mirror of
https://github.com/torvalds/linux.git
synced 2024-11-13 23:51:39 +00:00
ba935f4097
Currently, there is no other bus that has something like this macro for their device ids. Thus, DEFINE_PCI_DEVICE_TABLE macro should be removed. Signed-off-by: Jingoo Han <jg1.han@samsung.com> Link: http://lkml.kernel.org/r/001c01ceefb3$5724d860$056e8920$%han@samsung.com [ Boris: swap commit message with better one. ] Signed-off-by: Borislav Petkov <bp@suse.de>
1477 lines
40 KiB
C
1477 lines
40 KiB
C
/*
|
|
* Intel 5400 class Memory Controllers kernel module (Seaburg)
|
|
*
|
|
* This file may be distributed under the terms of the
|
|
* GNU General Public License.
|
|
*
|
|
* Copyright (c) 2008 by:
|
|
* Ben Woodard <woodard@redhat.com>
|
|
* Mauro Carvalho Chehab <mchehab@redhat.com>
|
|
*
|
|
* Red Hat Inc. http://www.redhat.com
|
|
*
|
|
* Forked and adapted from the i5000_edac driver which was
|
|
* written by Douglas Thompson Linux Networx <norsk5@xmission.com>
|
|
*
|
|
* This module is based on the following document:
|
|
*
|
|
* Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
|
|
* http://developer.intel.com/design/chipsets/datashts/313070.htm
|
|
*
|
|
* This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
|
|
* 2 channels operating in lockstep no-mirror mode. Each channel can have up to
|
|
* 4 dimm's, each with up to 8GB.
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/mmzone.h>
|
|
|
|
#include "edac_core.h"
|
|
|
|
/*
|
|
* Alter this version for the I5400 module when modifications are made
|
|
*/
|
|
#define I5400_REVISION " Ver: 1.0.0"
|
|
|
|
#define EDAC_MOD_STR "i5400_edac"
|
|
|
|
#define i5400_printk(level, fmt, arg...) \
|
|
edac_printk(level, "i5400", fmt, ##arg)
|
|
|
|
#define i5400_mc_printk(mci, level, fmt, arg...) \
|
|
edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
|
|
|
|
/* Limits for i5400 */
|
|
#define MAX_BRANCHES 2
|
|
#define CHANNELS_PER_BRANCH 2
|
|
#define DIMMS_PER_CHANNEL 4
|
|
#define MAX_CHANNELS (MAX_BRANCHES * CHANNELS_PER_BRANCH)
|
|
|
|
/* Device 16,
|
|
* Function 0: System Address
|
|
* Function 1: Memory Branch Map, Control, Errors Register
|
|
* Function 2: FSB Error Registers
|
|
*
|
|
* All 3 functions of Device 16 (0,1,2) share the SAME DID and
|
|
* uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
|
|
* PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
|
|
* for device 21 (0,1).
|
|
*/
|
|
|
|
/* OFFSETS for Function 0 */
|
|
#define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
|
|
#define MAXCH 0x56 /* Max Channel Number */
|
|
#define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
|
|
|
|
/* OFFSETS for Function 1 */
|
|
#define TOLM 0x6C
|
|
#define REDMEMB 0x7C
|
|
#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */
|
|
#define MIR0 0x80
|
|
#define MIR1 0x84
|
|
#define AMIR0 0x8c
|
|
#define AMIR1 0x90
|
|
|
|
/* Fatal error registers */
|
|
#define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */
|
|
#define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */
|
|
|
|
#define NERR_FAT_FBD 0x9c
|
|
#define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */
|
|
|
|
/* Non-fatal error register */
|
|
#define NERR_NF_FBD 0xa4
|
|
|
|
/* Enable error mask */
|
|
#define EMASK_FBD 0xa8
|
|
|
|
#define ERR0_FBD 0xac
|
|
#define ERR1_FBD 0xb0
|
|
#define ERR2_FBD 0xb4
|
|
#define MCERR_FBD 0xb8
|
|
|
|
/* No OFFSETS for Device 16 Function 2 */
|
|
|
|
/*
|
|
* Device 21,
|
|
* Function 0: Memory Map Branch 0
|
|
*
|
|
* Device 22,
|
|
* Function 0: Memory Map Branch 1
|
|
*/
|
|
|
|
/* OFFSETS for Function 0 */
|
|
#define AMBPRESENT_0 0x64
|
|
#define AMBPRESENT_1 0x66
|
|
#define MTR0 0x80
|
|
#define MTR1 0x82
|
|
#define MTR2 0x84
|
|
#define MTR3 0x86
|
|
|
|
/* OFFSETS for Function 1 */
|
|
#define NRECFGLOG 0x74
|
|
#define RECFGLOG 0x78
|
|
#define NRECMEMA 0xbe
|
|
#define NRECMEMB 0xc0
|
|
#define NRECFB_DIMMA 0xc4
|
|
#define NRECFB_DIMMB 0xc8
|
|
#define NRECFB_DIMMC 0xcc
|
|
#define NRECFB_DIMMD 0xd0
|
|
#define NRECFB_DIMME 0xd4
|
|
#define NRECFB_DIMMF 0xd8
|
|
#define REDMEMA 0xdC
|
|
#define RECMEMA 0xf0
|
|
#define RECMEMB 0xf4
|
|
#define RECFB_DIMMA 0xf8
|
|
#define RECFB_DIMMB 0xec
|
|
#define RECFB_DIMMC 0xf0
|
|
#define RECFB_DIMMD 0xf4
|
|
#define RECFB_DIMME 0xf8
|
|
#define RECFB_DIMMF 0xfC
|
|
|
|
/*
|
|
* Error indicator bits and masks
|
|
* Error masks are according with Table 5-17 of i5400 datasheet
|
|
*/
|
|
|
|
enum error_mask {
|
|
EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */
|
|
EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */
|
|
EMASK_M3 = 1<<2, /* Reserved */
|
|
EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */
|
|
EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
|
|
EMASK_M6 = 1<<5, /* Unsupported on i5400 */
|
|
EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
|
|
EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */
|
|
EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
|
|
EMASK_M10 = 1<<9, /* Unsupported on i5400 */
|
|
EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
|
|
EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
|
|
EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
|
|
EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
|
|
EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
|
|
EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
|
|
EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
|
|
EMASK_M18 = 1<<17, /* Unsupported on i5400 */
|
|
EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
|
|
EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
|
|
EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
|
|
EMASK_M22 = 1<<21, /* SPD protocol Error */
|
|
EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
|
|
EMASK_M24 = 1<<23, /* Refresh error */
|
|
EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
|
|
EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
|
|
EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
|
|
EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
|
|
EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
|
|
};
|
|
|
|
/*
|
|
* Names to translate bit error into something useful
|
|
*/
|
|
static const char *error_name[] = {
|
|
[0] = "Memory Write error on non-redundant retry",
|
|
[1] = "Memory or FB-DIMM configuration CRC read error",
|
|
/* Reserved */
|
|
[3] = "Uncorrectable Data ECC on Replay",
|
|
[4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
|
|
/* M6 Unsupported on i5400 */
|
|
[6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
|
|
[7] = "Aliased Uncorrectable Patrol Data ECC",
|
|
[8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
|
|
/* M10 Unsupported on i5400 */
|
|
[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
|
|
[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
|
|
[12] = "Memory Write error on first attempt",
|
|
[13] = "FB-DIMM Configuration Write error on first attempt",
|
|
[14] = "Memory or FB-DIMM configuration CRC read error",
|
|
[15] = "Channel Failed-Over Occurred",
|
|
[16] = "Correctable Non-Mirrored Demand Data ECC",
|
|
/* M18 Unsupported on i5400 */
|
|
[18] = "Correctable Resilver- or Spare-Copy Data ECC",
|
|
[19] = "Correctable Patrol Data ECC",
|
|
[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
|
|
[21] = "SPD protocol Error",
|
|
[22] = "Non-Redundant Fast Reset Timeout",
|
|
[23] = "Refresh error",
|
|
[24] = "Memory Write error on redundant retry",
|
|
[25] = "Redundant Fast Reset Timeout",
|
|
[26] = "Correctable Counter Threshold Exceeded",
|
|
[27] = "DIMM-Spare Copy Completed",
|
|
[28] = "DIMM-Isolation Completed",
|
|
};
|
|
|
|
/* Fatal errors */
|
|
#define ERROR_FAT_MASK (EMASK_M1 | \
|
|
EMASK_M2 | \
|
|
EMASK_M23)
|
|
|
|
/* Correctable errors */
|
|
#define ERROR_NF_CORRECTABLE (EMASK_M27 | \
|
|
EMASK_M20 | \
|
|
EMASK_M19 | \
|
|
EMASK_M18 | \
|
|
EMASK_M17 | \
|
|
EMASK_M16)
|
|
#define ERROR_NF_DIMM_SPARE (EMASK_M29 | \
|
|
EMASK_M28)
|
|
#define ERROR_NF_SPD_PROTOCOL (EMASK_M22)
|
|
#define ERROR_NF_NORTH_CRC (EMASK_M21)
|
|
|
|
/* Recoverable errors */
|
|
#define ERROR_NF_RECOVERABLE (EMASK_M26 | \
|
|
EMASK_M25 | \
|
|
EMASK_M24 | \
|
|
EMASK_M15 | \
|
|
EMASK_M14 | \
|
|
EMASK_M13 | \
|
|
EMASK_M12 | \
|
|
EMASK_M11 | \
|
|
EMASK_M9 | \
|
|
EMASK_M8 | \
|
|
EMASK_M7 | \
|
|
EMASK_M5)
|
|
|
|
/* uncorrectable errors */
|
|
#define ERROR_NF_UNCORRECTABLE (EMASK_M4)
|
|
|
|
/* mask to all non-fatal errors */
|
|
#define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \
|
|
ERROR_NF_UNCORRECTABLE | \
|
|
ERROR_NF_RECOVERABLE | \
|
|
ERROR_NF_DIMM_SPARE | \
|
|
ERROR_NF_SPD_PROTOCOL | \
|
|
ERROR_NF_NORTH_CRC)
|
|
|
|
/*
|
|
* Define error masks for the several registers
|
|
*/
|
|
|
|
/* Enable all fatal and non fatal errors */
|
|
#define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK)
|
|
|
|
/* mask for fatal error registers */
|
|
#define FERR_FAT_MASK ERROR_FAT_MASK
|
|
|
|
/* masks for non-fatal error register */
|
|
static inline int to_nf_mask(unsigned int mask)
|
|
{
|
|
return (mask & EMASK_M29) | (mask >> 3);
|
|
};
|
|
|
|
static inline int from_nf_ferr(unsigned int mask)
|
|
{
|
|
return (mask & EMASK_M29) | /* Bit 28 */
|
|
(mask & ((1 << 28) - 1) << 3); /* Bits 0 to 27 */
|
|
};
|
|
|
|
#define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK)
|
|
#define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE)
|
|
#define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE)
|
|
#define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL)
|
|
#define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC)
|
|
#define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE)
|
|
#define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE)
|
|
|
|
/* Defines to extract the vaious fields from the
|
|
* MTRx - Memory Technology Registers
|
|
*/
|
|
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10))
|
|
#define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9))
|
|
#define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4)
|
|
#define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
|
|
#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
|
|
#define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1)
|
|
#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
|
|
