mirror of
https://github.com/torvalds/linux.git
synced 2024-12-21 02:21:36 +00:00
98d948eb83
Some versions of the Cadence QSPI controller does not have the write
completion register implemented(CQSPI_REG_WR_COMPLETION_CTRL). On the
Intel SoCFPGA platform the CQSPI_REG_WR_COMPLETION_CTRL register is
not configured.
Add a quirk to not write to the CQSPI_REG_WR_COMPLETION_CTRL register.
Fixes: 9cb2ff1117
("spi: cadence-quadspi: Disable Auto-HW polling)
Signed-off-by: Dinh Nguyen <dinguyen@kernel.org>
Reviewed-by: Pratyush Yadav <p.yadav@ti.com>
Link: https://lore.kernel.org/r/20211108200854.3616121-1-dinguyen@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
1933 lines
50 KiB
C
1933 lines
50 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
//
|
|
// Driver for Cadence QSPI Controller
|
|
//
|
|
// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
|
|
// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
|
|
// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/firmware/xlnx-zynqmp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi-mem.h>
|
|
#include <linux/timer.h>
|
|
|
|
#define CQSPI_NAME "cadence-qspi"
|
|
#define CQSPI_MAX_CHIPSELECT 16
|
|
|
|
/* Quirks */
|
|
#define CQSPI_NEEDS_WR_DELAY BIT(0)
|
|
#define CQSPI_DISABLE_DAC_MODE BIT(1)
|
|
#define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
|
|
#define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
|
|
|
|
/* Capabilities */
|
|
#define CQSPI_SUPPORTS_OCTAL BIT(0)
|
|
|
|
struct cqspi_st;
|
|
|
|
struct cqspi_flash_pdata {
|
|
struct cqspi_st *cqspi;
|
|
u32 clk_rate;
|
|
u32 read_delay;
|
|
u32 tshsl_ns;
|
|
u32 tsd2d_ns;
|
|
u32 tchsh_ns;
|
|
u32 tslch_ns;
|
|
u8 inst_width;
|
|
u8 addr_width;
|
|
u8 data_width;
|
|
bool dtr;
|
|
u8 cs;
|
|
};
|
|
|
|
struct cqspi_st {
|
|
struct platform_device *pdev;
|
|
|
|
struct clk *clk;
|
|
unsigned int sclk;
|
|
|
|
void __iomem *iobase;
|
|
void __iomem *ahb_base;
|
|
resource_size_t ahb_size;
|
|
struct completion transfer_complete;
|
|
|
|
struct dma_chan *rx_chan;
|
|
struct completion rx_dma_complete;
|
|
dma_addr_t mmap_phys_base;
|
|
|
|
int current_cs;
|
|
unsigned long master_ref_clk_hz;
|
|
bool is_decoded_cs;
|
|
u32 fifo_depth;
|
|
u32 fifo_width;
|
|
u32 num_chipselect;
|
|
bool rclk_en;
|
|
u32 trigger_address;
|
|
u32 wr_delay;
|
|
bool use_direct_mode;
|
|
struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
|
|
bool use_dma_read;
|
|
u32 pd_dev_id;
|
|
bool wr_completion;
|
|
};
|
|
|
|
struct cqspi_driver_platdata {
|
|
u32 hwcaps_mask;
|
|
u8 quirks;
|
|
int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
|
|
u_char *rxbuf, loff_t from_addr, size_t n_rx);
|
|
u32 (*get_dma_status)(struct cqspi_st *cqspi);
|
|
};
|
|
|
|
/* Operation timeout value */
|
|
#define CQSPI_TIMEOUT_MS 500
|
|
#define CQSPI_READ_TIMEOUT_MS 10
|
|
|
|
/* Instruction type */
|
|
#define CQSPI_INST_TYPE_SINGLE 0
|
|
#define CQSPI_INST_TYPE_DUAL 1
|
|
#define CQSPI_INST_TYPE_QUAD 2
|
|
#define CQSPI_INST_TYPE_OCTAL 3
|
|
|
|
#define CQSPI_DUMMY_CLKS_PER_BYTE 8
|
|
#define CQSPI_DUMMY_BYTES_MAX 4
|
|
#define CQSPI_DUMMY_CLKS_MAX 31
|
|
|
|
#define CQSPI_STIG_DATA_LEN_MAX 8
|
|
|
|
/* Register map */
|
|
#define CQSPI_REG_CONFIG 0x00
|
|
#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
|
|
#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
|
|
#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
|
|
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
|
|
#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
|
|
#define CQSPI_REG_CONFIG_BAUD_LSB 19
|
|
#define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
|
|
#define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
|
|
#define CQSPI_REG_CONFIG_IDLE_LSB 31
|
|
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
|
|
#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
|
|
|
|
#define CQSPI_REG_RD_INSTR 0x04
|
|
#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
|
|
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
|
|
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
|
|
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
|
|
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
|
|
#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
|
|
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
|
|
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
|
|
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
|
|
#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
|
|
|
|
#define CQSPI_REG_WR_INSTR 0x08
|
|
#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
|
|
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
|
|
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
|
|
|
|
#define CQSPI_REG_DELAY 0x0C
|
|
#define CQSPI_REG_DELAY_TSLCH_LSB 0
|
|
#define CQSPI_REG_DELAY_TCHSH_LSB 8
|
|
#define CQSPI_REG_DELAY_TSD2D_LSB 16
|
|
#define CQSPI_REG_DELAY_TSHSL_LSB 24
|
|
#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
|
|
#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
|
|
#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
|
|
#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
|
|
|
|
#define CQSPI_REG_READCAPTURE 0x10
|
|
#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
|
|
#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
|
|
#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
|
|
|
|
#define CQSPI_REG_SIZE 0x14
|
|
#define CQSPI_REG_SIZE_ADDRESS_LSB 0
|
|
#define CQSPI_REG_SIZE_PAGE_LSB 4
|
|
#define CQSPI_REG_SIZE_BLOCK_LSB 16
|
|
#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
|
|
#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
|
|
#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
|
|
|
|
#define CQSPI_REG_SRAMPARTITION 0x18
|
|
#define CQSPI_REG_INDIRECTTRIGGER 0x1C
|
|
|
|
#define CQSPI_REG_DMA 0x20
|
|
#define CQSPI_REG_DMA_SINGLE_LSB 0
|
|
#define CQSPI_REG_DMA_BURST_LSB 8
|
|
#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
|
|
#define CQSPI_REG_DMA_BURST_MASK 0xFF
|
|
|
|
#define CQSPI_REG_REMAP 0x24
|
|
#define CQSPI_REG_MODE_BIT 0x28
|
|
|
|
#define CQSPI_REG_SDRAMLEVEL 0x2C
|
|
#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
|
|
#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
|
|
#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
|
|
#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
|
|
|
|
#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
|
|
#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
|
|
|
|
#define CQSPI_REG_IRQSTATUS 0x40
|
|
#define CQSPI_REG_IRQMASK 0x44
|
|
|
|
#define CQSPI_REG_INDIRECTRD 0x60
|
|
#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
|
|
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
|
|
#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
|
|
|
|
#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
|
|
#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
|
|
#define CQSPI_REG_INDIRECTRDBYTES 0x6C
|
|
|
|
#define CQSPI_REG_CMDCTRL 0x90
|
|
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
|
|
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
|
|
#define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
|
|
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
