq(pci_irq_vector(phba->pcidev, 1),
&lpfc_sli_fp_intr_handler, 0,
LPFC_FP_DRIVER_HANDLER_NAME, phba);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0429 MSI-X fast-path request_irq failed "
"(%d)\n", rc);
goto irq_fail_out;
}
/*
* Configure HBA MSI-X attention conditions to messages
*/
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
rc = -ENOMEM;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0474 Unable to allocate memory for issuing "
"MBOX_CONFIG_MSI command\n");
goto mem_fail_out;
}
rc = lpfc_config_msi(phba, pmb);
if (rc)
goto mbx_fail_out;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
"0351 Config MSI mailbox command failed, "
"mbxCmd x%x, mbxStatus x%x\n",
pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
goto mbx_fail_out;
}
/* Free memory allocated for mailbox command */
mempool_free(pmb, phba->mbox_mem_pool);
return rc;
mbx_fail_out:
/* Free memory allocated for mailbox command */
mempool_free(pmb, phba->mbox_mem_pool);
mem_fail_out:
/* free the irq already requested */
free_irq(pci_irq_vector(phba->pcidev, 1), phba);
irq_fail_out:
/* free the irq already requested */
free_irq(pci_irq_vector(phba->pcidev, 0), phba);
msi_fail_out:
/* Unconfigure MSI-X capability structure */
pci_free_irq_vectors(phba->pcidev);
vec_fail_out:
return rc;
}
/**
* lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the MSI interrupt mode to device with
* SLI-3 interface spec. The kernel function pci_enable_msi() is called to
* enable the MSI vector. The device driver is responsible for calling the
* request_irq() to register MSI vector with a interrupt the handler, which
* is done in this function.
*
* Return codes
* 0 - successful
* other values - error
*/
static int
lpfc_sli_enable_msi(struct lpfc_hba *phba)
{
int rc;
rc = pci_enable_msi(phba->pcidev);
if (!rc)
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0462 PCI enable MSI mode success.\n");
else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0471 PCI enable MSI mode failed (%d)\n", rc);
return rc;
}
rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
0, LPFC_DRIVER_NAME, phba);
if (rc) {
pci_disable_msi(phba->pcidev);
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0478 MSI request_irq failed (%d)\n", rc);
}
return rc;
}
/**
* lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable device interrupt and associate driver's
* interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
* spec. Depends on the interrupt mode configured to the driver, the driver
* will try to fallback from the configured interrupt mode to an interrupt
* mode which is supported by the platform, kernel, and device in the order
* of:
* MSI-X -> MSI -> IRQ.
*
* Return codes
* 0 - successful
* other values - error
**/
static uint32_t
lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
{
uint32_t intr_mode = LPFC_INTR_ERROR;
int retval;
if (cfg_mode == 2) {
/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
if (!retval) {
/* Now, try to enable MSI-X interrupt mode */
retval = lpfc_sli_enable_msix(phba);
if (!retval) {
/* Indicate initialization to MSI-X mode */
phba->intr_type = MSIX;
intr_mode = 2;
}
}
}
/* Fallback to MSI if MSI-X initialization failed */
if (cfg_mode >= 1 && phba->intr_type == NONE) {
retval = lpfc_sli_enable_msi(phba);
if (!retval) {
/* Indicate initialization to MSI mode */
phba->intr_type = MSI;
intr_mode = 1;
}
}
/* Fallback to INTx if both MSI-X/MSI initalization failed */
if (phba->intr_type == NONE) {
retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
IRQF_SHARED, LPFC_DRIVER_NAME, phba);
if (!retval) {
/* Indicate initialization to INTx mode */
phba->intr_type = INTx;
intr_mode = 0;
}
}
return intr_mode;
}
/**
* lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to disable device interrupt and disassociate the
* driver's interrupt handler(s) from interrupt vector(s) to device with
* SLI-3 interface spec. Depending on the interrupt mode, the driver will
* release the interrupt vector(s) for the message signaled interrupt.
**/
static void
lpfc_sli_disable_intr(struct lpfc_hba *phba)
{
int nr_irqs, i;
if (phba->intr_type == MSIX)
nr_irqs = LPFC_MSIX_VECTORS;
else
nr_irqs = 1;
for (i = 0; i < nr_irqs; i++)
free_irq(pci_irq_vector(phba->pcidev, i), phba);
pci_free_irq_vectors(phba->pcidev);
/* Reset interrupt management states */
phba->intr_type = NONE;
phba->sli.slistat.sli_intr = 0;
}
/**
* lpfc_cpu_affinity_check - Check vector CPU affinity mappings
* @phba: pointer to lpfc hba data structure.
* @vectors: number of msix vectors allocated.
*
* The routine will figure out the CPU affinity assignment for every
* MSI-X vector allocated for the HBA. The hba_eq_hdl will be updated
* with a pointer to the CPU mask that defines ALL the CPUs this vector
* can be associated with. If the vector can be unquely associated with
* a single CPU, that CPU will be recorded in hba_eq_hdl[index].cpu.
* In addition, the CPU to IO channel mapping will be calculated
* and the phba->sli4_hba.cpu_map array will reflect this.
*/
static void
lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
{
struct lpfc_vector_map_info *cpup;
int index = 0;
int vec = 0;
int cpu;
#ifdef CONFIG_X86
struct cpuinfo_x86 *cpuinfo;
#endif
/* Init cpu_map array */
memset(phba->sli4_hba.cpu_map, 0xff,
(sizeof(struct lpfc_vector_map_info) *
phba->sli4_hba.num_present_cpu));
/* Update CPU map with physical id and core id of each CPU */
cpup = phba->sli4_hba.cpu_map;
for (cpu = 0; cpu < phba->sli4_hba.num_present_cpu; cpu++) {
#ifdef CONFIG_X86
cpuinfo = &cpu_data(cpu);
cpup->phys_id = cpuinfo->phys_proc_id;
cpup->core_id = cpuinfo->cpu_core_id;
#else
/* No distinction between CPUs for other platforms */
cpup->phys_id = 0;
cpup->core_id = 0;
#endif
cpup->channel_id = index; /* For now round robin */
cpup->irq = pci_irq_vector(phba->pcidev, vec);
vec++;
if (vec >= vectors)
vec = 0;
index++;
if (index >= phba->cfg_fcp_io_channel)
index = 0;
cpup++;
}
}
/**
* lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the MSI-X interrupt vectors to device
* with SLI-4 interface spec.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli4_enable_msix(struct lpfc_hba *phba)
{
int vectors, rc, index;
/* Set up MSI-X multi-message vectors */
vectors = phba->io_channel_irqs;
if (phba->cfg_fof)
vectors++;
rc = pci_alloc_irq_vectors(phba->pcidev,
(phba->nvmet_support) ? 1 : 2,
vectors, PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
if (rc < 0) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0484 PCI enable MSI-X failed (%d)\n", rc);
goto vec_fail_out;
}
vectors = rc;
/* Assign MSI-X vectors to interrupt handlers */
for (index = 0; index < vectors; index++) {
memset(&phba->sli4_hba.handler_name[index], 0, 16);
snprintf((char *)&phba->sli4_hba.handler_name[index],
LPFC_SLI4_HANDLER_NAME_SZ,
LPFC_DRIVER_HANDLER_NAME"%d", index);
phba->sli4_hba.hba_eq_hdl[index].idx = index;
phba->sli4_hba.hba_eq_hdl[index].phba = phba;
atomic_set(&phba->sli4_hba.hba_eq_hdl[index].hba_eq_in_use, 1);
if (phba->cfg_fof && (index == (vectors - 1)))
rc = request_irq(pci_irq_vector(phba->pcidev, index),
&lpfc_sli4_fof_intr_handler, 0,
(char *)&phba->sli4_hba.handler_name[index],
&phba->sli4_hba.hba_eq_hdl[index]);
else
rc = request_irq(pci_irq_vector(phba->pcidev, index),
&lpfc_sli4_hba_intr_handler, 0,
(char *)&phba->sli4_hba.handler_name[index],
&phba->sli4_hba.hba_eq_hdl[index]);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0486 MSI-X fast-path (%d) "
"request_irq failed (%d)\n", index, rc);
goto cfg_fail_out;
}
}
if (phba->cfg_fof)
vectors--;
if (vectors != phba->io_channel_irqs) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3238 Reducing IO channels to match number of "
"MSI-X vectors, requested %d got %d\n",
phba->io_channel_irqs, vectors);
if (phba->cfg_fcp_io_channel > vectors)
phba->cfg_fcp_io_channel = vectors;
if (phba->cfg_nvme_io_channel > vectors)
phba->cfg_nvme_io_channel = vectors;
if (phba->cfg_fcp_io_channel > phba->cfg_nvme_io_channel)
phba->io_channel_irqs = phba->cfg_fcp_io_channel;
else
phba->io_channel_irqs = phba->cfg_nvme_io_channel;
}
lpfc_cpu_affinity_check(phba, vectors);
return rc;
cfg_fail_out:
/* free the irq already requested */
for (--index; index >= 0; index--)
free_irq(pci_irq_vector(phba->pcidev, index),
&phba->sli4_hba.hba_eq_hdl[index]);
/* Unconfigure MSI-X capability structure */
pci_free_irq_vectors(phba->pcidev);
vec_fail_out:
return rc;
}
/**
* lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the MSI interrupt mode to device with
* SLI-4 interface spec. The kernel function pci_enable_msi() is called
* to enable the MSI vector. The device driver is responsible for calling
* the request_irq() to register MSI vector with a interrupt the handler,
* which is done in this function.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli4_enable_msi(struct lpfc_hba *phba)
{
int rc, index;
rc = pci_enable_msi(phba->pcidev);
if (!rc)
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0487 PCI enable MSI mode success.\n");
else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0488 PCI enable MSI mode failed (%d)\n", rc);
return rc;
}
rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
0, LPFC_DRIVER_NAME, phba);
if (rc) {
pci_disable_msi(phba->pcidev);
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0490 MSI request_irq failed (%d)\n", rc);
return rc;
}
for (index = 0; index < phba->io_channel_irqs; index++) {
phba->sli4_hba.hba_eq_hdl[index].idx = index;
phba->sli4_hba.hba_eq_hdl[index].phba = phba;
}
if (phba->cfg_fof) {
phba->sli4_hba.hba_eq_hdl[index].idx = index;
phba->sli4_hba.hba_eq_hdl[index].phba = phba;
}
return 0;
}
/**
* lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable device interrupt and associate driver's
* interrupt handler(s) to interrupt vector(s) to device with SLI-4
* interface spec. Depends on the interrupt mode configured to the driver,
* the driver will try to fallback from the configured interrupt mode to an
* interrupt mode which is supported by the platform, kernel, and device in
* the order of:
* MSI-X -> MSI -> IRQ.