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
|
|
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
|
|
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
|
|
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
|
|
|
|
/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
|
|
static inline int extract_fbdchan_indx(u32 x)
|
|
{
|
|
return (x>>28) & 0x3;
|
|
}
|
|
|
|
/* Device name and register DID (Device ID) */
|
|
struct i5400_dev_info {
|
|
const char *ctl_name; /* name for this device */
|
|
u16 fsb_mapping_errors; /* DID for the branchmap,control */
|
|
};
|
|
|
|
/* Table of devices attributes supported by this driver */
|
|
static const struct i5400_dev_info i5400_devs[] = {
|
|
{
|
|
.ctl_name = "I5400",
|
|
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
|
|
},
|
|
};
|
|
|
|
struct i5400_dimm_info {
|
|
int megabytes; /* size, 0 means not present */
|
|
};
|
|
|
|
/* driver private data structure */
|
|
struct i5400_pvt {
|
|
struct pci_dev *system_address; /* 16.0 */
|
|
struct pci_dev *branchmap_werrors; /* 16.1 */
|
|
struct pci_dev *fsb_error_regs; /* 16.2 */
|
|
struct pci_dev *branch_0; /* 21.0 */
|
|
struct pci_dev *branch_1; /* 22.0 */
|
|
|
|
u16 tolm; /* top of low memory */
|
|
union {
|
|
u64 ambase; /* AMB BAR */
|
|
struct {
|
|
u32 ambase_bottom;
|
|
u32 ambase_top;
|
|
} u __packed;
|
|
};
|
|
|
|
u16 mir0, mir1;
|
|
|
|
u16 b0_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */
|
|
u16 b0_ambpresent0; /* Branch 0, Channel 0 */
|
|
u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
|
|
|
|
u16 b1_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */
|
|
u16 b1_ambpresent0; /* Branch 1, Channel 8 */
|
|
u16 b1_ambpresent1; /* Branch 1, Channel 1 */
|
|
|
|
/* DIMM information matrix, allocating architecture maximums */
|
|
struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
|
|
|
|
/* Actual values for this controller */
|
|
int maxch; /* Max channels */
|
|
int maxdimmperch; /* Max DIMMs per channel */
|
|
};
|
|
|
|
/* I5400 MCH error information retrieved from Hardware */
|
|
struct i5400_error_info {
|
|
/* These registers are always read from the MC */
|
|
u32 ferr_fat_fbd; /* First Errors Fatal */
|
|
u32 nerr_fat_fbd; /* Next Errors Fatal */
|
|
u32 ferr_nf_fbd; /* First Errors Non-Fatal */
|
|
u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
|
|
|
|
/* These registers are input ONLY if there was a Recoverable Error */
|
|
u32 redmemb; /* Recoverable Mem Data Error log B */
|
|
u16 recmema; /* Recoverable Mem Error log A */
|
|
u32 recmemb; /* Recoverable Mem Error log B */
|
|
|
|
/* These registers are input ONLY if there was a Non-Rec Error */
|
|
u16 nrecmema; /* Non-Recoverable Mem log A */
|
|
u16 nrecmemb; /* Non-Recoverable Mem log B */
|
|
|
|
};
|
|
|
|
/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
|
|
5400 better to use an inline function than a macro in this case */
|
|
static inline int nrec_bank(struct i5400_error_info *info)
|
|
{
|
|
return ((info->nrecmema) >> 12) & 0x7;
|
|
}
|
|
static inline int nrec_rank(struct i5400_error_info *info)
|
|
{
|
|
return ((info->nrecmema) >> 8) & 0xf;
|
|
}
|
|
static inline int nrec_buf_id(struct i5400_error_info *info)
|
|
{
|
|
return ((info->nrecmema)) & 0xff;
|
|
}
|
|
static inline int nrec_rdwr(struct i5400_error_info *info)
|
|
{
|
|
return (info->nrecmemb) >> 31;
|
|
}
|
|
/* This applies to both NREC and REC string so it can be used with nrec_rdwr
|
|
and rec_rdwr */
|
|
static inline const char *rdwr_str(int rdwr)
|
|
{
|
|
return rdwr ? "Write" : "Read";
|
|
}
|
|
static inline int nrec_cas(struct i5400_error_info *info)
|
|
{
|
|
return ((info->nrecmemb) >> 16) & 0x1fff;
|
|
}
|
|
static inline int nrec_ras(struct i5400_error_info *info)
|
|
{
|
|
return (info->nrecmemb) & 0xffff;
|
|
}
|
|
static inline int rec_bank(struct i5400_error_info *info)
|
|
{
|
|
return ((info->recmema) >> 12) & 0x7;
|
|
}
|
|
static inline int rec_rank(struct i5400_error_info *info)
|
|
{
|
|
return ((info->recmema) >> 8) & 0xf;
|
|
}
|
|
static inline int rec_rdwr(struct i5400_error_info *info)
|
|
{
|
|
return (info->recmemb) >> 31;
|
|
}
|
|
static inline int rec_cas(struct i5400_error_info *info)
|
|
{
|
|
return ((info->recmemb) >> 16) & 0x1fff;
|
|
}
|
|
static inline int rec_ras(struct i5400_error_info *info)
|
|
{
|
|
return (info->recmemb) & 0xffff;
|
|
}
|
|
|
|
static struct edac_pci_ctl_info *i5400_pci;
|
|
|
|
/*
|
|
* i5400_get_error_info Retrieve the hardware error information from
|
|
* the hardware and cache it in the 'info'
|
|
* structure
|
|
*/
|
|
static void i5400_get_error_info(struct mem_ctl_info *mci,
|
|
struct i5400_error_info *info)
|
|
{
|
|
struct i5400_pvt *pvt;
|
|
u32 value;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* read in the 1st FATAL error register */
|
|
pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
|
|
|
|
/* Mask only the bits that the doc says are valid
|
|
*/
|
|
value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
|
|
|
|
/* If there is an error, then read in the
|
|
NEXT FATAL error register and the Memory Error Log Register A
|
|
*/
|
|
if (value & FERR_FAT_MASK) {