|
|
#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
|
|
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
|
|
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
|
|
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
|
|
#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
|
|
#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
|
|
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
|
|
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
|
|
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
|
|
#define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
|
|
|
|
#define CQSPI_REG_INDIRECTWR 0x70
|
|
#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
|
|
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
|
|
#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
|
|
|
|
#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
|
|
#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
|
|
#define CQSPI_REG_INDIRECTWRBYTES 0x7C
|
|
|
|
#define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
|
|
|
|
#define CQSPI_REG_CMDADDRESS 0x94
|
|
#define CQSPI_REG_CMDREADDATALOWER 0xA0
|
|
#define CQSPI_REG_CMDREADDATAUPPER 0xA4
|
|
#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
|
|
#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
|
|
|
|
#define CQSPI_REG_POLLING_STATUS 0xB0
|
|
#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
|
|
|
|
#define CQSPI_REG_OP_EXT_LOWER 0xE0
|
|
#define CQSPI_REG_OP_EXT_READ_LSB 24
|
|
#define CQSPI_REG_OP_EXT_WRITE_LSB 16
|
|
#define CQSPI_REG_OP_EXT_STIG_LSB 0
|
|
|
|
#define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
|
|
|
|
#define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
|
|
#define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
|
|
|
|
#define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
|
|
|
|
#define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
|
|
#define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
|
|
#define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
|
|
#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
|
|
|
|
#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
|
|
|
|
#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
|
|
#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
|
|
|
|
/* Interrupt status bits */
|
|
#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
|
|
#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
|
|
#define CQSPI_REG_IRQ_IND_COMP BIT(2)
|
|
#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
|
|
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
|
|
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
|
|
#define CQSPI_REG_IRQ_WATERMARK BIT(6)
|
|
#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
|
|
|
|
#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
|
|
CQSPI_REG_IRQ_IND_SRAM_FULL | \
|
|
CQSPI_REG_IRQ_IND_COMP)
|
|
|
|
#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
|
|
CQSPI_REG_IRQ_WATERMARK | \
|
|
CQSPI_REG_IRQ_UNDERFLOW)
|
|
|
|
#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
|
|
#define CQSPI_DMA_UNALIGN 0x3
|
|
|
|
#define CQSPI_REG_VERSAL_DMA_VAL 0x602
|
|
|
|
static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
|
|
{
|
|
u32 val;
|
|
|
|
return readl_relaxed_poll_timeout(reg, val,
|
|
(((clr ? ~val : val) & mask) == mask),
|
|
10, CQSPI_TIMEOUT_MS * 1000);
|
|
}
|
|
|
|
static bool cqspi_is_idle(struct cqspi_st *cqspi)
|
|
{
|
|
u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
|
|
|
|
return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
|
|
}
|
|
|
|
static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
|
|
{
|
|
u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
|
|
|
|
reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
|
|
return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
|
|
}
|
|
|
|
static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
|
|
{
|
|
u32 dma_status;
|
|
|
|
dma_status = readl(cqspi->iobase +
|
|
CQSPI_REG_VERSAL_DMA_DST_I_STS);
|
|
writel(dma_status, cqspi->iobase +
|
|
CQSPI_REG_VERSAL_DMA_DST_I_STS);
|
|
|
|
return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
|
|
}
|
|
|
|
static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
|
|
{
|
|
struct cqspi_st *cqspi = dev;
|
|
unsigned int irq_status;
|
|
struct device *device = &cqspi->pdev->dev;
|
|
const struct cqspi_driver_platdata *ddata;
|
|
|
|
ddata = of_device_get_match_data(device);
|
|
|
|
/* Read interrupt status */
|
|
irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
|
|
|
|
/* Clear interrupt */
|
|
writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
|
|
|
|
if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
|
|
if (ddata->get_dma_status(cqspi)) {
|
|
complete(&cqspi->transfer_complete);
|
|
return IRQ_HANDLED;
|
|
}
|
|
}
|
|
|
|
irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
|
|
|
|
if (irq_status)
|
|
complete(&cqspi->transfer_complete);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
|
|
{
|
|
u32 rdreg = 0;
|
|
|
|
rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
|
|
rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
|
|
rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
|
|
|
|
return rdreg;
|
|
}
|
|
|
|
static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
|
|
{
|
|
unsigned int dummy_clk;
|
|
|
|
if (!op->dummy.nbytes)
|
|
return 0;
|
|
|
|
dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
|
|
if (dtr)
|
|
dummy_clk /= 2;
|
|
|
|
return dummy_clk;
|
|
}
|
|
|
|
static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
|
|
f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
|
|
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
|
|
|
|
/*
|
|
* For an op to be DTR, cmd phase along with every other non-empty
|
|
* phase should have dtr field set to 1. If an op phase has zero
|
|
* nbytes, ignore its dtr field; otherwise, check its dtr field.
|
|
*/
|
|
f_pdata->dtr = op->cmd.dtr &&
|
|
(!op->addr.nbytes || op->addr.dtr) &&
|
|
(!op->data.nbytes || op->data.dtr);
|
|
|
|
switch (op->data.buswidth) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
|
|
break;
|
|
case 2:
|
|
f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
|
|
break;
|
|
case 4:
|
|
f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
|
|
break;
|
|
case 8:
|
|
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Right now we only support 8-8-8 DTR mode. */
|
|
if (f_pdata->dtr) {
|
|
switch (op->cmd.buswidth) {
|
|
case 0:
|
|
break;
|
|
case 8:
|
|
f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (op->addr.buswidth) {
|
|
case 0:
|
|
break;
|
|
case 8:
|
|
f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (op->data.buswidth) {
|
|
case 0:
|
|
break;
|
|
case 8:
|
|
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cqspi_wait_idle(struct cqspi_st *cqspi)
|
|
{
|
|
const unsigned int poll_idle_retry = 3;
|
|
unsigned int count = 0;
|
|
unsigned long timeout;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
|
|
while (1) {
|
|
/*
|
|
* Read few times in succession to ensure the controller
|
|
* is indeed idle, that is, the bit does not transition
|
|
* low again.