*
* Return codes
* 0 - successful
* other values - error
**/
static uint32_t
lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
{
uint32_t intr_mode = LPFC_INTR_ERROR;
int retval, idx;
if (cfg_mode == 2) {
/* Preparation before conf_msi mbox cmd */
retval = 0;
if (!retval) {
/* Now, try to enable MSI-X interrupt mode */
retval = lpfc_sli4_enable_msix(phba);
if (!retval) {
/* Indicate initialization to MSI-X mode */
phba->intr_type = MSIX;
intr_mode = 2;
}
}
}
/* Fallback to MSI if MSI-X initialization failed */
if (cfg_mode >= 1 && phba->intr_type == NONE) {
retval = lpfc_sli4_enable_msi(phba);
if (!retval) {
/* Indicate initialization to MSI mode */
phba->intr_type = MSI;
intr_mode = 1;
}
}
/* Fallback to INTx if both MSI-X/MSI initalization failed */
if (phba->intr_type == NONE) {
retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
IRQF_SHARED, LPFC_DRIVER_NAME, phba);
if (!retval) {
struct lpfc_hba_eq_hdl *eqhdl;
/* Indicate initialization to INTx mode */
phba->intr_type = INTx;
intr_mode = 0;
for (idx = 0; idx < phba->io_channel_irqs; idx++) {
eqhdl = &phba->sli4_hba.hba_eq_hdl[idx];
eqhdl->idx = idx;
eqhdl->phba = phba;
atomic_set(&eqhdl->hba_eq_in_use, 1);
}
if (phba->cfg_fof) {
eqhdl = &phba->sli4_hba.hba_eq_hdl[idx];
eqhdl->idx = idx;
eqhdl->phba = phba;
atomic_set(&eqhdl->hba_eq_in_use, 1);
}
}
}
return intr_mode;
}
/**
* lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to disable device interrupt and disassociate
* the driver's interrupt handler(s) from interrupt vector(s) to device
* with SLI-4 interface spec. Depending on the interrupt mode, the driver
* will release the interrupt vector(s) for the message signaled interrupt.
**/
static void
lpfc_sli4_disable_intr(struct lpfc_hba *phba)
{
/* Disable the currently initialized interrupt mode */
if (phba->intr_type == MSIX) {
int index;
/* Free up MSI-X multi-message vectors */
for (index = 0; index < phba->io_channel_irqs; index++)
free_irq(pci_irq_vector(phba->pcidev, index),
&phba->sli4_hba.hba_eq_hdl[index]);
if (phba->cfg_fof)
free_irq(pci_irq_vector(phba->pcidev, index),
&phba->sli4_hba.hba_eq_hdl[index]);
} else {
free_irq(phba->pcidev->irq, phba);
}
pci_free_irq_vectors(phba->pcidev);
/* Reset interrupt management states */
phba->intr_type = NONE;
phba->sli.slistat.sli_intr = 0;
}
/**
* lpfc_unset_hba - Unset SLI3 hba device initialization
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the HBA device initialization steps to
* a device with SLI-3 interface spec.
**/
static void
lpfc_unset_hba(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
spin_lock_irq(shost->host_lock);
vport->load_flag |= FC_UNLOADING;
spin_unlock_irq(shost->host_lock);
kfree(phba->vpi_bmask);
kfree(phba->vpi_ids);
lpfc_stop_hba_timers(phba);
phba->pport->work_port_events = 0;
lpfc_sli_hba_down(phba);
lpfc_sli_brdrestart(phba);
lpfc_sli_disable_intr(phba);
return;
}
/**
* lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
* @phba: Pointer to HBA context object.
*
* This function is called in the SLI4 code path to wait for completion
* of device's XRIs exchange busy. It will check the XRI exchange busy
* on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
* that, it will check the XRI exchange busy on outstanding FCP and ELS
* I/Os every 30 seconds, log error message, and wait forever. Only when
* all XRI exchange busy complete, the driver unload shall proceed with
* invoking the function reset ioctl mailbox command to the CNA and the
* the rest of the driver unload resource release.
**/
static void
lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
{
int wait_time = 0;
int nvme_xri_cmpl = 1;
int nvmet_xri_cmpl = 1;
int fcp_xri_cmpl = 1;
int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)
fcp_xri_cmpl =
list_empty(&phba->sli4_hba.lpfc_abts_scsi_buf_list);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
nvme_xri_cmpl =
list_empty(&phba->sli4_hba.lpfc_abts_nvme_buf_list);
nvmet_xri_cmpl =
list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
}
while (!fcp_xri_cmpl || !els_xri_cmpl || !nvme_xri_cmpl ||
!nvmet_xri_cmpl) {
if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
if (!nvme_xri_cmpl)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6100 NVME XRI exchange busy "
"wait time: %d seconds.\n",
wait_time/1000);
if (!fcp_xri_cmpl)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2877 FCP XRI exchange busy "
"wait time: %d seconds.\n",
wait_time/1000);
if (!els_xri_cmpl)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2878 ELS XRI exchange busy "
"wait time: %d seconds.\n",
wait_time/1000);
msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
} else {
msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
}
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
nvme_xri_cmpl = list_empty(
&phba->sli4_hba.lpfc_abts_nvme_buf_list);
nvmet_xri_cmpl = list_empty(
&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
}
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)
fcp_xri_cmpl = list_empty(
&phba->sli4_hba.lpfc_abts_scsi_buf_list);
els_xri_cmpl =
list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
}
}
/**
* lpfc_sli4_hba_unset - Unset the fcoe hba
* @phba: Pointer to HBA context object.
*
* This function is called in the SLI4 code path to reset the HBA's FCoE
* function. The caller is not required to hold any lock. This routine
* issues PCI function reset mailbox command to reset the FCoE function.
* At the end of the function, it calls lpfc_hba_down_post function to
* free any pending commands.
**/
static void
lpfc_sli4_hba_unset(struct lpfc_hba *phba)
{
int wait_cnt = 0;
LPFC_MBOXQ_t *mboxq;
struct pci_dev *pdev = phba->pcidev;
lpfc_stop_hba_timers(phba);
phba->sli4_hba.intr_enable = 0;
/*
* Gracefully wait out the potential current outstanding asynchronous
* mailbox command.
*/
/* First, block any pending async mailbox command from posted */
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
spin_unlock_irq(&phba->hbalock);
/* Now, trying to wait it out if we can */
while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
msleep(10);
if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
break;
}
/* Forcefully release the outstanding mailbox command if timed out */
if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
spin_lock_irq(&phba->hbalock);
mboxq = phba->sli.mbox_active;
mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
__lpfc_mbox_cmpl_put(phba, mboxq);
phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
phba->sli.mbox_active = NULL;
spin_unlock_irq(&phba->hbalock);
}
/* Abort all iocbs associated with the hba */
lpfc_sli_hba_iocb_abort(phba);
/* Wait for completion of device XRI exchange busy */
lpfc_sli4_xri_exchange_busy_wait(phba);
/* Disable PCI subsystem interrupt */
lpfc_sli4_disable_intr(phba);
/* Disable SR-IOV if enabled */
if (phba->cfg_sriov_nr_virtfn)
pci_disable_sriov(pdev);
/* Stop kthread signal shall trigger work_done one more time */
kthread_stop(phba->worker_thread);
/* Unset the queues shared with the hardware then release all
* allocated resources.