|
|
info->ferr_fat_fbd = value;
|
|
|
|
/* harvest the various error data we need */
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
|
NERR_FAT_FBD, &info->nerr_fat_fbd);
|
|
pci_read_config_word(pvt->branchmap_werrors,
|
|
NRECMEMA, &info->nrecmema);
|
|
pci_read_config_word(pvt->branchmap_werrors,
|
|
NRECMEMB, &info->nrecmemb);
|
|
|
|
/* Clear the error bits, by writing them back */
|
|
pci_write_config_dword(pvt->branchmap_werrors,
|
|
FERR_FAT_FBD, value);
|
|
} else {
|
|
info->ferr_fat_fbd = 0;
|
|
info->nerr_fat_fbd = 0;
|
|
info->nrecmema = 0;
|
|
info->nrecmemb = 0;
|
|
}
|
|
|
|
/* read in the 1st NON-FATAL error register */
|
|
pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
|
|
|
|
/* If there is an error, then read in the 1st NON-FATAL error
|
|
* register as well */
|
|
if (value & FERR_NF_MASK) {
|
|
info->ferr_nf_fbd = value;
|
|
|
|
/* harvest the various error data we need */
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
|
NERR_NF_FBD, &info->nerr_nf_fbd);
|
|
pci_read_config_word(pvt->branchmap_werrors,
|
|
RECMEMA, &info->recmema);
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
|
RECMEMB, &info->recmemb);
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
|
REDMEMB, &info->redmemb);
|
|
|
|
/* Clear the error bits, by writing them back */
|
|
pci_write_config_dword(pvt->branchmap_werrors,
|
|
FERR_NF_FBD, value);
|
|
} else {
|
|
info->ferr_nf_fbd = 0;
|
|
info->nerr_nf_fbd = 0;
|
|
info->recmema = 0;
|
|
info->recmemb = 0;
|
|
info->redmemb = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
|
|
* struct i5400_error_info *info,
|
|
* int handle_errors);
|
|
*
|
|
* handle the Intel FATAL and unrecoverable errors, if any
|
|
*/
|
|
static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
|
|
struct i5400_error_info *info,
|
|
unsigned long allErrors)
|
|
{
|
|
char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
|
|
int branch;
|
|
int channel;
|
|
int bank;
|
|
int buf_id;
|
|
int rank;
|
|
int rdwr;
|
|
int ras, cas;
|
|
int errnum;
|
|
char *type = NULL;
|
|
enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
|
|
|
|
if (!allErrors)
|
|
return; /* if no error, return now */
|
|
|
|
if (allErrors & ERROR_FAT_MASK) {
|
|
type = "FATAL";
|
|
tp_event = HW_EVENT_ERR_FATAL;
|
|
} else if (allErrors & FERR_NF_UNCORRECTABLE)
|
|
type = "NON-FATAL uncorrected";
|
|
else
|
|
type = "NON-FATAL recoverable";
|
|
|
|
/* ONLY ONE of the possible error bits will be set, as per the docs */
|
|
|
|
branch = extract_fbdchan_indx(info->ferr_fat_fbd);
|
|
channel = branch;
|
|
|
|
/* Use the NON-Recoverable macros to extract data */
|
|
bank = nrec_bank(info);
|
|
rank = nrec_rank(info);
|
|
buf_id = nrec_buf_id(info);
|
|
rdwr = nrec_rdwr(info);
|
|
ras = nrec_ras(info);
|
|
cas = nrec_cas(info);
|
|
|
|
edac_dbg(0, "\t\tDIMM= %d Channels= %d,%d (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
|
|
rank, channel, channel + 1, branch >> 1, bank,
|
|
buf_id, rdwr_str(rdwr), ras, cas);
|
|
|
|
/* Only 1 bit will be on */
|
|
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
|
|
|
|
/* Form out message */
|
|
snprintf(msg, sizeof(msg),
|
|
"Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
|
|
bank, buf_id, ras, cas, allErrors, error_name[errnum]);
|
|
|
|
edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
|
|
branch >> 1, -1, rank,
|
|
rdwr ? "Write error" : "Read error",
|
|
msg);
|
|
}
|
|
|
|
/*
|
|
* i5400_process_fatal_error_info(struct mem_ctl_info *mci,
|
|
* struct i5400_error_info *info,
|
|
* int handle_errors);
|
|
*
|
|
* handle the Intel NON-FATAL errors, if any
|
|
*/
|
|
static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
|
|
struct i5400_error_info *info)
|
|
{
|
|
char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
|
|
unsigned long allErrors;
|
|
int branch;
|
|
int channel;
|
|
int bank;
|
|
int rank;
|
|
int rdwr;
|
|
int ras, cas;
|
|
int errnum;
|
|
|
|
/* mask off the Error bits that are possible */
|
|
allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
|
|
if (!allErrors)
|
|
return; /* if no error, return now */
|
|
|
|
/* ONLY ONE of the possible error bits will be set, as per the docs */
|
|
|
|
if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
|
|
i5400_proccess_non_recoverable_info(mci, info, allErrors);
|
|
return;
|
|
}
|
|
|
|
/* Correctable errors */
|
|
if (allErrors & ERROR_NF_CORRECTABLE) {
|
|
edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
|
|
|
|
branch = extract_fbdchan_indx(info->ferr_nf_fbd);
|
|
|
|
channel = 0;
|
|
if (REC_ECC_LOCATOR_ODD(info->redmemb))
|
|
channel = 1;
|
|
|
|
/* Convert channel to be based from zero, instead of
|
|
* from branch base of 0 */
|
|
channel += branch;
|
|
|
|
bank = rec_bank(info);
|
|
rank = rec_rank(info);
|
|
rdwr = rec_rdwr(info);
|
|
ras = rec_ras(info);
|
|
cas = rec_cas(info);
|
|
|
|
/* Only 1 bit will be on */
|
|
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
|
|
|
|
edac_dbg(0, "\t\tDIMM= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
|
|
rank, channel, branch >> 1, bank,
|
|
rdwr_str(rdwr), ras, cas);
|
|
|
|
/* Form out message */
|
|