|
|
*/
|
|
if (cqspi_is_idle(cqspi))
|
|
count++;
|
|
else
|
|
count = 0;
|
|
|
|
if (count >= poll_idle_retry)
|
|
return 0;
|
|
|
|
if (time_after(jiffies, timeout)) {
|
|
/* Timeout, in busy mode. */
|
|
dev_err(&cqspi->pdev->dev,
|
|
"QSPI is still busy after %dms timeout.\n",
|
|
CQSPI_TIMEOUT_MS);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
|
|
{
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
int ret;
|
|
|
|
/* Write the CMDCTRL without start execution. */
|
|
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
|
|
/* Start execute */
|
|
reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
|
|
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
|
|
|
|
/* Polling for completion. */
|
|
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
|
|
CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
|
|
if (ret) {
|
|
dev_err(&cqspi->pdev->dev,
|
|
"Flash command execution timed out.\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Polling QSPI idle status. */
|
|
return cqspi_wait_idle(cqspi);
|
|
}
|
|
|
|
static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
|
|
const struct spi_mem_op *op,
|
|
unsigned int shift)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
unsigned int reg;
|
|
u8 ext;
|
|
|
|
if (op->cmd.nbytes != 2)
|
|
return -EINVAL;
|
|
|
|
/* Opcode extension is the LSB. */
|
|
ext = op->cmd.opcode & 0xff;
|
|
|
|
reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
|
|
reg &= ~(0xff << shift);
|
|
reg |= ext << shift;
|
|
writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
|
|
const struct spi_mem_op *op, unsigned int shift,
|
|
bool enable)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
unsigned int reg;
|
|
int ret;
|
|
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
|
|
/*
|
|
* We enable dual byte opcode here. The callers have to set up the
|
|
* extension opcode based on which type of operation it is.
|
|
*/
|
|
if (enable) {
|
|
reg |= CQSPI_REG_CONFIG_DTR_PROTO;
|
|
reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
|
|
|
|
/* Set up command opcode extension. */
|
|
ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
|
|
reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
|
|
}
|
|
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
|
|
return cqspi_wait_idle(cqspi);
|
|
}
|
|
|
|
static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
u8 *rxbuf = op->data.buf.in;
|
|
u8 opcode;
|
|
size_t n_rx = op->data.nbytes;
|
|
unsigned int rdreg;
|
|
unsigned int reg;
|
|
unsigned int dummy_clk;
|
|
size_t read_len;
|
|
int status;
|
|
|
|
status = cqspi_set_protocol(f_pdata, op);
|
|
if (status)
|
|
return status;
|
|
|
|
status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
|
|
f_pdata->dtr);
|
|
if (status)
|
|
return status;
|
|
|
|
if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
|
|
dev_err(&cqspi->pdev->dev,
|
|
"Invalid input argument, len %zu rxbuf 0x%p\n",
|
|
n_rx, rxbuf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (f_pdata->dtr)
|
|
opcode = op->cmd.opcode >> 8;
|
|
else
|
|
opcode = op->cmd.opcode;
|
|
|
|
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
|
|
|
|
rdreg = cqspi_calc_rdreg(f_pdata);
|
|
writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
|
|
|
|
dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
|
|
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (dummy_clk)
|
|
reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
|
|
<< CQSPI_REG_CMDCTRL_DUMMY_LSB;
|
|
|
|
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
|
|
|
|
/* 0 means 1 byte. */
|
|
reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
|
|
<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
|
|
status = cqspi_exec_flash_cmd(cqspi, reg);
|
|
if (status)
|
|
return status;
|
|
|
|
reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
|
|
|
|
/* Put the read value into rx_buf */
|
|
read_len = (n_rx > 4) ? 4 : n_rx;
|
|
memcpy(rxbuf, ®, read_len);
|
|
rxbuf += read_len;
|
|
|
|
if (n_rx > 4) {
|
|
reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
|
|
|
|
read_len = n_rx - read_len;
|
|
memcpy(rxbuf, ®, read_len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
u8 opcode;
|
|
const u8 *txbuf = op->data.buf.out;
|
|
size_t n_tx = op->data.nbytes;
|
|
unsigned int reg;
|
|
unsigned int data;
|
|
size_t write_len;
|
|
int ret;
|
|
|
|
ret = cqspi_set_protocol(f_pdata, op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
|
|
f_pdata->dtr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
|
|
dev_err(&cqspi->pdev->dev,
|
|
"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
|
|
n_tx, txbuf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
reg = cqspi_calc_rdreg(f_pdata);
|
|
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
|
|
|
|
if (f_pdata->dtr)
|
|
opcode = op->cmd.opcode >> 8;
|
|
else
|
|
opcode = op->cmd.opcode;
|
|
|
|
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
|
|
|
|
if (op->addr.nbytes) {
|
|
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
|
|
reg |= ((op->addr.nbytes - 1) &
|
|
CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
|
|
<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
|
|
|
|
writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
|
|
}
|
|
|
|
if (n_tx) {
|
|
reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
|
|
reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
|
|
<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
|
|
data = 0;
|
|
write_len = (n_tx > 4) ? 4 : n_tx;
|
|
memcpy(&data, txbuf, write_len);
|
|
txbuf += write_len;
|
|
writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
|
|
|
|
if (n_tx > 4) {
|
|
data = 0;
|
|
write_len = n_tx - 4;
|
|
memcpy(&data, txbuf, write_len);
|
|
writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
|
|
}
|
|
}
|
|
|
|
return cqspi_exec_flash_cmd(cqspi, reg);
|
|
}
|
|
|
|
static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
unsigned int dummy_clk = 0;
|
|
unsigned int reg;
|
|
int ret;
|
|
u8 opcode;
|
|
|
|
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
|
|
f_pdata->dtr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (f_pdata->dtr)
|
|
opcode = op->cmd.opcode >> 8;
|
|
else
|
|
opcode = op->cmd.opcode;
|
|
|
|
reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
|
|
reg |= cqspi_calc_rdreg(f_pdata);
|
|
|
|
/* Setup dummy clock cycles */
|
|
dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
|
|
|
|
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (dummy_clk)
|
|
reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
|
|
<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
|
|
|
|
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
|
|
|
|
/* Set address width */
|
|
reg = readl(reg_base + CQSPI_REG_SIZE);
|
|
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
|
|
reg |= (op->addr.nbytes - 1);
|
|
writel(reg, reg_base + CQSPI_REG_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
|
|
u8 *rxbuf, loff_t from_addr,
|
|
const size_t n_rx)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
struct device *dev = &cqspi->pdev->dev;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
void __iomem *ahb_base = cqspi->ahb_base;
|
|
unsigned int remaining = n_rx;
|
|
unsigned int mod_bytes = n_rx % 4;
|
|
unsigned int bytes_to_read = 0;
|
|
u8 *rxbuf_end = rxbuf + n_rx;
|
|
int ret = 0;
|
|
|
|
writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
|
|
writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
|
|
|
|
/* Clear all interrupts. */
|
|
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
|
|
|
|
writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
|
|
|
|
reinit_completion(&cqspi->transfer_complete);
|
|
writel(CQSPI_REG_INDIRECTRD_START_MASK,
|
|
reg_base + CQSPI_REG_INDIRECTRD);
|
|
|
|
while (remaining > 0) {
|
|
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
|
|
msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
|
|
ret = -ETIMEDOUT;
|
|
|
|
bytes_to_read = cqspi_get_rd_sram_level(cqspi);
|
|
|
|
if (ret && bytes_to_read == 0) {
|
|
dev_err(dev, "Indirect read timeout, no bytes\n");
|
|
goto failrd;
|
|
}
|
|
|
|
while (bytes_to_read != 0) {
|
|
unsigned int word_remain = round_down(remaining, 4);
|
|
|
|
bytes_to_read *= cqspi->fifo_width;
|
|
bytes_to_read = bytes_to_read > remaining ?
