1
0
mirror of https://github.com/torvalds/linux.git synced 2024-12-25 04:11:49 +00:00
linux/drivers/spi/spi-nxp-fspi.c
Michael Walle 67a12ae525
spi: spi-nxp-fspi: don't depend on a specific node name erratum workaround
In commit 7e71b85473 ("arm64: dts: ls1028a: fix node name for the
sysclk") the sysclk node name was renamed and broke the erratum
workaround because it tries to fetch a device tree node by its name,
which is very fragile in general. We don't even need the sysclk node
because the only possible sysclk frequency input is 100MHz. In fact, the
erratum says it applies if SYS_PLL_RAT is 3, not that the platform clock
is 300 MHz. Make the workaround more reliable and just drop the unneeded
sysclk lookup.

For reference, the error during the bootup is the following:
[    4.898400] nxp-fspi 20c0000.spi: Errata cannot be executed. Read via IP bus may not work

Fixes: 82ce7d0e74 ("spi: spi-nxp-fspi: Implement errata workaround for LS1028A")
Cc: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Michael Walle <michael@walle.cc>
Link: https://lore.kernel.org/r/20211001212726.159437-1-michael@walle.cc
Signed-off-by: Mark Brown <broonie@kernel.org>
2021-10-02 01:31:49 +01:00

1270 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* NXP FlexSPI(FSPI) controller driver.
*
* Copyright 2019-2020 NXP
* Copyright 2020 Puresoftware Ltd.
*
* FlexSPI is a flexsible SPI host controller which supports two SPI
* channels and up to 4 external devices. Each channel supports
* Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
* data lines).
*
* FlexSPI controller is driven by the LUT(Look-up Table) registers
* LUT registers are a look-up-table for sequences of instructions.
* A valid sequence consists of four LUT registers.
* Maximum 32 LUT sequences can be programmed simultaneously.
*
* LUTs are being created at run-time based on the commands passed
* from the spi-mem framework, thus using single LUT index.
*
* Software triggered Flash read/write access by IP Bus.
*
* Memory mapped read access by AHB Bus.
*
* Based on SPI MEM interface and spi-fsl-qspi.c driver.
*
* Author:
* Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
* Boris Brezillon <bbrezillon@kernel.org>
* Frieder Schrempf <frieder.schrempf@kontron.de>
*/
#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/regmap.h>
#include <linux/sizes.h>
#include <linux/sys_soc.h>
#include <linux/mfd/syscon.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
/*
* The driver only uses one single LUT entry, that is updated on
* each call of exec_op(). Index 0 is preset at boot with a basic
* read operation, so let's use the last entry (31).
*/
#define SEQID_LUT 31
/* Registers used by the driver */
#define FSPI_MCR0 0x00
#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR0_LEARN_EN BIT(15)
#define FSPI_MCR0_SCRFRUN_EN BIT(14)
#define FSPI_MCR0_OCTCOMB_EN BIT(13)
#define FSPI_MCR0_DOZE_EN BIT(12)
#define FSPI_MCR0_HSEN BIT(11)