*/
lpfc_sli4_queue_unset(phba);
lpfc_sli4_queue_destroy(phba);
/* Reset SLI4 HBA FCoE function */
lpfc_pci_function_reset(phba);
/* Stop the SLI4 device port */
phba->pport->work_port_events = 0;
}
/**
* lpfc_pc_sli4_params_get - Get the SLI4_PARAMS port capabilities.
* @phba: Pointer to HBA context object.
* @mboxq: Pointer to the mailboxq memory for the mailbox command response.
*
* This function is called in the SLI4 code path to read the port's
* sli4 capabilities.
*
* This function may be be called from any context that can block-wait
* for the completion. The expectation is that this routine is called
* typically from probe_one or from the online routine.
**/
int
lpfc_pc_sli4_params_get(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
{
int rc;
struct lpfc_mqe *mqe;
struct lpfc_pc_sli4_params *sli4_params;
uint32_t mbox_tmo;
rc = 0;
mqe = &mboxq->u.mqe;
/* Read the port's SLI4 Parameters port capabilities */
lpfc_pc_sli4_params(mboxq);
if (!phba->sli4_hba.intr_enable)
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
}
if (unlikely(rc))
return 1;
sli4_params = &phba->sli4_hba.pc_sli4_params;
sli4_params->if_type = bf_get(if_type, &mqe->un.sli4_params);
sli4_params->sli_rev = bf_get(sli_rev, &mqe->un.sli4_params);
sli4_params->sli_family = bf_get(sli_family, &mqe->un.sli4_params);
sli4_params->featurelevel_1 = bf_get(featurelevel_1,
&mqe->un.sli4_params);
sli4_params->featurelevel_2 = bf_get(featurelevel_2,
&mqe->un.sli4_params);
sli4_params->proto_types = mqe->un.sli4_params.word3;
sli4_params->sge_supp_len = mqe->un.sli4_params.sge_supp_len;
sli4_params->if_page_sz = bf_get(if_page_sz, &mqe->un.sli4_params);
sli4_params->rq_db_window = bf_get(rq_db_window, &mqe->un.sli4_params);
sli4_params->loopbk_scope = bf_get(loopbk_scope, &mqe->un.sli4_params);
sli4_params->eq_pages_max = bf_get(eq_pages, &mqe->un.sli4_params);
sli4_params->eqe_size = bf_get(eqe_size, &mqe->un.sli4_params);
sli4_params->cq_pages_max = bf_get(cq_pages, &mqe->un.sli4_params);
sli4_params->cqe_size = bf_get(cqe_size, &mqe->un.sli4_params);
sli4_params->mq_pages_max = bf_get(mq_pages, &mqe->un.sli4_params);
sli4_params->mqe_size = bf_get(mqe_size, &mqe->un.sli4_params);
sli4_params->mq_elem_cnt = bf_get(mq_elem_cnt, &mqe->un.sli4_params);
sli4_params->wq_pages_max = bf_get(wq_pages, &mqe->un.sli4_params);
sli4_params->wqe_size = bf_get(wqe_size, &mqe->un.sli4_params);
sli4_params->rq_pages_max = bf_get(rq_pages, &mqe->un.sli4_params);
sli4_params->rqe_size = bf_get(rqe_size, &mqe->un.sli4_params);
sli4_params->hdr_pages_max = bf_get(hdr_pages, &mqe->un.sli4_params);
sli4_params->hdr_size = bf_get(hdr_size, &mqe->un.sli4_params);
sli4_params->hdr_pp_align = bf_get(hdr_pp_align, &mqe->un.sli4_params);
sli4_params->sgl_pages_max = bf_get(sgl_pages, &mqe->un.sli4_params);
sli4_params->sgl_pp_align = bf_get(sgl_pp_align, &mqe->un.sli4_params);
/* Make sure that sge_supp_len can be handled by the driver */
if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
return rc;
}
/**
* lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
* @phba: Pointer to HBA context object.
* @mboxq: Pointer to the mailboxq memory for the mailbox command response.
*
* This function is called in the SLI4 code path to read the port's
* sli4 capabilities.
*
* This function may be be called from any context that can block-wait
* for the completion. The expectation is that this routine is called
* typically from probe_one or from the online routine.
**/
int
lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
{
int rc;
struct lpfc_mqe *mqe = &mboxq->u.mqe;
struct lpfc_pc_sli4_params *sli4_params;
uint32_t mbox_tmo;
int length;
struct lpfc_sli4_parameters *mbx_sli4_parameters;
/*
* By default, the driver assumes the SLI4 port requires RPI
* header postings. The SLI4_PARAM response will correct this
* assumption.
*/
phba->sli4_hba.rpi_hdrs_in_use = 1;
/* Read the port's SLI4 Config Parameters */
length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
length, LPFC_SLI4_MBX_EMBED);
if (!phba->sli4_hba.intr_enable)
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
}
if (unlikely(rc))
return rc;
sli4_params = &phba->sli4_hba.pc_sli4_params;
mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
mbx_sli4_parameters);
sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
mbx_sli4_parameters);
if (bf_get(cfg_phwq, mbx_sli4_parameters))
phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
else
phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
sli4_params->loopbk_scope = bf_get(loopbk_scope, mbx_sli4_parameters);
sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
mbx_sli4_parameters);
sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
mbx_sli4_parameters);
phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
phba->nvme_support = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
bf_get(cfg_xib, mbx_sli4_parameters));
if ((phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) ||
!phba->nvme_support) {
phba->nvme_support = 0;
phba->nvmet_support = 0;
phba->cfg_nvmet_mrq = 0;
phba->cfg_nvme_io_channel = 0;
phba->io_channel_irqs = phba->cfg_fcp_io_channel;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
"6101 Disabling NVME support: "
"Not supported by firmware: %d %d\n",
bf_get(cfg_nvme, mbx_sli4_parameters),
bf_get(cfg_xib, mbx_sli4_parameters));
/* If firmware doesn't support NVME, just use SCSI support */
if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
return -ENODEV;
phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
}
if (bf_get(cfg_xib, mbx_sli4_parameters) && phba->cfg_suppress_rsp)
phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
/* Make sure that sge_supp_len can be handled by the driver */
if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
/*
* Issue IOs with CDB embedded in WQE to minimized the number
* of DMAs the firmware has to do. Setting this to 1 also forces
* the driver to use 128 bytes WQEs for FCP IOs.
*/
if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
phba->fcp_embed_io = 1;
else
phba->fcp_embed_io = 0;
/*
* Check if the SLI port supports MDS Diagnostics
*/
if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
phba->mds_diags_support = 1;
else
phba->mds_diags_support = 0;
return 0;
}
/**
* lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
* @pdev: pointer to PCI device
* @pid: pointer to PCI device identifier
*
* This routine is to be called to attach a device with SLI-3 interface spec
* to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
* presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
* information of the device and driver to see if the driver state that it can
* support this kind of device. If the match is successful, the driver core
* invokes this routine. If this routine determines it can claim the HBA, it
* does all the initialization that it needs to do to handle the HBA properly.