snprintf(msg, sizeof(msg),
|
|
"Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
|
|
"RAS=%d CAS=%d, CE Err=0x%lx (%s))",
|
|
branch >> 1, bank, rdwr_str(rdwr), ras, cas,
|
|
allErrors, error_name[errnum]);
|
|
|
|
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
|
|
branch >> 1, channel % 2, rank,
|
|
rdwr ? "Write error" : "Read error",
|
|
msg);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Miscellaneous errors */
|
|
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
|
|
|
|
branch = extract_fbdchan_indx(info->ferr_nf_fbd);
|
|
|
|
i5400_mc_printk(mci, KERN_EMERG,
|
|
"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
|
|
branch >> 1, allErrors, error_name[errnum]);
|
|
}
|
|
|
|
/*
|
|
* i5400_process_error_info Process the error info that is
|
|
* in the 'info' structure, previously retrieved from hardware
|
|
*/
|
|
static void i5400_process_error_info(struct mem_ctl_info *mci,
|
|
struct i5400_error_info *info)
|
|
{ u32 allErrors;
|
|
|
|
/* First handle any fatal errors that occurred */
|
|
allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
|
|
i5400_proccess_non_recoverable_info(mci, info, allErrors);
|
|
|
|
/* now handle any non-fatal errors that occurred */
|
|
i5400_process_nonfatal_error_info(mci, info);
|
|
}
|
|
|
|
/*
|
|
* i5400_clear_error Retrieve any error from the hardware
|
|
* but do NOT process that error.
|
|
* Used for 'clearing' out of previous errors
|
|
* Called by the Core module.
|
|
*/
|
|
static void i5400_clear_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5400_error_info info;
|
|
|
|
i5400_get_error_info(mci, &info);
|
|
}
|
|
|
|
/*
|
|
* i5400_check_error Retrieve and process errors reported by the
|
|
* hardware. Called by the Core module.
|
|
*/
|
|
static void i5400_check_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5400_error_info info;
|
|
edac_dbg(4, "MC%d\n", mci->mc_idx);
|
|
i5400_get_error_info(mci, &info);
|
|
i5400_process_error_info(mci, &info);
|
|
}
|
|
|
|
/*
|
|
* i5400_put_devices 'put' all the devices that we have
|
|
* reserved via 'get'
|
|
*/
|
|
static void i5400_put_devices(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5400_pvt *pvt;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Decrement usage count for devices */
|
|
pci_dev_put(pvt->branch_1);
|
|
pci_dev_put(pvt->branch_0);
|
|
pci_dev_put(pvt->fsb_error_regs);
|
|
pci_dev_put(pvt->branchmap_werrors);
|
|
}
|
|
|
|
/*
|
|
* i5400_get_devices Find and perform 'get' operation on the MCH's
|
|
* device/functions we want to reference for this driver
|
|
*
|
|
* Need to 'get' device 16 func 1 and func 2
|
|
*/
|
|
static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
|
|
{
|
|
struct i5400_pvt *pvt;
|
|
struct pci_dev *pdev;
|
|
|
|
pvt = mci->pvt_info;
|
|
pvt->branchmap_werrors = NULL;
|
|
pvt->fsb_error_regs = NULL;
|
|
pvt->branch_0 = NULL;
|
|
pvt->branch_1 = NULL;
|
|
|
|
/* Attempt to 'get' the MCH register we want */
|
|
pdev = NULL;
|
|
while (1) {
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
|
|
if (!pdev) {
|
|
/* End of list, leave */
|
|
i5400_printk(KERN_ERR,
|
|
"'system address,Process Bus' "
|
|
"device not found:"
|
|
"vendor 0x%x device 0x%x ERR func 1 "
|
|
"(broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_5400_ERR);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Store device 16 func 1 */
|
|
if (PCI_FUNC(pdev->devfn) == 1)
|
|
break;
|
|
}
|
|
pvt->branchmap_werrors = pdev;
|
|
|
|
pdev = NULL;
|
|
while (1) {
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
|
|
if (!pdev) {
|
|
/* End of list, leave */
|
|
i5400_printk(KERN_ERR,
|
|
"'system address,Process Bus' "
|
|
"device not found:"
|
|
"vendor 0x%x device 0x%x ERR func 2 "
|
|
"(broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_5400_ERR);
|
|
|
|
pci_dev_put(pvt->branchmap_werrors);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Store device 16 func 2 */
|
|
if (PCI_FUNC(pdev->devfn) == 2)
|
|
break;
|
|
}
|
|
pvt->fsb_error_regs = pdev;
|
|
|
|
edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->system_address),
|
|
pvt->system_address->vendor, pvt->system_address->device);
|
|
edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->branchmap_werrors),
|
|
pvt->branchmap_werrors->vendor,
|
|
pvt->branchmap_werrors->device);
|
|
edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->fsb_error_regs),
|
|
pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
|
|
|
|
pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
|
|
if (!pvt->branch_0) {
|
|
i5400_printk(KERN_ERR,
|
|
"MC: 'BRANCH 0' device not found:"
|
|
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
|
|
|
|
pci_dev_put(pvt->fsb_error_regs);
|
|
pci_dev_put(pvt->branchmap_werrors);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* If this device claims to have more than 2 channels then
|
|
* fetch Branch 1's information
|
|
*/
|
|
if (pvt->maxch < CHANNELS_PER_BRANCH)
|
|
return 0;
|
|
|
|
pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
|
|
if (!pvt->branch_1) {
|
|
i5400_printk(KERN_ERR,
|
|
"MC: 'BRANCH 1' device not found:"
|
|
"vendor 0x%x device 0x%x Func 0 "
|
|