#define FSPI_MCR0_SERCLKDIV BIT(8)
#define FSPI_MCR0_ATDF_EN BIT(7)
#define FSPI_MCR0_ARDF_EN BIT(6)
#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
#define FSPI_MCR0_END_CFG(x) ((x) << 2)
#define FSPI_MCR0_MDIS BIT(1)
#define FSPI_MCR0_SWRST BIT(0)
#define FSPI_MCR1 0x04
#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
#define FSPI_MCR2 0x08
#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
#define FSPI_MCR2_CLRLRPHS BIT(14)
#define FSPI_MCR2_ABRDATSZ BIT(8)
#define FSPI_MCR2_ABRLEARN BIT(7)
#define FSPI_MCR2_ABR_READ BIT(6)
#define FSPI_MCR2_ABRWRITE BIT(5)
#define FSPI_MCR2_ABRDUMMY BIT(4)
#define FSPI_MCR2_ABR_MODE BIT(3)
#define FSPI_MCR2_ABRCADDR BIT(2)
#define FSPI_MCR2_ABRRADDR BIT(1)
#define FSPI_MCR2_ABR_CMD BIT(0)
#define FSPI_AHBCR 0x0c
#define FSPI_AHBCR_RDADDROPT BIT(6)
#define FSPI_AHBCR_PREF_EN BIT(5)
#define FSPI_AHBCR_BUFF_EN BIT(4)
#define FSPI_AHBCR_CACH_EN BIT(3)
#define FSPI_AHBCR_CLRTXBUF BIT(2)
#define FSPI_AHBCR_CLRRXBUF BIT(1)
#define FSPI_AHBCR_PAR_EN BIT(0)
#define FSPI_INTEN 0x10
#define FSPI_INTEN_SCLKSBWR BIT(9)
#define FSPI_INTEN_SCLKSBRD BIT(8)
#define FSPI_INTEN_DATALRNFL BIT(7)
#define FSPI_INTEN_IPTXWE BIT(6)
#define FSPI_INTEN_IPRXWA BIT(5)
#define FSPI_INTEN_AHBCMDERR BIT(4)
#define FSPI_INTEN_IPCMDERR BIT(3)
#define FSPI_INTEN_AHBCMDGE BIT(2)
#define FSPI_INTEN_IPCMDGE BIT(1)
#define FSPI_INTEN_IPCMDDONE BIT(0)
#define FSPI_INTR 0x14
#define FSPI_INTR_SCLKSBWR BIT(9)
#define FSPI_INTR_SCLKSBRD BIT(8)
#define FSPI_INTR_DATALRNFL BIT(7)
#define FSPI_INTR_IPTXWE BIT(6)
#define FSPI_INTR_IPRXWA BIT(5)
#define FSPI_INTR_AHBCMDERR BIT(4)
#define FSPI_INTR_IPCMDERR BIT(3)
#define FSPI_INTR_AHBCMDGE BIT(2)
#define FSPI_INTR_IPCMDGE BIT(1)
#define FSPI_INTR_IPCMDDONE BIT(0)
#define FSPI_LUTKEY 0x18
#define FSPI_LUTKEY_VALUE 0x5AF05AF0
#define FSPI_LCKCR 0x1C
#define FSPI_LCKER_LOCK 0x1
#define FSPI_LCKER_UNLOCK 0x2
#define FSPI_BUFXCR_INVALID_MSTRID 0xE
#define FSPI_AHBRX_BUF0CR0 0x20
#define FSPI_AHBRX_BUF1CR0 0x24
#define FSPI_AHBRX_BUF2CR0 0x28
#define FSPI_AHBRX_BUF3CR0 0x2C
#define FSPI_AHBRX_BUF4CR0 0x30
#define FSPI_AHBRX_BUF5CR0 0x34
#define FSPI_AHBRX_BUF6CR0 0x38
#define FSPI_AHBRX_BUF7CR0 0x3C
#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
#define FSPI_AHBRX_BUF0CR1 0x40
#define FSPI_AHBRX_BUF1CR1 0x44
#define FSPI_AHBRX_BUF2CR1 0x48
#define FSPI_AHBRX_BUF3CR1 0x4C
#define FSPI_AHBRX_BUF4CR1 0x50
#define FSPI_AHBRX_BUF5CR1 0x54
#define FSPI_AHBRX_BUF6CR1 0x58
#define FSPI_AHBRX_BUF7CR1 0x5C
#define FSPI_FLSHA1CR0 0x60
#define FSPI_FLSHA2CR0 0x64
#define FSPI_FLSHB1CR0 0x68
#define FSPI_FLSHB2CR0 0x6C
#define FSPI_FLSHXCR0_SZ_KB 10
#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
#define FSPI_FLSHA1CR1 0x70
#define FSPI_FLSHA2CR1 0x74
#define FSPI_FLSHB1CR1 0x78
#define FSPI_FLSHB2CR1 0x7C
#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
#define FSPI_FLSHXCR1_WA BIT(10)