*
* Return code
* 0 - driver can claim the device
* negative value - driver can not claim the device
**/
static int
lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
{
struct lpfc_hba *phba;
struct lpfc_vport *vport = NULL;
struct Scsi_Host *shost = NULL;
int error;
uint32_t cfg_mode, intr_mode;
/* Allocate memory for HBA structure */
phba = lpfc_hba_alloc(pdev);
if (!phba)
return -ENOMEM;
/* Perform generic PCI device enabling operation */
error = lpfc_enable_pci_dev(phba);
if (error)
goto out_free_phba;
/* Set up SLI API function jump table for PCI-device group-0 HBAs */
error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
if (error)
goto out_disable_pci_dev;
/* Set up SLI-3 specific device PCI memory space */
error = lpfc_sli_pci_mem_setup(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1402 Failed to set up pci memory space.\n");
goto out_disable_pci_dev;
}
/* Set up SLI-3 specific device driver resources */
error = lpfc_sli_driver_resource_setup(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1404 Failed to set up driver resource.\n");
goto out_unset_pci_mem_s3;
}
/* Initialize and populate the iocb list per host */
error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1405 Failed to initialize iocb list.\n");
goto out_unset_driver_resource_s3;
}
/* Set up common device driver resources */
error = lpfc_setup_driver_resource_phase2(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1406 Failed to set up driver resource.\n");
goto out_free_iocb_list;
}
/* Get the default values for Model Name and Description */
lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
/* Create SCSI host to the physical port */
error = lpfc_create_shost(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1407 Failed to create scsi host.\n");
goto out_unset_driver_resource;
}
/* Configure sysfs attributes */
vport = phba->pport;
error = lpfc_alloc_sysfs_attr(vport);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1476 Failed to allocate sysfs attr\n");
goto out_destroy_shost;
}
shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
/* Now, trying to enable interrupt and bring up the device */
cfg_mode = phba->cfg_use_msi;
while (true) {
/* Put device to a known state before enabling interrupt */
lpfc_stop_port(phba);
/* Configure and enable interrupt */
intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0431 Failed to enable interrupt.\n");
error = -ENODEV;
goto out_free_sysfs_attr;
}
/* SLI-3 HBA setup */
if (lpfc_sli_hba_setup(phba)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1477 Failed to set up hba\n");
error = -ENODEV;
goto out_remove_device;
}
/* Wait 50ms for the interrupts of previous mailbox commands */
msleep(50);
/* Check active interrupts on message signaled interrupts */
if (intr_mode == 0 ||
phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
/* Log the current active interrupt mode */
phba->intr_mode = intr_mode;
lpfc_log_intr_mode(phba, intr_mode);
break;
} else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0447 Configure interrupt mode (%d) "
"failed active interrupt test.\n",
intr_mode);
/* Disable the current interrupt mode */
lpfc_sli_disable_intr(phba);
/* Try next level of interrupt mode */
cfg_mode = --intr_mode;
}
}
/* Perform post initialization setup */
lpfc_post_init_setup(phba);
/* Check if there are static vports to be created. */
lpfc_create_static_vport(phba);
return 0;
out_remove_device:
lpfc_unset_hba(phba);
out_free_sysfs_attr:
lpfc_free_sysfs_attr(vport);
out_destroy_shost:
lpfc_destroy_shost(phba);
out_unset_driver_resource:
lpfc_unset_driver_resource_phase2(phba);
out_free_iocb_list:
lpfc_free_iocb_list(phba);
out_unset_driver_resource_s3:
lpfc_sli_driver_resource_unset(phba);
out_unset_pci_mem_s3:
lpfc_sli_pci_mem_unset(phba);
out_disable_pci_dev:
lpfc_disable_pci_dev(phba);
if (shost)
scsi_host_put(shost);
out_free_phba:
lpfc_hba_free(phba);
return error;
}
/**
* lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
* @pdev: pointer to PCI device
*
* This routine is to be called to disattach a device with SLI-3 interface
* spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
* removed from PCI bus, it performs all the necessary cleanup for the HBA
* device to be removed from the PCI subsystem properly.
**/
static void
lpfc_pci_remove_one_s3(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_vport **vports;
struct lpfc_hba *phba = vport->phba;
int i;
spin_lock_irq(&phba->hbalock);
vport->load_flag |= FC_UNLOADING;
spin_unlock_irq(&phba->hbalock);
lpfc_free_sysfs_attr(vport);
/* Release all the vports against this physical port */
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
continue;
fc_vport_terminate(vports[i]->fc_vport);
}
lpfc_destroy_vport_work_array(phba, vports);
/* Remove FC host and then SCSI host with the physical port */
fc_remove_host(shost);
scsi_remove_host(shost);
lpfc_cleanup(vport);
/*
* Bring down the SLI Layer. This step disable all interrupts,
* clears the rings, discards all mailbox commands, and resets
* the HBA.
*/
/* HBA interrupt will be disabled after this call */
lpfc_sli_hba_down(phba);
/* Stop kthread signal shall trigger work_done one more time */
kthread_stop(phba->worker_thread);
/* Final cleanup of txcmplq and reset the HBA */
lpfc_sli_brdrestart(phba);
kfree(phba->vpi_bmask);
kfree(phba->vpi_ids);
lpfc_stop_hba_timers(phba);
spin_lock_irq(&phba->hbalock);
list_del_init(&vport->listentry);
spin_unlock_irq(&phba->hbalock);
lpfc_debugfs_terminate(vport);
/* Disable SR-IOV if enabled */
if (phba->cfg_sriov_nr_virtfn)
pci_disable_sriov(pdev);
/* Disable interrupt */
lpfc_sli_disable_intr(phba);
scsi_host_put(shost);
/*
* Call scsi_free before mem_free since scsi bufs are released to their
* corresponding pools here.
*/
lpfc_scsi_free(phba);
lpfc_mem_free_all(phba);
dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
phba->hbqslimp.virt, phba->hbqslimp.phys);
/* Free resources associated with SLI2 interface */
dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
phba->slim2p.virt, phba->slim2p.phys);
/* unmap adapter SLIM and Control Registers */
iounmap(phba->ctrl_regs_memmap_p);
iounmap(phba->slim_memmap_p);
lpfc_hba_free(phba);
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
}
/**
* lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
* @pdev: pointer to PCI device
* @msg: power management message
*
* This routine is to be called from the kernel's PCI subsystem to support
* system Power Management (PM) to device with SLI-3 interface spec. When
* PM invokes this method, it quiesces the device by stopping the driver's
* worker thread for the device, turning off device's interrupt and DMA,
* and bring the device offline. Note that as the driver implements the
* minimum PM requirements to a power-aware driver's PM support for the
* suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
* to the suspend() method call will be treated as SUSPEND and the driver will
* fully reinitialize its device during resume() method call, the driver will
* set device to PCI_D3hot state in PCI config space instead of setting it
* according to the @msg provided by the PM.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_suspend_one_s3(struct pci_dev *pdev, pm_message_t msg)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0473 PCI device Power Management suspend.\n");
/* Bring down the device */
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
kthread_stop(phba->worker_thread);
/* Disable interrupt from device */
lpfc_sli_disable_intr(phba);
/* Save device state to PCI config space */
pci_save_state(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
/**
* lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
* @pdev: pointer to PCI device
*
* This routine is to be called from the kernel's PCI subsystem to support
* system Power Management (PM) to device with SLI-3 interface spec. When PM
* invokes this method, it restores the device's PCI config space state and
* fully reinitializes the device and brings it online. Note that as the
* driver implements the minimum PM requirements to a power-aware driver's
* PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
* FREEZE) to the suspend() method call will be treated as SUSPEND and the
* driver will fully reinitialize its device during resume() method call,
* the device will be set to PCI_D0 directly in PCI config space before
* restoring the state.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_resume_one_s3(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
uint32_t intr_mode;
int error;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0452 PCI device Power Management resume.\n");
/* Restore device state from PCI config space */
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
/*
* As the new kernel behavior of pci_restore_state() API call clears
* device saved_state flag, need to save the restored state again.
*/
pci_save_state(pdev);
if (pdev->is_busmaster)
pci_set_master(pdev);
/* Startup the kernel thread for this host adapter. */
phba->worker_thread = kthread_run(lpfc_do_work, phba,
"lpfc_worker_%d", phba->brd_no);
if (IS_ERR(phba->worker_thread)) {
error = PTR_ERR(phba->worker_thread);
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0434 PM resume failed to start worker "
"thread: error=x%x.\n", error);
return error;
}
/* Configure and enable interrupt */
intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0430 PM resume Failed to enable interrupt\n");
return -EIO;
} else
phba->intr_mode = intr_mode;
/* Restart HBA and bring it online */
lpfc_sli_brdrestart(phba);
lpfc_online(phba);
/* Log the current active interrupt mode */
lpfc_log_intr_mode(phba, phba->intr_mode);
return 0;
}
/**
* lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI3 device for PCI slot recover. It
* aborts all the outstanding SCSI I/Os to the pci device.
**/
static void
lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2723 PCI channel I/O abort preparing for recovery\n");
/*
* There may be errored I/Os through HBA, abort all I/Os on txcmplq
* and let the SCSI mid-layer to retry them to recover.
*/
lpfc_sli_abort_fcp_rings(phba);
}
/**
* lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI3 device for PCI slot reset. It
* disables the device interrupt and pci device, and aborts the internal FCP
* pending I/Os.
**/
static void
lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2710 PCI channel disable preparing for reset\n");
/* Block any management I/Os to the device */
lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
/* Block all SCSI devices' I/Os on the host */
lpfc_scsi_dev_block(phba);
/* Flush all driver's outstanding SCSI I/Os as we are to reset */
lpfc_sli_flush_fcp_rings(phba);
/* stop all timers */
lpfc_stop_hba_timers(phba);
/* Disable interrupt and pci device */
lpfc_sli_disable_intr(phba);
pci_disable_device(phba->pcidev);
}
/**
* lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI3 device for PCI slot permanently
* disabling. It blocks the SCSI transport layer traffic and flushes the FCP
* pending I/Os.
**/
static void
lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2711 PCI channel permanent disable for failure\n");
/* Block all SCSI devices' I/Os on the host */
lpfc_scsi_dev_block(phba);
/* stop all timers */
lpfc_stop_hba_timers(phba);
/* Clean up all driver's outstanding SCSI I/Os */
lpfc_sli_flush_fcp_rings(phba);
}
/**
* lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
* @pdev: pointer to PCI device.