|
|
remaining : bytes_to_read;
|
|
bytes_to_read = round_down(bytes_to_read, 4);
|
|
/* Read 4 byte word chunks then single bytes */
|
|
if (bytes_to_read) {
|
|
ioread32_rep(ahb_base, rxbuf,
|
|
(bytes_to_read / 4));
|
|
} else if (!word_remain && mod_bytes) {
|
|
unsigned int temp = ioread32(ahb_base);
|
|
|
|
bytes_to_read = mod_bytes;
|
|
memcpy(rxbuf, &temp, min((unsigned int)
|
|
(rxbuf_end - rxbuf),
|
|
bytes_to_read));
|
|
}
|
|
rxbuf += bytes_to_read;
|
|
remaining -= bytes_to_read;
|
|
bytes_to_read = cqspi_get_rd_sram_level(cqspi);
|
|
}
|
|
|
|
if (remaining > 0)
|
|
reinit_completion(&cqspi->transfer_complete);
|
|
}
|
|
|
|
/* Check indirect done status */
|
|
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
|
|
CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
|
|
if (ret) {
|
|
dev_err(dev, "Indirect read completion error (%i)\n", ret);
|
|
goto failrd;
|
|
}
|
|
|
|
/* Disable interrupt */
|
|
writel(0, reg_base + CQSPI_REG_IRQMASK);
|
|
|
|
/* Clear indirect completion status */
|
|
writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
|
|
|
|
return 0;
|
|
|
|
failrd:
|
|
/* Disable interrupt */
|
|
writel(0, reg_base + CQSPI_REG_IRQMASK);
|
|
|
|
/* Cancel the indirect read */
|
|
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
|
|
reg_base + CQSPI_REG_INDIRECTRD);
|
|
return ret;
|
|
}
|
|
|
|
static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
|
|
u_char *rxbuf, loff_t from_addr,
|
|
size_t n_rx)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
struct device *dev = &cqspi->pdev->dev;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
u32 reg, bytes_to_dma;
|
|
loff_t addr = from_addr;
|
|
void *buf = rxbuf;
|
|
dma_addr_t dma_addr;
|
|
u8 bytes_rem;
|
|
int ret = 0;
|
|
|
|
bytes_rem = n_rx % 4;
|
|
bytes_to_dma = (n_rx - bytes_rem);
|
|
|
|
if (!bytes_to_dma)
|
|
goto nondmard;
|
|
|
|
ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
|
|
reg |= CQSPI_REG_CONFIG_DMA_MASK;
|
|
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
|
|
|
|
dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(dev, dma_addr)) {
|
|
dev_err(dev, "dma mapping failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
|
|
writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
|
|
writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
|
|
reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
|
|
|
|
/* Clear all interrupts. */
|
|
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
|
|
|
|
/* Enable DMA done interrupt */
|
|
writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
|
|
reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
|
|
|
|
/* Default DMA periph configuration */
|
|
writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
|
|
|
|
/* Configure DMA Dst address */
|
|
writel(lower_32_bits(dma_addr),
|
|
reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
|
|
writel(upper_32_bits(dma_addr),
|
|
reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
|
|
|
|
/* Configure DMA Src address */
|
|
writel(cqspi->trigger_address, reg_base +
|
|
CQSPI_REG_VERSAL_DMA_SRC_ADDR);
|
|
|
|
/* Set DMA destination size */
|
|
writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
|
|
|
|
/* Set DMA destination control */
|
|
writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
|
|
reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
|
|
|
|
writel(CQSPI_REG_INDIRECTRD_START_MASK,
|
|
reg_base + CQSPI_REG_INDIRECTRD);
|
|
|
|
reinit_completion(&cqspi->transfer_complete);
|
|
|
|
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
|
|
msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
|
|
ret = -ETIMEDOUT;
|
|
goto failrd;
|
|
}
|
|
|
|
/* Disable DMA interrupt */
|
|
writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
|
|
|
|
/* Clear indirect completion status */
|
|
writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
|
|
cqspi->iobase + CQSPI_REG_INDIRECTRD);
|
|
dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
|
|
|
|
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
|
|
reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
|
|
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
|
|
|
|
ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
|
|
PM_OSPI_MUX_SEL_LINEAR);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nondmard:
|
|
if (bytes_rem) {
|
|
addr += bytes_to_dma;
|
|
buf += bytes_to_dma;
|
|
ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
|
|
bytes_rem);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
|
|
failrd:
|
|
/* Disable DMA interrupt */
|
|
writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
|
|
|
|
/* Cancel the indirect read */
|
|
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
|
|
reg_base + CQSPI_REG_INDIRECTRD);
|
|
|
|
dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
|
|
|
|
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
|
|
reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
|
|
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
|
|
|
|
zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
unsigned int reg;
|
|
int ret;
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
u8 opcode;
|
|
|
|
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
|
|
f_pdata->dtr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (f_pdata->dtr)
|
|
opcode = op->cmd.opcode >> 8;
|
|
else
|
|
opcode = op->cmd.opcode;
|
|
|
|
/* Set opcode. */
|
|
reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
|
|
reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
|
|
reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
|
|
writel(reg, reg_base + CQSPI_REG_WR_INSTR);
|
|
reg = cqspi_calc_rdreg(f_pdata);
|
|
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
|
|
|
|
/*
|
|
* SPI NAND flashes require the address of the status register to be
|
|
* passed in the Read SR command. Also, some SPI NOR flashes like the
|
|
* cypress Semper flash expect a 4-byte dummy address in the Read SR
|
|
* command in DTR mode.
|
|
*
|
|
* But this controller does not support address phase in the Read SR
|
|
* command when doing auto-HW polling. So, disable write completion
|
|
* polling on the controller's side. spinand and spi-nor will take
|
|
* care of polling the status register.