#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
#define FSPI_FLSHXCR1_TCSS(x) (x)
#define FSPI_FLSHA1CR2 0x80
#define FSPI_FLSHA2CR2 0x84
#define FSPI_FLSHB1CR2 0x88
#define FSPI_FLSHB2CR2 0x8C
#define FSPI_FLSHXCR2_CLRINSP BIT(24)
#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
#define FSPI_IPCR0 0xA0
#define FSPI_IPCR1 0xA4
#define FSPI_IPCR1_IPAREN BIT(31)
#define FSPI_IPCR1_SEQNUM_SHIFT 24
#define FSPI_IPCR1_SEQID_SHIFT 16
#define FSPI_IPCR1_IDATSZ(x) (x)
#define FSPI_IPCMD 0xB0
#define FSPI_IPCMD_TRG BIT(0)
#define FSPI_DLPR 0xB4
#define FSPI_IPRXFCR 0xB8
#define FSPI_IPRXFCR_CLR BIT(0)
#define FSPI_IPRXFCR_DMA_EN BIT(1)
#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
#define FSPI_IPTXFCR 0xBC
#define FSPI_IPTXFCR_CLR BIT(0)
#define FSPI_IPTXFCR_DMA_EN BIT(1)
#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
#define FSPI_DLLACR 0xC0
#define FSPI_DLLACR_OVRDEN BIT(8)
#define FSPI_DLLBCR 0xC4
#define FSPI_DLLBCR_OVRDEN BIT(8)
#define FSPI_STS0 0xE0
#define FSPI_STS0_DLPHB(x) ((x) << 8)
#define FSPI_STS0_DLPHA(x) ((x) << 4)
#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
#define FSPI_STS0_ARB_IDLE BIT(1)
#define FSPI_STS0_SEQ_IDLE BIT(0)
#define FSPI_STS1 0xE4
#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
#define FSPI_STS1_AHB_ERRID(x) (x)
#define FSPI_AHBSPNST 0xEC
#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
#define FSPI_AHBSPNST_ACTIVE BIT(0)
#define FSPI_IPRXFSTS 0xF0
#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
#define FSPI_IPRXFSTS_FILL(x) (x)
#define FSPI_IPTXFSTS 0xF4
#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
#define FSPI_IPTXFSTS_FILL(x) (x)
#define FSPI_RFDR 0x100
#define FSPI_TFDR 0x180
#define FSPI_LUT_BASE 0x200
#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
#define FSPI_LUT_REG(idx) \
(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
/* register map end */
/* Instruction set for the LUT register. */
#define LUT_STOP 0x00
#define LUT_CMD 0x01
#define LUT_ADDR 0x02
#define LUT_CADDR_SDR 0x03
#define LUT_MODE 0x04
#define LUT_MODE2 0x05
#define LUT_MODE4 0x06
#define LUT_MODE8 0x07
#define LUT_NXP_WRITE 0x08
#define LUT_NXP_READ 0x09
#define LUT_LEARN_SDR 0x0A
#define LUT_DATSZ_SDR 0x0B
#define LUT_DUMMY 0x0C
#define LUT_DUMMY_RWDS_SDR 0x0D
#define LUT_JMP_ON_CS 0x1F
#define LUT_CMD_DDR 0x21
#define LUT_ADDR_DDR 0x22
#define LUT_CADDR_DDR 0x23
#define LUT_MODE_DDR 0x24
#define LUT_MODE2_DDR 0x25
#define LUT_MODE4_DDR 0x26
#define LUT_MODE8_DDR 0x27
#define LUT_WRITE_DDR 0x28
#define LUT_READ_DDR 0x29
#define LUT_LEARN_DDR 0x2A
#define LUT_DATSZ_DDR 0x2B
#define LUT_DUMMY_DDR 0x2C
#define LUT_DUMMY_RWDS_DDR 0x2D
/*
* Calculate number of required PAD bits for LUT register.
*
* The pad stands for the number of IO lines [0:7].
* For example, the octal read needs eight IO lines,
* so you should use LUT_PAD(8). This macro
* returns 3 i.e. use eight (2^3) IP lines for read.