* @state: the current PCI connection state.
*
* This routine is called from the PCI subsystem for I/O error handling to
* device with SLI-3 interface spec. This function is called by the PCI
* subsystem after a PCI bus error affecting this device has been detected.
* When this function is invoked, it will need to stop all the I/Os and
* interrupt(s) to the device. Once that is done, it will return
* PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
* as desired.
*
* Return codes
* PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
* PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
**/
static pci_ers_result_t
lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
switch (state) {
case pci_channel_io_normal:
/* Non-fatal error, prepare for recovery */
lpfc_sli_prep_dev_for_recover(phba);
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
/* Fatal error, prepare for slot reset */
lpfc_sli_prep_dev_for_reset(phba);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
/* Permanent failure, prepare for device down */
lpfc_sli_prep_dev_for_perm_failure(phba);
return PCI_ERS_RESULT_DISCONNECT;
default:
/* Unknown state, prepare and request slot reset */
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0472 Unknown PCI error state: x%x\n", state);
lpfc_sli_prep_dev_for_reset(phba);
return PCI_ERS_RESULT_NEED_RESET;
}
}
/**
* lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
* @pdev: pointer to PCI device.
*
* This routine is called from the PCI subsystem for error handling to
* device with SLI-3 interface spec. This is called after PCI bus has been
* reset to restart the PCI card from scratch, as if from a cold-boot.
* During the PCI subsystem error recovery, after driver returns
* PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
* recovery and then call this routine before calling the .resume method
* to recover the device. This function will initialize the HBA device,
* enable the interrupt, but it will just put the HBA to offline state
* without passing any I/O traffic.
*
* Return codes
* PCI_ERS_RESULT_RECOVERED - the device has been recovered
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
*/
static pci_ers_result_t
lpfc_io_slot_reset_s3(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
struct lpfc_sli *psli = &phba->sli;
uint32_t intr_mode;
dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
if (pci_enable_device_mem(pdev)) {
printk(KERN_ERR "lpfc: Cannot re-enable "
"PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_restore_state(pdev);
/*
* As the new kernel behavior of pci_restore_state() API call clears
* device saved_state flag, need to save the restored state again.
*/
pci_save_state(pdev);
if (pdev->is_busmaster)
pci_set_master(pdev);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/* Configure and enable interrupt */
intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0427 Cannot re-enable interrupt after "
"slot reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
} else
phba->intr_mode = intr_mode;
/* Take device offline, it will perform cleanup */
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
lpfc_sli_brdrestart(phba);
/* Log the current active interrupt mode */
lpfc_log_intr_mode(phba, phba->intr_mode);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
* @pdev: pointer to PCI device
*
* This routine is called from the PCI subsystem for error handling to device
* with SLI-3 interface spec. It is called when kernel error recovery tells
* the lpfc driver that it is ok to resume normal PCI operation after PCI bus
* error recovery. After this call, traffic can start to flow from this device
* again.
*/
static void
lpfc_io_resume_s3(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
/* Bring device online, it will be no-op for non-fatal error resume */
lpfc_online(phba);
/* Clean up Advanced Error Reporting (AER) if needed */
if (phba->hba_flag & HBA_AER_ENABLED)
pci_cleanup_aer_uncorrect_error_status(pdev);
}
/**
* lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
* @phba: pointer to lpfc hba data structure.
*
* returns the number of ELS/CT IOCBs to reserve
**/
int
lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
{
int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
if (phba->sli_rev == LPFC_SLI_REV4) {
if (max_xri <= 100)
return 10;
else if (max_xri <= 256)
return 25;
else if (max_xri <= 512)
return 50;
else if (max_xri <= 1024)
return 100;
else if (max_xri <= 1536)
return 150;
else if (max_xri <= 2048)
return 200;
else
return 250;
} else
return 0;
}
/**
* lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
* @phba: pointer to lpfc hba data structure.
*
* returns the number of ELS/CT + NVMET IOCBs to reserve
**/
int
lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
{
int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
if (phba->nvmet_support)
max_xri += LPFC_NVMET_BUF_POST;
return max_xri;
}
/**
* lpfc_write_firmware - attempt to write a firmware image to the port
* @fw: pointer to firmware image returned from request_firmware.
* @phba: pointer to lpfc hba data structure.
*
**/
static void
lpfc_write_firmware(const struct firmware *fw, void *context)
{
struct lpfc_hba *phba = (struct lpfc_hba *)context;
char fwrev[FW_REV_STR_SIZE];
struct lpfc_grp_hdr *image;
struct list_head dma_buffer_list;
int i, rc = 0;
struct lpfc_dmabuf *dmabuf, *next;
uint32_t offset = 0, temp_offset = 0;
uint32_t magic_number, ftype, fid, fsize;
/* It can be null in no-wait mode, sanity check */
if (!fw) {
rc = -ENXIO;
goto out;
}
image = (struct lpfc_grp_hdr *)fw->data;
magic_number = be32_to_cpu(image->magic_number);
ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
fid = bf_get_be32(lpfc_grp_hdr_id, image),
fsize = be32_to_cpu(image->size);
INIT_LIST_HEAD(&dma_buffer_list);
if ((magic_number != LPFC_GROUP_OJECT_MAGIC_G5 &&
magic_number != LPFC_GROUP_OJECT_MAGIC_G6) ||
ftype != LPFC_FILE_TYPE_GROUP || fsize != fw->size) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3022 Invalid FW image found. "
"Magic:%x Type:%x ID:%x Size %d %zd\n",
magic_number, ftype, fid, fsize, fw->size);
rc = -EINVAL;
goto release_out;
}
lpfc_decode_firmware_rev(phba, fwrev, 1);
if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3023 Updating Firmware, Current Version:%s "
"New Version:%s\n",
fwrev, image->revision);
for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
GFP_KERNEL);
if (!dmabuf) {
rc = -ENOMEM;
goto release_out;
}
dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
SLI4_PAGE_SIZE,
&dmabuf->phys,
GFP_KERNEL);
if (!dmabuf->virt) {
kfree(dmabuf);
rc = -ENOMEM;
goto release_out;
}
list_add_tail(&dmabuf->list, &dma_buffer_list);
}
while (offset < fw->size) {
temp_offset = offset;
list_for_each_entry(dmabuf, &dma_buffer_list, list) {
if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
memcpy(dmabuf->virt,
fw->data + temp_offset,
fw->size - temp_offset);
temp_offset = fw->size;
break;
}
memcpy(dmabuf->virt, fw->data + temp_offset,
SLI4_PAGE_SIZE);
temp_offset += SLI4_PAGE_SIZE;
}
rc = lpfc_wr_object(phba, &dma_buffer_list,
(fw->size - offset), &offset);
if (rc)
goto release_out;
}
rc = offset;
}
release_out:
list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
list_del(&dmabuf->list);
dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
dmabuf->virt, dmabuf->phys);
kfree(dmabuf);
}
release_firmware(fw);
out:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3024 Firmware update done: %d.\n", rc);
return;
}
/**
* lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to perform Linux generic firmware upgrade on device
* that supports such feature.
**/
int
lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
{
uint8_t file_name[ELX_MODEL_NAME_SIZE];
int ret;
const struct firmware *fw;
/* Only supported on SLI4 interface type 2 for now */
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) !=
LPFC_SLI_INTF_IF_TYPE_2)
return -EPERM;
snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
if (fw_upgrade == INT_FW_UPGRADE) {
ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
file_name, &phba->pcidev->dev,
GFP_KERNEL, (void *)phba,
lpfc_write_firmware);
} else if (fw_upgrade == RUN_FW_UPGRADE) {
ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
if (!ret)
lpfc_write_firmware(fw, (void *)phba);
} else {
ret = -EINVAL;
}
return ret;
}
/**
* lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
* @pdev: pointer to PCI device
* @pid: pointer to PCI device identifier
*
* This routine is called from the kernel's PCI subsystem to device with
* SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
* presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
* information of the device and driver to see if the driver state that it
* can support this kind of device. If the match is successful, the driver
* core invokes this routine. If this routine determines it can claim the HBA,
* it does all the initialization that it needs to do to handle the HBA
* properly.