"(broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_5400_FBD1);
|
|
|
|
pci_dev_put(pvt->branch_0);
|
|
pci_dev_put(pvt->fsb_error_regs);
|
|
pci_dev_put(pvt->branchmap_werrors);
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* determine_amb_present
|
|
*
|
|
* the information is contained in DIMMS_PER_CHANNEL different
|
|
* registers determining which of the DIMMS_PER_CHANNEL requires
|
|
* knowing which channel is in question
|
|
*
|
|
* 2 branches, each with 2 channels
|
|
* b0_ambpresent0 for channel '0'
|
|
* b0_ambpresent1 for channel '1'
|
|
* b1_ambpresent0 for channel '2'
|
|
* b1_ambpresent1 for channel '3'
|
|
*/
|
|
static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
|
|
{
|
|
int amb_present;
|
|
|
|
if (channel < CHANNELS_PER_BRANCH) {
|
|
if (channel & 0x1)
|
|
amb_present = pvt->b0_ambpresent1;
|
|
else
|
|
amb_present = pvt->b0_ambpresent0;
|
|
} else {
|
|
if (channel & 0x1)
|
|
amb_present = pvt->b1_ambpresent1;
|
|
else
|
|
amb_present = pvt->b1_ambpresent0;
|
|
}
|
|
|
|
return amb_present;
|
|
}
|
|
|
|
/*
|
|
* determine_mtr(pvt, dimm, channel)
|
|
*
|
|
* return the proper MTR register as determine by the dimm and desired channel
|
|
*/
|
|
static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
|
|
{
|
|
int mtr;
|
|
int n;
|
|
|
|
/* There is one MTR for each slot pair of FB-DIMMs,
|
|
Each slot pair may be at branch 0 or branch 1.
|
|
*/
|
|
n = dimm;
|
|
|
|
if (n >= DIMMS_PER_CHANNEL) {
|
|
edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
|
|
dimm);
|
|
return 0;
|
|
}
|
|
|
|
if (channel < CHANNELS_PER_BRANCH)
|
|
mtr = pvt->b0_mtr[n];
|
|
else
|
|
mtr = pvt->b1_mtr[n];
|
|
|
|
return mtr;
|
|
}
|
|
|
|
/*
|
|
*/
|
|
static void decode_mtr(int slot_row, u16 mtr)
|
|
{
|
|
int ans;
|
|
|
|
ans = MTR_DIMMS_PRESENT(mtr);
|
|
|
|
edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n",
|
|
slot_row, mtr, ans ? "" : "NOT ");
|
|
if (!ans)
|
|
return;
|
|
|
|
edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
|
|
|
|
edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
|
|
MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
|
|
|
|
edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
|
|
edac_dbg(2, "\t\tNUMRANK: %s\n",
|
|
MTR_DIMM_RANK(mtr) ? "double" : "single");
|
|
edac_dbg(2, "\t\tNUMROW: %s\n",
|
|
MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
|
|
MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
|
|
MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
|
|
"65,536 - 16 rows");
|
|
edac_dbg(2, "\t\tNUMCOL: %s\n",
|
|
MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
|
|
MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
|
|
MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
|
|
"reserved");
|
|
}
|
|
|
|
static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
|
|
struct i5400_dimm_info *dinfo)
|
|
{
|
|
int mtr;
|
|
int amb_present_reg;
|
|
int addrBits;
|
|
|
|
mtr = determine_mtr(pvt, dimm, channel);
|
|
if (MTR_DIMMS_PRESENT(mtr)) {
|
|
amb_present_reg = determine_amb_present_reg(pvt, channel);
|
|
|
|
/* Determine if there is a DIMM present in this DIMM slot */
|
|
if (amb_present_reg & (1 << dimm)) {
|
|
/* Start with the number of bits for a Bank
|
|
* on the DRAM */
|
|
addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
|
|
/* Add thenumber of ROW bits */
|
|
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
|
|
/* add the number of COLUMN bits */
|
|
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
|
|
/* add the number of RANK bits */
|
|
addrBits += MTR_DIMM_RANK(mtr);
|
|
|
|
addrBits += 6; /* add 64 bits per DIMM */
|
|
addrBits -= 20; /* divide by 2^^20 */
|
|
addrBits -= 3; /* 8 bits per bytes */
|
|
|
|
dinfo->megabytes = 1 << addrBits;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* calculate_dimm_size
|
|
*
|
|
* also will output a DIMM matrix map, if debug is enabled, for viewing
|
|
* how the DIMMs are populated
|
|
*/
|
|
static void calculate_dimm_size(struct i5400_pvt *pvt)
|
|
{
|
|
struct i5400_dimm_info *dinfo;
|
|
int dimm, max_dimms;
|
|
char *p, *mem_buffer;
|
|
int space, n;
|
|
int channel, branch;
|
|
|
|
/* ================= Generate some debug output ================= */
|
|
space = PAGE_SIZE;
|
|
mem_buffer = p = kmalloc(space, GFP_KERNEL);
|
|
if (p == NULL) {
|
|
i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
|
|
__FILE__, __func__);
|
|
return;
|
|
}
|
|
|
|
/* Scan all the actual DIMMS
|
|
* and calculate the information for each DIMM
|
|
* Start with the highest dimm first, to display it first
|
|
* and work toward the 0th dimm
|
|
*/
|
|
max_dimms = pvt->maxdimmperch;
|
|
for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
|
|
|
|
/* on an odd dimm, first output a 'boundary' marker,
|
|
* then reset the message buffer */
|
|
if (dimm & 0x1) {
|
|
n = snprintf(p, space, "---------------------------"
|
|
"-------------------------------");
|
|
p += n;
|
|
space -= n;
|
|
edac_dbg(2, "%s\n", mem_buffer);
|
|
p = mem_buffer;
|
|
space = PAGE_SIZE;
|
|
}
|
|
n = snprintf(p, space, "dimm %2d ", dimm);
|
|
p += n;
|
|
space -= n;
|
|
|
|
for (channel = 0; channel < pvt->maxch; channel++) {