*/
#define LUT_PAD(x) (fls(x) - 1)
/*
* Macro for constructing the LUT entries with the following
* register layout:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define PAD_SHIFT 8
#define INSTR_SHIFT 10
#define OPRND_SHIFT 16
/* Macros for constructing the LUT register. */
#define LUT_DEF(idx, ins, pad, opr) \
((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
(opr)) << (((idx) % 2) * OPRND_SHIFT))
#define POLL_TOUT 5000
#define NXP_FSPI_MAX_CHIPSELECT 4
#define NXP_FSPI_MIN_IOMAP SZ_4M
#define DCFG_RCWSR1 0x100
#define SYS_PLL_RAT GENMASK(6, 2)
/* Access flash memory using IP bus only */
#define FSPI_QUIRK_USE_IP_ONLY BIT(0)
struct nxp_fspi_devtype_data {
unsigned int rxfifo;
unsigned int txfifo;
unsigned int ahb_buf_size;
unsigned int quirks;
bool little_endian;
};
static struct nxp_fspi_devtype_data lx2160a_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = 0,
.little_endian = true, /* little-endian */
};
static struct nxp_fspi_devtype_data imx8mm_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = 0,
.little_endian = true, /* little-endian */
};
static struct nxp_fspi_devtype_data imx8qxp_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = 0,
.little_endian = true, /* little-endian */
};
static struct nxp_fspi_devtype_data imx8dxl_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = FSPI_QUIRK_USE_IP_ONLY,
.little_endian = true, /* little-endian */
};
struct nxp_fspi {
void __iomem *iobase;
void __iomem *ahb_addr;
u32 memmap_phy;
u32 memmap_phy_size;
u32 memmap_start;
u32 memmap_len;
struct clk *clk, *clk_en;
struct device *dev;
struct completion c;
struct nxp_fspi_devtype_data *devtype_data;
struct mutex lock;
struct pm_qos_request pm_qos_req;
int selected;
};
static inline int needs_ip_only(struct nxp_fspi *f)
{
return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
}
/*
* R/W functions for big- or little-endian registers:
* The FSPI controller's endianness is independent of
* the CPU core's endianness. So far, although the CPU
* core is little-endian the FSPI controller can use
* big-endian or little-endian.
*/
static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
{
if (f->devtype_data->little_endian)
iowrite32(val, addr);
else
iowrite32be(val, addr);
}
static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
{
if (f->devtype_data->little_endian)
return ioread32(addr);
else
return ioread32be(addr);
}
static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
{
struct nxp_fspi *f = dev_id;
u32 reg;
/* clear interrupt */
reg = fspi_readl(f, f->iobase + FSPI_INTR);
fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
if (reg & FSPI_INTR_IPCMDDONE)
complete(&f->c);
return IRQ_HANDLED;
}
static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
{
switch (width) {
case 1:
case 2:
case 4:
case 8:
return 0;
}
return -ENOTSUPP;
}
static bool nxp_fspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
int ret;
ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
if (op->addr.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
if (op->dummy.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
if (op->data.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
if (ret)
return false;
/*
* The number of address bytes should be equal to or less than 4 bytes.
*/
if (op->addr.nbytes > 4)
return false;
/*
* If requested address value is greater than controller assigned
* memory mapped space, return error as it didn't fit in the range
* of assigned address space.
*/
if (op->addr.val >= f->memmap_phy_size)
return false;
/* Max 64 dummy clock cycles supported */
if (op->dummy.buswidth &&
(op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
return false;
/* Max data length, check controller limits and alignment */
if (op->data.dir == SPI_MEM_DATA_IN &&
(op->data.nbytes > f->devtype_data->ahb_buf_size ||
(op->data.nbytes > f->devtype_data->rxfifo - 4 &&
!IS_ALIGNED(op->data.nbytes, 8))))
return false;
if (op->data.dir == SPI_MEM_DATA_OUT &&
op->data.nbytes > f->devtype_data->txfifo)
return false;
return spi_mem_default_supports_op(mem, op);
}
/* Instead of busy looping invoke readl_poll_timeout functionality. */
static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
u32 mask, u32 delay_us,
u32 timeout_us, bool c)
{
u32 reg;
if (!f->devtype_data->little_endian)
mask = (u32)cpu_to_be32(mask);
if (c)
return readl_poll_timeout(base, reg, (reg & mask),
delay_us, timeout_us);
else
return readl_poll_timeout(base, reg, !(reg & mask),
delay_us, timeout_us);
}
/*
* If the slave device content being changed by Write/Erase, need to
* invalidate the AHB buffer. This can be achieved by doing the reset
* of controller after setting MCR0[SWRESET] bit.