|
|
*/
|
|
if (cqspi->wr_completion) {
|
|
reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
|
|
reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
|
|
writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
|
|
}
|
|
|
|
reg = readl(reg_base + CQSPI_REG_SIZE);
|
|
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
|
|
reg |= (op->addr.nbytes - 1);
|
|
writel(reg, reg_base + CQSPI_REG_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
|
|
loff_t to_addr, const u8 *txbuf,
|
|
const size_t n_tx)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
struct device *dev = &cqspi->pdev->dev;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
unsigned int remaining = n_tx;
|
|
unsigned int write_bytes;
|
|
int ret;
|
|
|
|
writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
|
|
writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
|
|
|
|
/* Clear all interrupts. */
|
|
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
|
|
|
|
writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
|
|
|
|
reinit_completion(&cqspi->transfer_complete);
|
|
writel(CQSPI_REG_INDIRECTWR_START_MASK,
|
|
reg_base + CQSPI_REG_INDIRECTWR);
|
|
/*
|
|
* As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
|
|
* Controller programming sequence, couple of cycles of
|
|
* QSPI_REF_CLK delay is required for the above bit to
|
|
* be internally synchronized by the QSPI module. Provide 5
|
|
* cycles of delay.
|
|
*/
|
|
if (cqspi->wr_delay)
|
|
ndelay(cqspi->wr_delay);
|
|
|
|
while (remaining > 0) {
|
|
size_t write_words, mod_bytes;
|
|
|
|
write_bytes = remaining;
|
|
write_words = write_bytes / 4;
|
|
mod_bytes = write_bytes % 4;
|
|
/* Write 4 bytes at a time then single bytes. */
|
|
if (write_words) {
|
|
iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
|
|
txbuf += (write_words * 4);
|
|
}
|
|
if (mod_bytes) {
|
|
unsigned int temp = 0xFFFFFFFF;
|
|
|
|
memcpy(&temp, txbuf, mod_bytes);
|
|
iowrite32(temp, cqspi->ahb_base);
|
|
txbuf += mod_bytes;
|
|
}
|
|
|
|
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
|
|
msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
|
|
dev_err(dev, "Indirect write timeout\n");
|
|
ret = -ETIMEDOUT;
|
|
goto failwr;
|
|
}
|
|
|
|
remaining -= write_bytes;
|
|
|
|
if (remaining > 0)
|
|
reinit_completion(&cqspi->transfer_complete);
|
|
}
|
|
|
|
/* Check indirect done status */
|
|
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
|
|
CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
|
|
if (ret) {
|
|
dev_err(dev, "Indirect write completion error (%i)\n", ret);
|
|
goto failwr;
|
|
}
|
|
|
|
/* Disable interrupt. */
|
|
writel(0, reg_base + CQSPI_REG_IRQMASK);
|
|
|
|
/* Clear indirect completion status */
|
|
writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
|
|
|
|
cqspi_wait_idle(cqspi);
|
|
|
|
return 0;
|
|
|
|
failwr:
|
|
/* Disable interrupt. */
|
|
writel(0, reg_base + CQSPI_REG_IRQMASK);
|
|
|
|
/* Cancel the indirect write */
|
|
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
|
|
reg_base + CQSPI_REG_INDIRECTWR);
|
|
return ret;
|
|
}
|
|
|
|
static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
unsigned int chip_select = f_pdata->cs;
|
|
unsigned int reg;
|
|
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
if (cqspi->is_decoded_cs) {
|
|
reg |= CQSPI_REG_CONFIG_DECODE_MASK;
|
|
} else {
|
|
reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
|
|
|
|
/* Convert CS if without decoder.
|
|
* CS0 to 4b'1110
|
|
* CS1 to 4b'1101
|
|
* CS2 to 4b'1011
|
|
* CS3 to 4b'0111
|
|
*/
|
|
chip_select = 0xF & ~(1 << chip_select);
|
|
}
|
|
|
|
reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
|
|
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
|
|
reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
|
|
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
}
|
|
|
|
static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
|
|
const unsigned int ns_val)
|
|
{
|
|
unsigned int ticks;
|
|
|
|
ticks = ref_clk_hz / 1000; /* kHz */
|
|
ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
|
|
|
|
return ticks;
|
|
}
|
|
|
|
static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
void __iomem *iobase = cqspi->iobase;
|
|
const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
|
|
unsigned int tshsl, tchsh, tslch, tsd2d;
|
|
unsigned int reg;
|
|
unsigned int tsclk;
|
|
|
|
/* calculate the number of ref ticks for one sclk tick */
|
|
tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
|
|
|
|
tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
|
|
/* this particular value must be at least one sclk */
|
|
if (tshsl < tsclk)
|
|
tshsl = tsclk;
|
|
|
|
tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
|
|
tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
|
|
tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
|
|
|
|
reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
|
|
<< CQSPI_REG_DELAY_TSHSL_LSB;
|
|
reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
|
|
<< CQSPI_REG_DELAY_TCHSH_LSB;
|
|
reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
|
|
<< CQSPI_REG_DELAY_TSLCH_LSB;
|
|
reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
|
|
<< CQSPI_REG_DELAY_TSD2D_LSB;
|
|
writel(reg, iobase + CQSPI_REG_DELAY);
|
|
}
|
|
|
|
static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
|
|
{
|
|
const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
u32 reg, div;
|
|
|
|
/* Recalculate the baudrate divisor based on QSPI specification. */
|
|
div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
|
|
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
|
|
reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
}
|
|
|
|
static void cqspi_readdata_capture(struct cqspi_st *cqspi,
|
|
const bool bypass,
|
|
const unsigned int delay)
|
|
{
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
unsigned int reg;
|
|
|
|
reg = readl(reg_base + CQSPI_REG_READCAPTURE);
|
|
|
|
if (bypass)
|
|
reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
|
|
else
|
|
reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
|
|
|
|
reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
|
|
<< CQSPI_REG_READCAPTURE_DELAY_LSB);
|
|
|
|
reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
|
|
<< CQSPI_REG_READCAPTURE_DELAY_LSB;
|
|
|
|
writel(reg, reg_base + CQSPI_REG_READCAPTURE);
|
|
}
|
|
|
|
static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
|
|
{
|
|
void __iomem *reg_base = cqspi->iobase;
|
|
unsigned int reg;
|
|
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
|
|
if (enable)
|
|
reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
|
|
else
|
|
reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
|
|
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
}
|
|
|
|
static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
|
|
unsigned long sclk)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
int switch_cs = (cqspi->current_cs != f_pdata->cs);
|
|
int switch_ck = (cqspi->sclk != sclk);
|
|
|
|
if (switch_cs || switch_ck)
|
|
cqspi_controller_enable(cqspi, 0);
|
|
|
|
/* Switch chip select. */
|
|
if (switch_cs) {
|
|
cqspi->current_cs = f_pdata->cs;
|
|
cqspi_chipselect(f_pdata);
|
|
}
|
|
|
|
/* Setup baudrate divisor and delays */
|
|
if (switch_ck) {
|
|
cqspi->sclk = sclk;
|
|
cqspi_config_baudrate_div(cqspi);
|
|
cqspi_delay(f_pdata);
|
|
cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
|
|
f_pdata->read_delay);
|
|
}
|
|
|
|
if (switch_cs || switch_ck)
|
|
cqspi_controller_enable(cqspi, 1);
|
|
}
|
|
|
|
static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
loff_t to = op->addr.val;
|
|
size_t len = op->data.nbytes;
|
|
const u_char *buf = op->data.buf.out;
|
|
int ret;
|
|
|
|
ret = cqspi_set_protocol(f_pdata, op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cqspi_write_setup(f_pdata, op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Some flashes like the Cypress Semper flash expect a dummy 4-byte
|
|
* address (all 0s) with the read status register command in DTR mode.