*
* Return code
* 0 - driver can claim the device
* negative value - driver can not claim the device
**/
static int
lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
{
struct lpfc_hba *phba;
struct lpfc_vport *vport = NULL;
struct Scsi_Host *shost = NULL;
int error, cnt;
uint32_t cfg_mode, intr_mode;
/* Allocate memory for HBA structure */
phba = lpfc_hba_alloc(pdev);
if (!phba)
return -ENOMEM;
/* Perform generic PCI device enabling operation */
error = lpfc_enable_pci_dev(phba);
if (error)
goto out_free_phba;
/* Set up SLI API function jump table for PCI-device group-1 HBAs */
error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
if (error)
goto out_disable_pci_dev;
/* Set up SLI-4 specific device PCI memory space */
error = lpfc_sli4_pci_mem_setup(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1410 Failed to set up pci memory space.\n");
goto out_disable_pci_dev;
}
/* Set up SLI-4 Specific device driver resources */
error = lpfc_sli4_driver_resource_setup(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1412 Failed to set up driver resource.\n");
goto out_unset_pci_mem_s4;
}
cnt = phba->cfg_iocb_cnt * 1024;
if (phba->nvmet_support)
cnt += phba->cfg_nvmet_mrq_post * phba->cfg_nvmet_mrq;
/* Initialize and populate the iocb list per host */
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2821 initialize iocb list %d total %d\n",
phba->cfg_iocb_cnt, cnt);
error = lpfc_init_iocb_list(phba, cnt);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1413 Failed to initialize iocb list.\n");
goto out_unset_driver_resource_s4;
}
INIT_LIST_HEAD(&phba->active_rrq_list);
INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
/* Set up common device driver resources */
error = lpfc_setup_driver_resource_phase2(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1414 Failed to set up driver resource.\n");
goto out_free_iocb_list;
}
/* Get the default values for Model Name and Description */
lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
/* Create SCSI host to the physical port */
error = lpfc_create_shost(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1415 Failed to create scsi host.\n");
goto out_unset_driver_resource;
}
/* Configure sysfs attributes */
vport = phba->pport;
error = lpfc_alloc_sysfs_attr(vport);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1416 Failed to allocate sysfs attr\n");
goto out_destroy_shost;
}
shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
/* Now, trying to enable interrupt and bring up the device */
cfg_mode = phba->cfg_use_msi;
/* Put device to a known state before enabling interrupt */
lpfc_stop_port(phba);
/* Configure and enable interrupt */
intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0426 Failed to enable interrupt.\n");
error = -ENODEV;
goto out_free_sysfs_attr;
}
/* Default to single EQ for non-MSI-X */
if (phba->intr_type != MSIX) {
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)
phba->cfg_fcp_io_channel = 1;
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
phba->cfg_nvme_io_channel = 1;
if (phba->nvmet_support)
phba->cfg_nvmet_mrq = 1;
}
phba->io_channel_irqs = 1;
}
/* Set up SLI-4 HBA */
if (lpfc_sli4_hba_setup(phba)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1421 Failed to set up hba\n");
error = -ENODEV;
goto out_disable_intr;
}
/* Log the current active interrupt mode */
phba->intr_mode = intr_mode;
lpfc_log_intr_mode(phba, intr_mode);
/* Perform post initialization setup */
lpfc_post_init_setup(phba);
/* NVME support in FW earlier in the driver load corrects the
* FC4 type making a check for nvme_support unnecessary.
*/
if ((phba->nvmet_support == 0) &&
(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
/* Create NVME binding with nvme_fc_transport. This
* ensures the vport is initialized. If the localport
* create fails, it should not unload the driver to
* support field issues.
*/
error = lpfc_nvme_create_localport(vport);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6004 NVME registration failed, "
"error x%x\n",
error);
}
}
/* check for firmware upgrade or downgrade */
if (phba->cfg_request_firmware_upgrade)
lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
/* Check if there are static vports to be created. */
lpfc_create_static_vport(phba);
return 0;
out_disable_intr:
lpfc_sli4_disable_intr(phba);
out_free_sysfs_attr:
lpfc_free_sysfs_attr(vport);
out_destroy_shost:
lpfc_destroy_shost(phba);
out_unset_driver_resource:
lpfc_unset_driver_resource_phase2(phba);
out_free_iocb_list:
lpfc_free_iocb_list(phba);
out_unset_driver_resource_s4:
lpfc_sli4_driver_resource_unset(phba);
out_unset_pci_mem_s4:
lpfc_sli4_pci_mem_unset(phba);
out_disable_pci_dev:
lpfc_disable_pci_dev(phba);
if (shost)
scsi_host_put(shost);
out_free_phba:
lpfc_hba_free(phba);
return error;
}
/**
* lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
* @pdev: pointer to PCI device
*
* This routine is called from the kernel's PCI subsystem to device with
* SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
* removed from PCI bus, it performs all the necessary cleanup for the HBA
* device to be removed from the PCI subsystem properly.
**/
static void
lpfc_pci_remove_one_s4(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_vport **vports;
struct lpfc_hba *phba = vport->phba;
int i;
/* Mark the device unloading flag */
spin_lock_irq(&phba->hbalock);
vport->load_flag |= FC_UNLOADING;
spin_unlock_irq(&phba->hbalock);
/* Free the HBA sysfs attributes */
lpfc_free_sysfs_attr(vport);
/* Release all the vports against this physical port */
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
continue;
fc_vport_terminate(vports[i]->fc_vport);
}
lpfc_destroy_vport_work_array(phba, vports);
/* Remove FC host and then SCSI host with the physical port */
fc_remove_host(shost);
scsi_remove_host(shost);
/* Perform ndlp cleanup on the physical port. The nvme and nvmet
* localports are destroyed after to cleanup all transport memory.
*/
lpfc_cleanup(vport);
lpfc_nvmet_destroy_targetport(phba);
lpfc_nvme_destroy_localport(vport);
/*
* Bring down the SLI Layer. This step disables all interrupts,
* clears the rings, discards all mailbox commands, and resets
* the HBA FCoE function.
*/
lpfc_debugfs_terminate(vport);
lpfc_sli4_hba_unset(phba);
spin_lock_irq(&phba->hbalock);
list_del_init(&vport->listentry);
spin_unlock_irq(&phba->hbalock);
/* Perform scsi free before driver resource_unset since scsi
* buffers are released to their corresponding pools here.
*/
lpfc_scsi_free(phba);
lpfc_nvme_free(phba);
lpfc_free_iocb_list(phba);
lpfc_sli4_driver_resource_unset(phba);
/* Unmap adapter Control and Doorbell registers */
lpfc_sli4_pci_mem_unset(phba);
/* Release PCI resources and disable device's PCI function */
scsi_host_put(shost);
lpfc_disable_pci_dev(phba);
/* Finally, free the driver's device data structure */
lpfc_hba_free(phba);
return;
}
/**
* lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
* @pdev: pointer to PCI device
* @msg: power management message
*
* This routine is called from the kernel's PCI subsystem to support system
* Power Management (PM) to device with SLI-4 interface spec. When PM invokes
* this method, it quiesces the device by stopping the driver's worker
* thread for the device, turning off device's interrupt and DMA, and bring
* the device offline. Note that as the driver implements the minimum PM
* requirements to a power-aware driver's PM support for suspend/resume -- all
* the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
* method call will be treated as SUSPEND and the driver will fully
* reinitialize its device during resume() method call, the driver will set
* device to PCI_D3hot state in PCI config space instead of setting it
* according to the @msg provided by the PM.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_suspend_one_s4(struct pci_dev *pdev, pm_message_t msg)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2843 PCI device Power Management suspend.\n");
/* Bring down the device */
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
kthread_stop(phba->worker_thread);
/* Disable interrupt from device */
lpfc_sli4_disable_intr(phba);
lpfc_sli4_queue_destroy(phba);
/* Save device state to PCI config space */
pci_save_state(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
/**
* lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
* @pdev: pointer to PCI device
*
* This routine is called from the kernel's PCI subsystem to support system
* Power Management (PM) to device with SLI-4 interface spac. When PM invokes
* this method, it restores the device's PCI config space state and fully
* reinitializes the device and brings it online. Note that as the driver
* implements the minimum PM requirements to a power-aware driver's PM for
* suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
* to the suspend() method call will be treated as SUSPEND and the driver
* will fully reinitialize its device during resume() method call, the device
* will be set to PCI_D0 directly in PCI config space before restoring the
* state.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_resume_one_s4(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
uint32_t intr_mode;
int error;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0292 PCI device Power Management resume.\n");
/* Restore device state from PCI config space */
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
/*
* As the new kernel behavior of pci_restore_state() API call clears
* device saved_state flag, need to save the restored state again.
*/
pci_save_state(pdev);
if (pdev->is_busmaster)
pci_set_master(pdev);
/* Startup the kernel thread for this host adapter. */
phba->worker_thread = kthread_run(lpfc_do_work, phba,
"lpfc_worker_%d", phba->brd_no);
if (IS_ERR(phba->worker_thread)) {
error = PTR_ERR(phba->worker_thread);
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0293 PM resume failed to start worker "
"thread: error=x%x.\n", error);
return error;
}
/* Configure and enable interrupt */
intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0294 PM resume Failed to enable interrupt\n");
return -EIO;
} else
phba->intr_mode = intr_mode;
/* Restart HBA and bring it online */
lpfc_sli_brdrestart(phba);
lpfc_online(phba);
/* Log the current active interrupt mode */
lpfc_log_intr_mode(phba, phba->intr_mode);
return 0;
}
/**
* lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI4 device for PCI slot recover. It
* aborts all the outstanding SCSI I/Os to the pci device.