*/
static inline void nxp_fspi_invalid(struct nxp_fspi *f)
{
u32 reg;
int ret;
reg = fspi_readl(f, f->iobase + FSPI_MCR0);
fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
/* w1c register, wait unit clear */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
WARN_ON(ret);
}
static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
u32 lutval[4] = {};
int lutidx = 1, i;
/* cmd */
lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
op->cmd.opcode);
/* addr bytes */
if (op->addr.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
LUT_PAD(op->addr.buswidth),
op->addr.nbytes * 8);
lutidx++;
}
/* dummy bytes, if needed */
if (op->dummy.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
/*
* Due to FlexSPI controller limitation number of PAD for dummy
* buswidth needs to be programmed as equal to data buswidth.
*/
LUT_PAD(op->data.buswidth),
op->dummy.nbytes * 8 /
op->dummy.buswidth);
lutidx++;
}
/* read/write data bytes */
if (op->data.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx,
op->data.dir == SPI_MEM_DATA_IN ?
LUT_NXP_READ : LUT_NXP_WRITE,
LUT_PAD(op->data.buswidth),
0);
lutidx++;
}
/* stop condition. */
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
/* unlock LUT */
fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
/* fill LUT */
for (i = 0; i < ARRAY_SIZE(lutval); i++)
fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
/* lock LUT */
fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
}
static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
{
int ret;
if (is_acpi_node(f->dev->fwnode))
return 0;
ret = clk_prepare_enable(f->clk_en);
if (ret)
return ret;
ret = clk_prepare_enable(f->clk);
if (ret) {
clk_disable_unprepare(f->clk_en);
return ret;
}
return 0;
}
static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
{
if (is_acpi_node(f->dev->fwnode))
return 0;
clk_disable_unprepare(f->clk);
clk_disable_unprepare(f->clk_en);
return 0;
}
/*
* In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
* register and start base address of the slave device.
*
* (Higher address)
* -------- <-- FLSHB2CR0
* | B2 |
* | |
* B2 start address --> -------- <-- FLSHB1CR0
* | B1 |
* | |
* B1 start address --> -------- <-- FLSHA2CR0
* | A2 |
* | |
* A2 start address --> -------- <-- FLSHA1CR0
* | A1 |
* | |
* A1 start address --> -------- (Lower address)
*
*
* Start base address defines the starting address range for given CS and
* FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
*
* But, different targets are having different combinations of number of CS,
* some targets only have single CS or two CS covering controller's full
* memory mapped space area.
* Thus, implementation is being done as independent of the size and number
* of the connected slave device.
* Assign controller memory mapped space size as the size to the connected
* slave device.
* Mark FLSHxxCR0 as zero initially and then assign value only to the selected
* chip-select Flash configuration register.
*
* For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
* memory mapped size of the controller.
* Value for rest of the CS FLSHxxCR0 register would be zero.
*
*/
static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
{
unsigned long rate = spi->max_speed_hz;
int ret;
uint64_t size_kb;
/*
* Return, if previously selected slave device is same as current
* requested slave device.