|
|
* But this controller does not support sending dummy address bytes to
|
|
* the flash when it is polling the write completion register in DTR
|
|
* mode. So, we can not use direct mode when in DTR mode for writing
|
|
* data.
|
|
*/
|
|
if (!f_pdata->dtr && cqspi->use_direct_mode &&
|
|
((to + len) <= cqspi->ahb_size)) {
|
|
memcpy_toio(cqspi->ahb_base + to, buf, len);
|
|
return cqspi_wait_idle(cqspi);
|
|
}
|
|
|
|
return cqspi_indirect_write_execute(f_pdata, to, buf, len);
|
|
}
|
|
|
|
static void cqspi_rx_dma_callback(void *param)
|
|
{
|
|
struct cqspi_st *cqspi = param;
|
|
|
|
complete(&cqspi->rx_dma_complete);
|
|
}
|
|
|
|
static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
|
|
u_char *buf, loff_t from, size_t len)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
struct device *dev = &cqspi->pdev->dev;
|
|
enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
|
|
dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
|
|
int ret = 0;
|
|
struct dma_async_tx_descriptor *tx;
|
|
dma_cookie_t cookie;
|
|
dma_addr_t dma_dst;
|
|
struct device *ddev;
|
|
|
|
if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
|
|
memcpy_fromio(buf, cqspi->ahb_base + from, len);
|
|
return 0;
|
|
}
|
|
|
|
ddev = cqspi->rx_chan->device->dev;
|
|
dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(ddev, dma_dst)) {
|
|
dev_err(dev, "dma mapping failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
|
|
len, flags);
|
|
if (!tx) {
|
|
dev_err(dev, "device_prep_dma_memcpy error\n");
|
|
ret = -EIO;
|
|
goto err_unmap;
|
|
}
|
|
|
|
tx->callback = cqspi_rx_dma_callback;
|
|
tx->callback_param = cqspi;
|
|
cookie = tx->tx_submit(tx);
|
|
reinit_completion(&cqspi->rx_dma_complete);
|
|
|
|
ret = dma_submit_error(cookie);
|
|
if (ret) {
|
|
dev_err(dev, "dma_submit_error %d\n", cookie);
|
|
ret = -EIO;
|
|
goto err_unmap;
|
|
}
|
|
|
|
dma_async_issue_pending(cqspi->rx_chan);
|
|
if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
|
|
msecs_to_jiffies(max_t(size_t, len, 500)))) {
|
|
dmaengine_terminate_sync(cqspi->rx_chan);
|
|
dev_err(dev, "DMA wait_for_completion_timeout\n");
|
|
ret = -ETIMEDOUT;
|
|
goto err_unmap;
|
|
}
|
|
|
|
err_unmap:
|
|
dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct cqspi_st *cqspi = f_pdata->cqspi;
|
|
struct device *dev = &cqspi->pdev->dev;
|
|
const struct cqspi_driver_platdata *ddata;
|
|
loff_t from = op->addr.val;
|
|
size_t len = op->data.nbytes;
|
|
u_char *buf = op->data.buf.in;
|
|
u64 dma_align = (u64)(uintptr_t)buf;
|
|
int ret;
|
|
|
|
ddata = of_device_get_match_data(dev);
|
|
ret = cqspi_set_protocol(f_pdata, op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cqspi_read_setup(f_pdata, op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
|
|
return cqspi_direct_read_execute(f_pdata, buf, from, len);
|
|
|
|
if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
|
|
virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
|
|
return ddata->indirect_read_dma(f_pdata, buf, from, len);
|
|
|
|
return cqspi_indirect_read_execute(f_pdata, buf, from, len);
|
|
}
|
|
|
|
static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
|
|
{
|
|
struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
|
|
struct cqspi_flash_pdata *f_pdata;
|
|
|
|
f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
|
|
cqspi_configure(f_pdata, mem->spi->max_speed_hz);
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
|
|
if (!op->addr.nbytes)
|
|
return cqspi_command_read(f_pdata, op);
|
|
|
|
return cqspi_read(f_pdata, op);
|
|
}
|
|
|
|
if (!op->addr.nbytes || !op->data.buf.out)
|
|
return cqspi_command_write(f_pdata, op);
|
|
|
|
return cqspi_write(f_pdata, op);
|
|
}
|
|
|
|
static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
|
|
{
|
|
int ret;
|
|
|
|
ret = cqspi_mem_process(mem, op);
|
|
if (ret)
|
|
dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool cqspi_supports_mem_op(struct spi_mem *mem,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
bool all_true, all_false;
|
|
|
|
/*
|
|
* op->dummy.dtr is required for converting nbytes into ncycles.
|
|
* Also, don't check the dtr field of the op phase having zero nbytes.