**/
static void
lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2828 PCI channel I/O abort preparing for recovery\n");
/*
* There may be errored I/Os through HBA, abort all I/Os on txcmplq
* and let the SCSI mid-layer to retry them to recover.
*/
lpfc_sli_abort_fcp_rings(phba);
}
/**
* lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI4 device for PCI slot reset. It
* disables the device interrupt and pci device, and aborts the internal FCP
* pending I/Os.
**/
static void
lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2826 PCI channel disable preparing for reset\n");
/* Block any management I/Os to the device */
lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
/* Block all SCSI devices' I/Os on the host */
lpfc_scsi_dev_block(phba);
/* Flush all driver's outstanding SCSI I/Os as we are to reset */
lpfc_sli_flush_fcp_rings(phba);
/* stop all timers */
lpfc_stop_hba_timers(phba);
/* Disable interrupt and pci device */
lpfc_sli4_disable_intr(phba);
lpfc_sli4_queue_destroy(phba);
pci_disable_device(phba->pcidev);
}
/**
* lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI4 device for PCI slot permanently
* disabling. It blocks the SCSI transport layer traffic and flushes the FCP
* pending I/Os.
**/
static void
lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2827 PCI channel permanent disable for failure\n");
/* Block all SCSI devices' I/Os on the host */
lpfc_scsi_dev_block(phba);
/* stop all timers */
lpfc_stop_hba_timers(phba);
/* Clean up all driver's outstanding SCSI I/Os */
lpfc_sli_flush_fcp_rings(phba);
}
/**
* lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
* @pdev: pointer to PCI device.
* @state: the current PCI connection state.
*
* This routine is called from the PCI subsystem for error handling to device
* with SLI-4 interface spec. This function is called by the PCI subsystem
* after a PCI bus error affecting this device has been detected. When this
* function is invoked, it will need to stop all the I/Os and interrupt(s)
* to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
* for the PCI subsystem to perform proper recovery as desired.
*
* Return codes
* PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
**/
static pci_ers_result_t
lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
switch (state) {
case pci_channel_io_normal:
/* Non-fatal error, prepare for recovery */
lpfc_sli4_prep_dev_for_recover(phba);
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
/* Fatal error, prepare for slot reset */
lpfc_sli4_prep_dev_for_reset(phba);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
/* Permanent failure, prepare for device down */
lpfc_sli4_prep_dev_for_perm_failure(phba);
return PCI_ERS_RESULT_DISCONNECT;
default:
/* Unknown state, prepare and request slot reset */
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2825 Unknown PCI error state: x%x\n", state);
lpfc_sli4_prep_dev_for_reset(phba);
return PCI_ERS_RESULT_NEED_RESET;
}
}
/**
* lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
* @pdev: pointer to PCI device.
*
* This routine is called from the PCI subsystem for error handling to device
* with SLI-4 interface spec. It is called after PCI bus has been reset to
* restart the PCI card from scratch, as if from a cold-boot. During the
* PCI subsystem error recovery, after the driver returns
* PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
* recovery and then call this routine before calling the .resume method to
* recover the device. This function will initialize the HBA device, enable
* the interrupt, but it will just put the HBA to offline state without
* passing any I/O traffic.
*
* Return codes
* PCI_ERS_RESULT_RECOVERED - the device has been recovered
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
*/
static pci_ers_result_t
lpfc_io_slot_reset_s4(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
struct lpfc_sli *psli = &phba->sli;
uint32_t intr_mode;
dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
if (pci_enable_device_mem(pdev)) {
printk(KERN_ERR "lpfc: Cannot re-enable "
"PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_restore_state(pdev);
/*
* As the new kernel behavior of pci_restore_state() API call clears
* device saved_state flag, need to save the restored state again.
*/
pci_save_state(pdev);
if (pdev->is_busmaster)
pci_set_master(pdev);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/* Configure and enable interrupt */
intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2824 Cannot re-enable interrupt after "
"slot reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
} else
phba->intr_mode = intr_mode;
/* Log the current active interrupt mode */
lpfc_log_intr_mode(phba, phba->intr_mode);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
* @pdev: pointer to PCI device
*
* This routine is called from the PCI subsystem for error handling to device
* with SLI-4 interface spec. It is called when kernel error recovery tells
* the lpfc driver that it is ok to resume normal PCI operation after PCI bus
* error recovery. After this call, traffic can start to flow from this device
* again.
**/
static void
lpfc_io_resume_s4(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
/*
* In case of slot reset, as function reset is performed through
* mailbox command which needs DMA to be enabled, this operation
* has to be moved to the io resume phase. Taking device offline
* will perform the necessary cleanup.
*/
if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
/* Perform device reset */
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
lpfc_sli_brdrestart(phba);
/* Bring the device back online */
lpfc_online(phba);
}
/* Clean up Advanced Error Reporting (AER) if needed */
if (phba->hba_flag & HBA_AER_ENABLED)
pci_cleanup_aer_uncorrect_error_status(pdev);
}
/**
* lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
* @pdev: pointer to PCI device
* @pid: pointer to PCI device identifier
*
* This routine is to be registered to the kernel's PCI subsystem. When an
* Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
* at PCI device-specific information of the device and driver to see if the
* driver state that it can support this kind of device. If the match is
* successful, the driver core invokes this routine. This routine dispatches
* the action to the proper SLI-3 or SLI-4 device probing routine, which will
* do all the initialization that it needs to do to handle the HBA device
* properly.
*
* Return code
* 0 - driver can claim the device
* negative value - driver can not claim the device
**/
static int
lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
{
int rc;
struct lpfc_sli_intf intf;
if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
return -ENODEV;
if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
(bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
rc = lpfc_pci_probe_one_s4(pdev, pid);
else
rc = lpfc_pci_probe_one_s3(pdev, pid);
return rc;
}
/**
* lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
* @pdev: pointer to PCI device
*
* This routine is to be registered to the kernel's PCI subsystem. When an
* Emulex HBA is removed from PCI bus, the driver core invokes this routine.
* This routine dispatches the action to the proper SLI-3 or SLI-4 device
* remove routine, which will perform all the necessary cleanup for the
* device to be removed from the PCI subsystem properly.
**/
static void
lpfc_pci_remove_one(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
lpfc_pci_remove_one_s3(pdev);
break;
case LPFC_PCI_DEV_OC:
lpfc_pci_remove_one_s4(pdev);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1424 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return;
}
/**
* lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
* @pdev: pointer to PCI device
* @msg: power management message
*
* This routine is to be registered to the kernel's PCI subsystem to support
* system Power Management (PM). When PM invokes this method, it dispatches
* the action to the proper SLI-3 or SLI-4 device suspend routine, which will
* suspend the device.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_suspend_one(struct pci_dev *pdev, pm_message_t msg)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
int rc = -ENODEV;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
rc = lpfc_pci_suspend_one_s3(pdev, msg);
break;
case LPFC_PCI_DEV_OC:
rc = lpfc_pci_suspend_one_s4(pdev, msg);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1425 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return rc;
}
/**
* lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
* @pdev: pointer to PCI device
*
* This routine is to be registered to the kernel's PCI subsystem to support
* system Power Management (PM). When PM invokes this method, it dispatches
* the action to the proper SLI-3 or SLI-4 device resume routine, which will
* resume the device.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_resume_one(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
int rc = -ENODEV;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
rc = lpfc_pci_resume_one_s3(pdev);
break;
case LPFC_PCI_DEV_OC:
rc = lpfc_pci_resume_one_s4(pdev);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1426 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return rc;
}
/**
* lpfc_io_error_detected - lpfc method for handling PCI I/O error
* @pdev: pointer to PCI device.
* @state: the current PCI connection state.
*
* This routine is registered to the PCI subsystem for error handling. This
* function is called by the PCI subsystem after a PCI bus error affecting
* this device has been detected. When this routine is invoked, it dispatches
* the action to the proper SLI-3 or SLI-4 device error detected handling
* routine, which will perform the proper error detected operation.
*
* Return codes
* PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
**/
static pci_ers_result_t
lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
rc = lpfc_io_error_detected_s3(pdev, state);
break;
case LPFC_PCI_DEV_OC:
rc = lpfc_io_error_detected_s4(pdev, state);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1427 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return rc;
}
/**
* lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
* @pdev: pointer to PCI device.
*
* This routine is registered to the PCI subsystem for error handling. This
* function is called after PCI bus has been reset to restart the PCI card
* from scratch, as if from a cold-boot. When this routine is invoked, it
* dispatches the action to the proper SLI-3 or SLI-4 device reset handling
* routine, which will perform the proper device reset.
*
* Return codes
* PCI_ERS_RESULT_RECOVERED - the device has been recovered
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
**/
static pci_ers_result_t
lpfc_io_slot_reset(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
rc = lpfc_io_slot_reset_s3(pdev);
break;
case LPFC_PCI_DEV_OC:
rc = lpfc_io_slot_reset_s4(pdev);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1428 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return rc;
}
/**
* lpfc_io_resume - lpfc method for resuming PCI I/O operation
* @pdev: pointer to PCI device
*
* This routine is registered to the PCI subsystem for error handling. It
* is called when kernel error recovery tells the lpfc driver that it is
* OK to resume normal PCI operation after PCI bus error recovery. When
* this routine is invoked, it dispatches the action to the proper SLI-3
* or SLI-4 device io_resume routine, which will resume the device operation.