*/
if (f->selected == spi->chip_select)
return;
/* Reset FLSHxxCR0 registers */
fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
/* Assign controller memory mapped space as size, KBytes, of flash. */
size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
4 * spi->chip_select);
dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
nxp_fspi_clk_disable_unprep(f);
ret = clk_set_rate(f->clk, rate);
if (ret)
return;
ret = nxp_fspi_clk_prep_enable(f);
if (ret)
return;
f->selected = spi->chip_select;
}
static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
{
u32 start = op->addr.val;
u32 len = op->data.nbytes;
/* if necessary, ioremap before AHB read */
if ((!f->ahb_addr) || start < f->memmap_start ||
start + len > f->memmap_start + f->memmap_len) {
if (f->ahb_addr)
iounmap(f->ahb_addr);
f->memmap_start = start;
f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
len : NXP_FSPI_MIN_IOMAP;
f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
f->memmap_len);
if (!f->ahb_addr) {
dev_err(f->dev, "failed to alloc memory\n");
return -ENOMEM;
}
}
/* Read out the data directly from the AHB buffer. */
memcpy_fromio(op->data.buf.in,
f->ahb_addr + start - f->memmap_start, len);
return 0;
}
static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int i, ret;
u8 *buf = (u8 *) op->data.buf.out;
/* clear the TX FIFO. */
fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
/*
* Default value of water mark level is 8 bytes, hence in single
* write request controller can write max 8 bytes of data.
*/
for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
/* Wait for TXFIFO empty */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPTXWE, 0,
POLL_TOUT, true);
WARN_ON(ret);
fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
}
if (i < op->data.nbytes) {
u32 data = 0;
int j;
/* Wait for TXFIFO empty */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPTXWE, 0,
POLL_TOUT, true);
WARN_ON(ret);
for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
memcpy(&data, buf + i + j, 4);
fspi_writel(f, data, base + FSPI_TFDR + j);
}
fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
}
}
static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int i, ret;
int len = op->data.nbytes;
u8 *buf = (u8 *) op->data.buf.in;
/*
* Default value of water mark level is 8 bytes, hence in single
* read request controller can read max 8 bytes of data.
*/
for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
/* Wait for RXFIFO available */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPRXWA, 0,
POLL_TOUT, true);
WARN_ON(ret);
*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
/* move the FIFO pointer */
fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
}
if (i < len) {
u32 tmp;
int size, j;
buf = op->data.buf.in + i;
/* Wait for RXFIFO available */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPRXWA, 0,
POLL_TOUT, true);
WARN_ON(ret);
len = op->data.nbytes - i;
for (j = 0; j < op->data.nbytes - i; j += 4) {
tmp = fspi_readl(f, base + FSPI_RFDR + j);
size = min(len, 4);
memcpy(buf + j, &tmp, size);
len -= size;
}
}
/* invalid the RXFIFO */
fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
/* move the FIFO pointer */
fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
}
static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int seqnum = 0;
int err = 0;
u32 reg;
reg = fspi_readl(f, base + FSPI_IPRXFCR);
/* invalid RXFIFO first */
reg &= ~FSPI_IPRXFCR_DMA_EN;
reg = reg | FSPI_IPRXFCR_CLR;
fspi_writel(f, reg, base + FSPI_IPRXFCR);
init_completion(&f->c);
fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
/*
* Always start the sequence at the same index since we update
* the LUT at each exec_op() call. And also specify the DATA
* length, since it's has not been specified in the LUT.
*/
fspi_writel(f, op->data.nbytes |
(SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
(seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
base + FSPI_IPCR1);
/* Trigger the LUT now. */
fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
/* Wait for the interrupt. */
if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
err = -ETIMEDOUT;
/* Invoke IP data read, if request is of data read. */
if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
nxp_fspi_read_rxfifo(f, op);
return err;
}
static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
int err = 0;
mutex_lock(&f->lock);
/* Wait for controller being ready. */
err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
WARN_ON(err);
nxp_fspi_select_mem(f, mem->spi);
nxp_fspi_prepare_lut(f, op);
/*
* If we have large chunks of data, we read them through the AHB bus by
* accessing the mapped memory. In all other cases we use IP commands
* to access the flash. Read via AHB bus may be corrupted due to
* existence of an errata and therefore discard AHB read in such cases.