|
|
dinfo = &pvt->dimm_info[dimm][channel];
|
|
handle_channel(pvt, dimm, channel, dinfo);
|
|
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
edac_dbg(2, "%s\n", mem_buffer);
|
|
p = mem_buffer;
|
|
space = PAGE_SIZE;
|
|
}
|
|
|
|
/* Output the last bottom 'boundary' marker */
|
|
n = snprintf(p, space, "---------------------------"
|
|
"-------------------------------");
|
|
p += n;
|
|
space -= n;
|
|
edac_dbg(2, "%s\n", mem_buffer);
|
|
p = mem_buffer;
|
|
space = PAGE_SIZE;
|
|
|
|
/* now output the 'channel' labels */
|
|
n = snprintf(p, space, " ");
|
|
p += n;
|
|
space -= n;
|
|
for (channel = 0; channel < pvt->maxch; channel++) {
|
|
n = snprintf(p, space, "channel %d | ", channel);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
|
|
space -= n;
|
|
edac_dbg(2, "%s\n", mem_buffer);
|
|
p = mem_buffer;
|
|
space = PAGE_SIZE;
|
|
|
|
n = snprintf(p, space, " ");
|
|
p += n;
|
|
for (branch = 0; branch < MAX_BRANCHES; branch++) {
|
|
n = snprintf(p, space, " branch %d | ", branch);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
|
|
/* output the last message and free buffer */
|
|
edac_dbg(2, "%s\n", mem_buffer);
|
|
kfree(mem_buffer);
|
|
}
|
|
|
|
/*
|
|
* i5400_get_mc_regs read in the necessary registers and
|
|
* cache locally
|
|
*
|
|
* Fills in the private data members
|
|
*/
|
|
static void i5400_get_mc_regs(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5400_pvt *pvt;
|
|
u32 actual_tolm;
|
|
u16 limit;
|
|
int slot_row;
|
|
int maxch;
|
|
int maxdimmperch;
|
|
int way0, way1;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
pci_read_config_dword(pvt->system_address, AMBASE,
|
|
&pvt->u.ambase_bottom);
|
|
pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
|
|
&pvt->u.ambase_top);
|
|
|
|
maxdimmperch = pvt->maxdimmperch;
|
|
maxch = pvt->maxch;
|
|
|
|
edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
|
|
(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
|
|
|
|
/* Get the Branch Map regs */
|
|
pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
|
|
pvt->tolm >>= 12;
|
|
edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
|
|
pvt->tolm, pvt->tolm);
|
|
|
|
actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
|
|
edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
|
|
actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
|
|
|
|
pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
|
|
pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
|
|
|
|
/* Get the MIR[0-1] regs */
|
|
limit = (pvt->mir0 >> 4) & 0x0fff;
|
|
way0 = pvt->mir0 & 0x1;
|
|
way1 = pvt->mir0 & 0x2;
|
|
edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n",
|
|
limit, way1, way0);
|
|
limit = (pvt->mir1 >> 4) & 0xfff;
|
|
way0 = pvt->mir1 & 0x1;
|
|
way1 = pvt->mir1 & 0x2;
|
|
edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n",
|
|
limit, way1, way0);
|
|
|
|
/* Get the set of MTR[0-3] regs by each branch */
|
|
for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
|
|
int where = MTR0 + (slot_row * sizeof(u16));
|
|
|
|
/* Branch 0 set of MTR registers */
|
|
pci_read_config_word(pvt->branch_0, where,
|
|
&pvt->b0_mtr[slot_row]);
|
|
|
|
edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
|
|
slot_row, where, pvt->b0_mtr[slot_row]);
|
|
|
|
if (pvt->maxch < CHANNELS_PER_BRANCH) {
|
|
pvt->b1_mtr[slot_row] = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Branch 1 set of MTR registers */
|
|
pci_read_config_word(pvt->branch_1, where,
|
|
&pvt->b1_mtr[slot_row]);
|
|
edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
|
|
slot_row, where, pvt->b1_mtr[slot_row]);
|
|
}
|
|
|
|
/* Read and dump branch 0's MTRs */
|
|
edac_dbg(2, "Memory Technology Registers:\n");
|
|
edac_dbg(2, " Branch 0:\n");
|
|
for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
|
|
decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
|
|
|
|
pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
|
|
&pvt->b0_ambpresent0);
|
|
edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
|
|
pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
|
|
&pvt->b0_ambpresent1);
|
|
edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
|
|
|
|
/* Only if we have 2 branchs (4 channels) */
|
|
if (pvt->maxch < CHANNELS_PER_BRANCH) {
|
|
pvt->b1_ambpresent0 = 0;
|
|
pvt->b1_ambpresent1 = 0;
|
|
} else {
|
|
/* Read and dump branch 1's MTRs */
|
|
edac_dbg(2, " Branch 1:\n");
|
|
for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
|
|
decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
|
|
|
|
pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
|
|
&pvt->b1_ambpresent0);
|
|
edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
|
|
pvt->b1_ambpresent0);
|
|
pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
|
|
&pvt->b1_ambpresent1);
|
|
edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
|
|
pvt->b1_ambpresent1);
|
|
}
|
|
|
|
/* Go and determine the size of each DIMM and place in an
|
|
* orderly matrix */
|
|
calculate_dimm_size(pvt);
|
|
}
|
|
|
|
/*
|
|
* i5400_init_dimms Initialize the 'dimms' table within
|
|
* the mci control structure with the
|
|
* addressing of memory.