|
|
*/
|
|
all_true = op->cmd.dtr &&
|
|
(!op->addr.nbytes || op->addr.dtr) &&
|
|
(!op->dummy.nbytes || op->dummy.dtr) &&
|
|
(!op->data.nbytes || op->data.dtr);
|
|
|
|
all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
|
|
!op->data.dtr;
|
|
|
|
/* Mixed DTR modes not supported. */
|
|
if (!(all_true || all_false))
|
|
return false;
|
|
|
|
if (all_true)
|
|
return spi_mem_dtr_supports_op(mem, op);
|
|
else
|
|
return spi_mem_default_supports_op(mem, op);
|
|
}
|
|
|
|
static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
|
|
struct cqspi_flash_pdata *f_pdata,
|
|
struct device_node *np)
|
|
{
|
|
if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
|
|
dev_err(&pdev->dev, "couldn't determine read-delay\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
|
|
dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
|
|
dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
|
|
dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
|
|
dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
|
|
dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
|
|
{
|
|
struct device *dev = &cqspi->pdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
u32 id[2];
|
|
|
|
cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
|
|
|
|
if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
|
|
dev_err(dev, "couldn't determine fifo-depth\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
|
|
dev_err(dev, "couldn't determine fifo-width\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "cdns,trigger-address",
|
|
&cqspi->trigger_address)) {
|
|
dev_err(dev, "couldn't determine trigger-address\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
|
|
cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
|
|
|
|
cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
|
|
|
|
if (!of_property_read_u32_array(np, "power-domains", id,
|
|
ARRAY_SIZE(id)))
|
|
cqspi->pd_dev_id = id[1];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cqspi_controller_init(struct cqspi_st *cqspi)
|
|
{
|
|
u32 reg;
|
|
|
|
cqspi_controller_enable(cqspi, 0);
|
|
|
|
/* Configure the remap address register, no remap */
|
|
writel(0, cqspi->iobase + CQSPI_REG_REMAP);
|
|
|
|
/* Disable all interrupts. */
|
|
writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
|
|
|
|
/* Configure the SRAM split to 1:1 . */
|
|
writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
|
|
|
|
/* Load indirect trigger address. */
|
|
writel(cqspi->trigger_address,
|
|
cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
|
|
|
|
/* Program read watermark -- 1/2 of the FIFO. */
|
|
writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
|
|
cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
|
|
/* Program write watermark -- 1/8 of the FIFO. */
|
|
writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
|
|
cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
|
|
|
|
/* Disable direct access controller */
|
|
if (!cqspi->use_direct_mode) {
|
|
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
|
|
reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
|
|
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
|
|
}
|
|
|
|
/* Enable DMA interface */
|
|
if (cqspi->use_dma_read) {
|
|
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
|
|
reg |= CQSPI_REG_CONFIG_DMA_MASK;
|
|
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
|
|
}
|
|
|
|
cqspi_controller_enable(cqspi, 1);
|
|
}
|
|
|
|
static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
|
|
{
|
|
dma_cap_mask_t mask;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_MEMCPY, mask);
|
|
|
|
cqspi->rx_chan = dma_request_chan_by_mask(&mask);
|
|
if (IS_ERR(cqspi->rx_chan)) {
|
|
int ret = PTR_ERR(cqspi->rx_chan);
|
|
cqspi->rx_chan = NULL;
|
|
return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
|
|
}
|
|
init_completion(&cqspi->rx_dma_complete);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const char *cqspi_get_name(struct spi_mem *mem)
|
|
{
|
|
struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
|
|
struct device *dev = &cqspi->pdev->dev;
|
|
|
|
return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
|
|
}
|
|
|
|
static const struct spi_controller_mem_ops cqspi_mem_ops = {
|
|
.exec_op = cqspi_exec_mem_op,
|
|
.get_name = cqspi_get_name,
|
|
.supports_op = cqspi_supports_mem_op,
|
|
};
|
|
|
|
static int cqspi_setup_flash(struct cqspi_st *cqspi)
|
|
{
|
|
struct platform_device *pdev = cqspi->pdev;
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
struct cqspi_flash_pdata *f_pdata;
|
|
unsigned int cs;
|
|
int ret;
|
|
|
|
/* Get flash device data */
|
|
for_each_available_child_of_node(dev->of_node, np) {
|
|
ret = of_property_read_u32(np, "reg", &cs);
|
|
if (ret) {
|
|
dev_err(dev, "Couldn't determine chip select.\n");
|
|
of_node_put(np);
|
|
return ret;
|
|
}
|
|
|
|
if (cs >= CQSPI_MAX_CHIPSELECT) {
|
|
dev_err(dev, "Chip select %d out of range.\n", cs);
|
|
of_node_put(np);
|
|
return -EINVAL;
|
|
}
|
|
|
|
f_pdata = &cqspi->f_pdata[cs];
|
|
f_pdata->cqspi = cqspi;
|
|
f_pdata->cs = cs;
|
|
|
|
ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
|
|
if (ret) {
|
|
of_node_put(np);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cqspi_probe(struct platform_device *pdev)
|
|
{
|
|
const struct cqspi_driver_platdata *ddata;
|
|
struct reset_control *rstc, *rstc_ocp;
|
|
struct device *dev = &pdev->dev;
|
|
struct spi_master *master;
|
|
struct resource *res_ahb;
|
|
struct cqspi_st *cqspi;
|
|
struct resource *res;
|
|
int ret;
|
|
int irq;
|
|
|
|
master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
|
|
if (!master) {
|
|
dev_err(&pdev->dev, "spi_alloc_master failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
|
|
master->mem_ops = &cqspi_mem_ops;
|
|
master->dev.of_node = pdev->dev.of_node;
|
|
|
|
cqspi = spi_master_get_devdata(master);
|
|
|
|
cqspi->pdev = pdev;
|
|
platform_set_drvdata(pdev, cqspi);
|
|
|
|
/* Obtain configuration from OF. */
|
|
ret = cqspi_of_get_pdata(cqspi);
|
|
if (ret) {
|
|
dev_err(dev, "Cannot get mandatory OF data.\n");
|
|
ret = -ENODEV;
|
|
goto probe_master_put;
|
|
}
|
|
|
|
/* Obtain QSPI clock. */
|
|
cqspi->clk = devm_clk_get(dev, NULL);
|
|
if (IS_ERR(cqspi->clk)) {
|
|
dev_err(dev, "Cannot claim QSPI clock.\n");
|
|
ret = PTR_ERR(cqspi->clk);
|
|
goto probe_master_put;
|
|
}
|
|
|
|
/* Obtain and remap controller address. */
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
cqspi->iobase = devm_ioremap_resource(dev, res);
|
|
if (IS_ERR(cqspi->iobase)) {
|
|
dev_err(dev, "Cannot remap controller address.\n");
|
|
ret = PTR_ERR(cqspi->iobase);
|
|
goto probe_master_put;
|
|
}
|
|
|
|
/* Obtain and remap AHB address. */
|
|