*/
if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
op->data.dir == SPI_MEM_DATA_IN &&
!needs_ip_only(f)) {
err = nxp_fspi_read_ahb(f, op);
} else {
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
nxp_fspi_fill_txfifo(f, op);
err = nxp_fspi_do_op(f, op);
}
/* Invalidate the data in the AHB buffer. */
nxp_fspi_invalid(f);
mutex_unlock(&f->lock);
return err;
}
static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
if (op->data.dir == SPI_MEM_DATA_OUT) {
if (op->data.nbytes > f->devtype_data->txfifo)
op->data.nbytes = f->devtype_data->txfifo;
} else {
if (op->data.nbytes > f->devtype_data->ahb_buf_size)
op->data.nbytes = f->devtype_data->ahb_buf_size;
else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
}
/* Limit data bytes to RX FIFO in case of IP read only */
if (op->data.dir == SPI_MEM_DATA_IN &&
needs_ip_only(f) &&
op->data.nbytes > f->devtype_data->rxfifo)
op->data.nbytes = f->devtype_data->rxfifo;
return 0;
}
static void erratum_err050568(struct nxp_fspi *f)
{
const struct soc_device_attribute ls1028a_soc_attr[] = {
{ .family = "QorIQ LS1028A" },
{ /* sentinel */ }
};
struct regmap *map;
u32 val, sys_pll_ratio;
int ret;
/* Check for LS1028A family */
if (!soc_device_match(ls1028a_soc_attr)) {
dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
return;
}
map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
if (IS_ERR(map)) {
dev_err(f->dev, "No syscon regmap\n");
goto err;
}
ret = regmap_read(map, DCFG_RCWSR1, &val);
if (ret < 0)
goto err;
sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
/* Use IP bus only if platform clock is 300MHz */
if (sys_pll_ratio == 3)
f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
return;
err:
dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
}
static int nxp_fspi_default_setup(struct nxp_fspi *f)
{
void __iomem *base = f->iobase;
int ret, i;
u32 reg;
/* disable and unprepare clock to avoid glitch pass to controller */
nxp_fspi_clk_disable_unprep(f);
/* the default frequency, we will change it later if necessary. */
ret = clk_set_rate(f->clk, 20000000);
if (ret)
return ret;
ret = nxp_fspi_clk_prep_enable(f);
if (ret)
return ret;
/*
* ERR050568: Flash access by FlexSPI AHB command may not work with
* platform frequency equal to 300 MHz on LS1028A.
* LS1028A reuses LX2160A compatible entry. Make errata applicable for
* Layerscape LS1028A platform.
*/
if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
erratum_err050568(f);
/* Reset the module */
/* w1c register, wait unit clear */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
WARN_ON(ret);
/* Disable the module */
fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
/* Reset the DLL register to default value */
fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
/* enable module */
fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
base + FSPI_MCR0);
/*
* Disable same device enable bit and configure all slave devices
* independently.
*/
reg = fspi_readl(f, f->iobase + FSPI_MCR2);
reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
fspi_writel(f, reg, base + FSPI_MCR2);
/* AHB configuration for access buffer 0~7. */
for (i = 0; i < 7; i++)
fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
/*
* Set ADATSZ with the maximum AHB buffer size to improve the read
* performance.
*/
fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
/* prefetch and no start address alignment limitation */
fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
base + FSPI_AHBCR);
/* AHB Read - Set lut sequence ID for all CS. */
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
f->selected = -1;
/* enable the interrupt */
fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
return 0;
}
static const char *nxp_fspi_get_name(struct spi_mem *mem)
{
struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
struct device *dev = &mem->spi->dev;
const char *name;
// Set custom name derived from the platform_device of the controller.