**/
static void
lpfc_io_resume(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
lpfc_io_resume_s3(pdev);
break;
case LPFC_PCI_DEV_OC:
lpfc_io_resume_s4(pdev);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1429 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return;
}
/**
* lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
* @phba: pointer to lpfc hba data structure.
*
* This routine checks to see if OAS is supported for this adapter. If
* supported, the configure Flash Optimized Fabric flag is set. Otherwise,
* the enable oas flag is cleared and the pool created for OAS device data
* is destroyed.
*
**/
void
lpfc_sli4_oas_verify(struct lpfc_hba *phba)
{
if (!phba->cfg_EnableXLane)
return;
if (phba->sli4_hba.pc_sli4_params.oas_supported) {
phba->cfg_fof = 1;
} else {
phba->cfg_fof = 0;
if (phba->device_data_mem_pool)
mempool_destroy(phba->device_data_mem_pool);
phba->device_data_mem_pool = NULL;
}
return;
}
/**
* lpfc_fof_queue_setup - Set up all the fof queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up all the fof queues for the FC HBA
* operation.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
**/
int
lpfc_fof_queue_setup(struct lpfc_hba *phba)
{
struct lpfc_sli_ring *pring;
int rc;
rc = lpfc_eq_create(phba, phba->sli4_hba.fof_eq, LPFC_MAX_IMAX);
if (rc)
return -ENOMEM;
if (phba->cfg_fof) {
rc = lpfc_cq_create(phba, phba->sli4_hba.oas_cq,
phba->sli4_hba.fof_eq, LPFC_WCQ, LPFC_FCP);
if (rc)
goto out_oas_cq;
rc = lpfc_wq_create(phba, phba->sli4_hba.oas_wq,
phba->sli4_hba.oas_cq, LPFC_FCP);
if (rc)
goto out_oas_wq;
/* Bind this CQ/WQ to the NVME ring */
pring = phba->sli4_hba.oas_wq->pring;
pring->sli.sli4.wqp =
(void *)phba->sli4_hba.oas_wq;
phba->sli4_hba.oas_cq->pring = pring;
}
return 0;
out_oas_wq:
lpfc_cq_destroy(phba, phba->sli4_hba.oas_cq);
out_oas_cq:
lpfc_eq_destroy(phba, phba->sli4_hba.fof_eq);
return rc;
}
/**
* lpfc_fof_queue_create - Create all the fof queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate all the fof queues for the FC HBA
* operation. For each SLI4 queue type, the parameters such as queue entry
* count (queue depth) shall be taken from the module parameter. For now,
* we just use some constant number as place holder.
*
* Return codes
* 0 - successful
* -ENOMEM - No availble memory
* -EIO - The mailbox failed to complete successfully.
**/
int
lpfc_fof_queue_create(struct lpfc_hba *phba)
{
struct lpfc_queue *qdesc;
uint32_t wqesize;
/* Create FOF EQ */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.eq_esize,
phba->sli4_hba.eq_ecount);
if (!qdesc)
goto out_error;
phba->sli4_hba.fof_eq = qdesc;
if (phba->cfg_fof) {
/* Create OAS CQ */
qdesc = lpfc_sli4_queue_alloc(phba, phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount);
if (!qdesc)
goto out_error;
phba->sli4_hba.oas_cq = qdesc;
/* Create OAS WQ */
wqesize = (phba->fcp_embed_io) ?
LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
qdesc = lpfc_sli4_queue_alloc(phba, wqesize,
phba->sli4_hba.wq_ecount);
if (!qdesc)
goto out_error;
phba->sli4_hba.oas_wq = qdesc;
list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
}
return 0;
out_error:
lpfc_fof_queue_destroy(phba);
return -ENOMEM;
}
/**
* lpfc_fof_queue_destroy - Destroy all the fof queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to release all the SLI4 queues with the FC HBA
* operation.
*
* Return codes
* 0 - successful
**/
int
lpfc_fof_queue_destroy(struct lpfc_hba *phba)
{
/* Release FOF Event queue */
if (phba->sli4_hba.fof_eq != NULL) {
lpfc_sli4_queue_free(phba->sli4_hba.fof_eq);
phba->sli4_hba.fof_eq = NULL;
}
/* Release OAS Completion queue */
if (phba->sli4_hba.oas_cq != NULL) {
lpfc_sli4_queue_free(phba->sli4_hba.oas_cq);
phba->sli4_hba.oas_cq = NULL;
}
/* Release OAS Work queue */
if (phba->sli4_hba.oas_wq != NULL) {
lpfc_sli4_queue_free(phba->sli4_hba.oas_wq);
phba->sli4_hba.oas_wq = NULL;
}
return 0;
}
MODULE_DEVICE_TABLE(pci, lpfc_id_table);
static const struct pci_error_handlers lpfc_err_handler = {
.error_detected = lpfc_io_error_detected,
.slot_reset = lpfc_io_slot_reset,
.resume = lpfc_io_resume,
};
static struct pci_driver lpfc_driver = {
.name = LPFC_DRIVER_NAME,
.id_table = lpfc_id_table,
.probe = lpfc_pci_probe_one,
.remove = lpfc_pci_remove_one,
.shutdown = lpfc_pci_remove_one,
.suspend = lpfc_pci_suspend_one,
.resume = lpfc_pci_resume_one,
.err_handler = &lpfc_err_handler,
};
static const struct file_operations lpfc_mgmt_fop = {
.owner = THIS_MODULE,
};
static struct miscdevice lpfc_mgmt_dev = {
.minor = MISC_DYNAMIC_MINOR,
.name = "lpfcmgmt",
.fops = &lpfc_mgmt_fop,
};
/**
* lpfc_init - lpfc module initialization routine
*
* This routine is to be invoked when the lpfc module is loaded into the
* kernel. The special kernel macro module_init() is used to indicate the
* role of this routine to the kernel as lpfc module entry point.
*
* Return codes
* 0 - successful
* -ENOMEM - FC attach transport failed
* all others - failed
*/
static int __init
lpfc_init(void)
{
int error = 0;
printk(LPFC_MODULE_DESC "\n");
printk(LPFC_COPYRIGHT "\n");
error = misc_register(&lpfc_mgmt_dev);
if (error)
printk(KERN_ERR "Could not register lpfcmgmt device, "
"misc_register returned with status %d", error);
lpfc_transport_functions.vport_create = lpfc_vport_create;
lpfc_transport_functions.vport_delete = lpfc_vport_delete;
lpfc_transport_template =
fc_attach_transport(&lpfc_transport_functions);
if (lpfc_transport_template == NULL)
return -ENOMEM;
lpfc_vport_transport_template =
fc_attach_transport(&lpfc_vport_transport_functions);
if (lpfc_vport_transport_template == NULL) {
fc_release_transport(lpfc_transport_template);
return -ENOMEM;
}
/* Initialize in case vector mapping is needed */
lpfc_used_cpu = NULL;
lpfc_present_cpu = num_present_cpus();
error = pci_register_driver(&lpfc_driver);
if (error) {
fc_release_transport(lpfc_transport_template);
fc_release_transport(lpfc_vport_transport_template);
}
return error;
}
/**
* lpfc_exit - lpfc module removal routine
*
* This routine is invoked when the lpfc module is removed from the kernel.
* The special kernel macro module_exit() is used to indicate the role of
* this routine to the kernel as lpfc module exit point.
*/
static void __exit
lpfc_exit(void)
{
misc_deregister(&lpfc_mgmt_dev);
pci_unregister_driver(&lpfc_driver);
fc_release_transport(lpfc_transport_template);
fc_release_transport(lpfc_vport_transport_template);
if (_dump_buf_data) {
printk(KERN_ERR "9062 BLKGRD: freeing %lu pages for "
"_dump_buf_data at 0x%p\n",
(1L << _dump_buf_data_order), _dump_buf_data);
free_pages((unsigned long)_dump_buf_data, _dump_buf_data_order);
}
if (_dump_buf_dif) {
printk(KERN_ERR "9049 BLKGRD: freeing %lu pages for "
"_dump_buf_dif at 0x%p\n",
(1L << _dump_buf_dif_order), _dump_buf_dif);
free_pages((unsigned long)_dump_buf_dif, _dump_buf_dif_order);
}
kfree(lpfc_used_cpu);
idr_destroy(&lpfc_hba_index);
}
module_init(lpfc_init);
module_exit(lpfc_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(LPFC_MODULE_DESC);
MODULE_AUTHOR("Broadcom");
MODULE_VERSION("0:" LPFC_DRIVER_VERSION);