res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
|
|
cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
|
|
if (IS_ERR(cqspi->ahb_base)) {
|
|
dev_err(dev, "Cannot remap AHB address.\n");
|
|
ret = PTR_ERR(cqspi->ahb_base);
|
|
goto probe_master_put;
|
|
}
|
|
cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
|
|
cqspi->ahb_size = resource_size(res_ahb);
|
|
|
|
init_completion(&cqspi->transfer_complete);
|
|
|
|
/* Obtain IRQ line. */
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0) {
|
|
ret = -ENXIO;
|
|
goto probe_master_put;
|
|
}
|
|
|
|
pm_runtime_enable(dev);
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (ret < 0) {
|
|
pm_runtime_put_noidle(dev);
|
|
goto probe_master_put;
|
|
}
|
|
|
|
ret = clk_prepare_enable(cqspi->clk);
|
|
if (ret) {
|
|
dev_err(dev, "Cannot enable QSPI clock.\n");
|
|
goto probe_clk_failed;
|
|
}
|
|
|
|
/* Obtain QSPI reset control */
|
|
rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
|
|
if (IS_ERR(rstc)) {
|
|
ret = PTR_ERR(rstc);
|
|
dev_err(dev, "Cannot get QSPI reset.\n");
|
|
goto probe_reset_failed;
|
|
}
|
|
|
|
rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
|
|
if (IS_ERR(rstc_ocp)) {
|
|
ret = PTR_ERR(rstc_ocp);
|
|
dev_err(dev, "Cannot get QSPI OCP reset.\n");
|
|
goto probe_reset_failed;
|
|
}
|
|
|
|
reset_control_assert(rstc);
|
|
reset_control_deassert(rstc);
|
|
|
|
reset_control_assert(rstc_ocp);
|
|
reset_control_deassert(rstc_ocp);
|
|
|
|
cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
|
|
master->max_speed_hz = cqspi->master_ref_clk_hz;
|
|
|
|
/* write completion is supported by default */
|
|
cqspi->wr_completion = true;
|
|
|
|
ddata = of_device_get_match_data(dev);
|
|
if (ddata) {
|
|
if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
|
|
cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
|
|
cqspi->master_ref_clk_hz);
|
|
if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
|
|
master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
|
|
if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
|
|
cqspi->use_direct_mode = true;
|
|
if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
|
|
cqspi->use_dma_read = true;
|
|
if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
|
|
cqspi->wr_completion = false;
|
|
|
|
if (of_device_is_compatible(pdev->dev.of_node,
|
|
"xlnx,versal-ospi-1.0"))
|
|
dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
|
|
}
|
|
|
|
ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
|
|
pdev->name, cqspi);
|
|
if (ret) {
|
|
dev_err(dev, "Cannot request IRQ.\n");
|
|
goto probe_reset_failed;
|
|
}
|
|
|
|
cqspi_wait_idle(cqspi);
|
|
cqspi_controller_init(cqspi);
|
|
cqspi->current_cs = -1;
|
|
cqspi->sclk = 0;
|
|
|
|
master->num_chipselect = cqspi->num_chipselect;
|
|
|
|
ret = cqspi_setup_flash(cqspi);
|
|
if (ret) {
|
|
dev_err(dev, "failed to setup flash parameters %d\n", ret);
|
|
goto probe_setup_failed;
|
|
}
|
|
|
|
if (cqspi->use_direct_mode) {
|
|
ret = cqspi_request_mmap_dma(cqspi);
|
|
if (ret == -EPROBE_DEFER)
|
|
goto probe_setup_failed;
|
|
}
|
|
|
|
ret = devm_spi_register_master(dev, master);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
|
|
goto probe_setup_failed;
|
|
}
|
|
|
|
return 0;
|
|
probe_setup_failed:
|
|
cqspi_controller_enable(cqspi, 0);
|
|
probe_reset_failed:
|
|
clk_disable_unprepare(cqspi->clk);
|
|
probe_clk_failed:
|
|
pm_runtime_put_sync(dev);
|
|
pm_runtime_disable(dev);
|
|
probe_master_put:
|
|
spi_master_put(master);
|
|
return ret;
|
|
}
|
|
|
|
static int cqspi_remove(struct platform_device *pdev)
|
|
{
|
|
struct cqspi_st *cqspi = platform_get_drvdata(pdev);
|
|
|
|
cqspi_controller_enable(cqspi, 0);
|
|
|
|
if (cqspi->rx_chan)
|
|
dma_release_channel(cqspi->rx_chan);
|
|
|
|
clk_disable_unprepare(cqspi->clk);
|
|
|
|
pm_runtime_put_sync(&pdev->dev);
|
|
pm_runtime_disable(&pdev->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int cqspi_suspend(struct device *dev)
|
|
{
|
|
struct cqspi_st *cqspi = dev_get_drvdata(dev);
|
|
|
|
cqspi_controller_enable(cqspi, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int cqspi_resume(struct device *dev)
|
|
{
|
|
struct cqspi_st *cqspi = dev_get_drvdata(dev);
|
|
|
|
cqspi_controller_enable(cqspi, 1);
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops cqspi__dev_pm_ops = {
|
|
.suspend = cqspi_suspend,
|
|
.resume = cqspi_resume,
|
|
};
|
|
|
|
#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
|
|
#else
|
|
#define CQSPI_DEV_PM_OPS NULL
|
|
#endif
|
|
|
|
static const struct cqspi_driver_platdata cdns_qspi = {
|
|
.quirks = CQSPI_DISABLE_DAC_MODE,
|
|
};
|
|
|
|
static const struct cqspi_driver_platdata k2g_qspi = {
|
|
.quirks = CQSPI_NEEDS_WR_DELAY,
|
|
};
|
|
|
|
static const struct cqspi_driver_platdata am654_ospi = {
|
|
.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
|
|
.quirks = CQSPI_NEEDS_WR_DELAY,
|
|
};
|
|
|
|
static const struct cqspi_driver_platdata intel_lgm_qspi = {
|
|
.quirks = CQSPI_DISABLE_DAC_MODE,
|
|
};
|
|
|
|
static const struct cqspi_driver_platdata socfpga_qspi = {
|
|
.quirks = CQSPI_NO_SUPPORT_WR_COMPLETION,
|
|
};
|
|
|
|
static const struct cqspi_driver_platdata versal_ospi = {
|
|
.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
|
|
.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
|
|
.indirect_read_dma = cqspi_versal_indirect_read_dma,
|
|
.get_dma_status = cqspi_get_versal_dma_status,
|
|
};
|
|
|
|
static const struct of_device_id cqspi_dt_ids[] = {
|
|
{
|
|
.compatible = "cdns,qspi-nor",
|
|
.data = &cdns_qspi,
|
|
},
|
|
{
|
|
.compatible = "ti,k2g-qspi",
|
|
.data = &k2g_qspi,
|
|
},
|
|
{
|
|
.compatible = "ti,am654-ospi",
|
|
.data = &am654_ospi,
|
|
},
|
|
{
|
|
.compatible = "intel,lgm-qspi",
|
|
.data = &intel_lgm_qspi,
|
|
},
|
|
{
|
|
.compatible = "xlnx,versal-ospi-1.0",
|
|
.data = (void *)&versal_ospi,
|
|
},
|
|
{
|
|
.compatible = "intel,socfpga-qspi",
|
|
.data = (void *)&socfpga_qspi,
|
|
},
|
|
{ /* end of table */ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
|
|
|
|
static struct platform_driver cqspi_platform_driver = {
|
|
.probe = cqspi_probe,
|
|
.remove = cqspi_remove,
|
|
.driver = {
|
|
.name = CQSPI_NAME,
|
|
.pm = CQSPI_DEV_PM_OPS,
|
|
.of_match_table = cqspi_dt_ids,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(cqspi_platform_driver);
|
|
|
|
MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_ALIAS("platform:" CQSPI_NAME);
|
|
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
|
|
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
|
|
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
|
|
MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
|
|
MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
|