if (of_get_available_child_count(f->dev->of_node) == 1)
return dev_name(f->dev);
name = devm_kasprintf(dev, GFP_KERNEL,
"%s-%d", dev_name(f->dev),
mem->spi->chip_select);
if (!name) {
dev_err(dev, "failed to get memory for custom flash name\n");
return ERR_PTR(-ENOMEM);
}
return name;
}
static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
.adjust_op_size = nxp_fspi_adjust_op_size,
.supports_op = nxp_fspi_supports_op,
.exec_op = nxp_fspi_exec_op,
.get_name = nxp_fspi_get_name,
};
static int nxp_fspi_probe(struct platform_device *pdev)
{
struct spi_controller *ctlr;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct resource *res;
struct nxp_fspi *f;
int ret;
u32 reg;
ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
if (!ctlr)
return -ENOMEM;
ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
f = spi_controller_get_devdata(ctlr);
f->dev = dev;
f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
if (!f->devtype_data) {
ret = -ENODEV;
goto err_put_ctrl;
}
platform_set_drvdata(pdev, f);
/* find the resources - configuration register address space */
if (is_acpi_node(f->dev->fwnode))
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
else
res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "fspi_base");
f->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(f->iobase)) {
ret = PTR_ERR(f->iobase);
goto err_put_ctrl;
}
/* find the resources - controller memory mapped space */
if (is_acpi_node(f->dev->fwnode))
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
else
res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "fspi_mmap");
if (!res) {
ret = -ENODEV;
goto err_put_ctrl;
}
/* assign memory mapped starting address and mapped size. */
f->memmap_phy = res->start;
f->memmap_phy_size = resource_size(res);
/* find the clocks */
if (dev_of_node(&pdev->dev)) {
f->clk_en = devm_clk_get(dev, "fspi_en");
if (IS_ERR(f->clk_en)) {
ret = PTR_ERR(f->clk_en);
goto err_put_ctrl;
}
f->clk = devm_clk_get(dev, "fspi");
if (IS_ERR(f->clk)) {
ret = PTR_ERR(f->clk);
goto err_put_ctrl;
}
ret = nxp_fspi_clk_prep_enable(f);
if (ret) {
dev_err(dev, "can not enable the clock\n");
goto err_put_ctrl;
}
}
/* Clear potential interrupts */
reg = fspi_readl(f, f->iobase + FSPI_INTR);
if (reg)
fspi_writel(f, reg, f->iobase + FSPI_INTR);
/* find the irq */
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto err_disable_clk;
ret = devm_request_irq(dev, ret,
nxp_fspi_irq_handler, 0, pdev->name, f);
if (ret) {
dev_err(dev, "failed to request irq: %d\n", ret);
goto err_disable_clk;
}
mutex_init(&f->lock);
ctlr->bus_num = -1;
ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
ctlr->mem_ops = &nxp_fspi_mem_ops;
nxp_fspi_default_setup(f);
ctlr->dev.of_node = np;
ret = devm_spi_register_controller(&pdev->dev, ctlr);
if (ret)
goto err_destroy_mutex;
return 0;
err_destroy_mutex:
mutex_destroy(&f->lock);
err_disable_clk:
nxp_fspi_clk_disable_unprep(f);
err_put_ctrl:
spi_controller_put(ctlr);
dev_err(dev, "NXP FSPI probe failed\n");
return ret;
}
static int nxp_fspi_remove(struct platform_device *pdev)
{
struct nxp_fspi *f = platform_get_drvdata(pdev);
/* disable the hardware */
fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
nxp_fspi_clk_disable_unprep(f);
mutex_destroy(&f->lock);
if (f->ahb_addr)
iounmap(f->ahb_addr);
return 0;
}
static int nxp_fspi_suspend(struct device *dev)
{
return 0;
}
static int nxp_fspi_resume(struct device *dev)
{
struct nxp_fspi *f = dev_get_drvdata(dev);
nxp_fspi_default_setup(f);
return 0;
}
static const struct of_device_id nxp_fspi_dt_ids[] = {
{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
#ifdef CONFIG_ACPI
static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
{}
};
MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
#endif
static const struct dev_pm_ops nxp_fspi_pm_ops = {
.suspend = nxp_fspi_suspend,
.resume = nxp_fspi_resume,
};
static struct platform_driver nxp_fspi_driver = {
.driver = {
.name = "nxp-fspi",
.of_match_table = nxp_fspi_dt_ids,
.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
.pm = &nxp_fspi_pm_ops,
},
.probe = nxp_fspi_probe,
.remove = nxp_fspi_remove,
};
module_platform_driver(nxp_fspi_driver);
MODULE_DESCRIPTION("NXP FSPI Controller Driver");
MODULE_AUTHOR("NXP Semiconductor");
MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
MODULE_LICENSE("GPL v2");