|
|
*
|
|
* return:
|
|
* 0 success
|
|
* 1 no actual memory found on this MC
|
|
*/
|
|
static int i5400_init_dimms(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5400_pvt *pvt;
|
|
struct dimm_info *dimm;
|
|
int ndimms, channel_count;
|
|
int max_dimms;
|
|
int mtr;
|
|
int size_mb;
|
|
int channel, slot;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
channel_count = pvt->maxch;
|
|
max_dimms = pvt->maxdimmperch;
|
|
|
|
ndimms = 0;
|
|
|
|
/*
|
|
* FIXME: remove pvt->dimm_info[slot][channel] and use the 3
|
|
* layers here.
|
|
*/
|
|
for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
|
|
channel++) {
|
|
for (slot = 0; slot < mci->layers[2].size; slot++) {
|
|
mtr = determine_mtr(pvt, slot, channel);
|
|
|
|
/* if no DIMMS on this slot, continue */
|
|
if (!MTR_DIMMS_PRESENT(mtr))
|
|
continue;
|
|
|
|
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
|
|
channel / 2, channel % 2, slot);
|
|
|
|
size_mb = pvt->dimm_info[slot][channel].megabytes;
|
|
|
|
edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
|
|
channel / 2, channel % 2, slot,
|
|
size_mb / 1000, size_mb % 1000);
|
|
|
|
dimm->nr_pages = size_mb << 8;
|
|
dimm->grain = 8;
|
|
dimm->dtype = MTR_DRAM_WIDTH(mtr) ? DEV_X8 : DEV_X4;
|
|
dimm->mtype = MEM_FB_DDR2;
|
|
/*
|
|
* The eccc mechanism is SDDC (aka SECC), with
|
|
* is similar to Chipkill.
|
|
*/
|
|
dimm->edac_mode = MTR_DRAM_WIDTH(mtr) ?
|
|
EDAC_S8ECD8ED : EDAC_S4ECD4ED;
|
|
ndimms++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When just one memory is provided, it should be at location (0,0,0).
|
|
* With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
|
|
*/
|
|
if (ndimms == 1)
|
|
mci->dimms[0]->edac_mode = EDAC_SECDED;
|
|
|
|
return (ndimms == 0);
|
|
}
|
|
|
|
/*
|
|
* i5400_enable_error_reporting
|
|
* Turn on the memory reporting features of the hardware
|
|
*/
|
|
static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5400_pvt *pvt;
|
|
u32 fbd_error_mask;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Read the FBD Error Mask Register */
|
|
pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
|
|
&fbd_error_mask);
|
|
|
|
/* Enable with a '0' */
|
|
fbd_error_mask &= ~(ENABLE_EMASK_ALL);
|
|
|
|
pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
|
|
fbd_error_mask);
|
|
}
|
|
|
|
/*
|
|
* i5400_probe1 Probe for ONE instance of device to see if it is
|
|
* present.
|
|
* return:
|
|
* 0 for FOUND a device
|
|
* < 0 for error code
|
|
*/
|
|
static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct i5400_pvt *pvt;
|
|
struct edac_mc_layer layers[3];
|
|
|
|
if (dev_idx >= ARRAY_SIZE(i5400_devs))
|
|
return -EINVAL;
|
|
|
|
edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
|
|
pdev->bus->number,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
|
|
|
|
/* We only are looking for func 0 of the set */
|
|
if (PCI_FUNC(pdev->devfn) != 0)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* allocate a new MC control structure
|
|
*
|
|
* This drivers uses the DIMM slot as "csrow" and the rest as "channel".
|
|
*/
|
|
layers[0].type = EDAC_MC_LAYER_BRANCH;
|
|
layers[0].size = MAX_BRANCHES;
|
|
layers[0].is_virt_csrow = false;
|
|
layers[1].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[1].size = CHANNELS_PER_BRANCH;
|
|
layers[1].is_virt_csrow = false;
|
|
layers[2].type = EDAC_MC_LAYER_SLOT;
|
|
layers[2].size = DIMMS_PER_CHANNEL;
|
|
layers[2].is_virt_csrow = true;
|
|
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
|
|
if (mci == NULL)
|
|
return -ENOMEM;
|
|
|
|
edac_dbg(0, "MC: mci = %p\n", mci);
|
|
|
|
mci->pdev = &pdev->dev; /* record ptr to the generic device */
|
|
|
|
pvt = mci->pvt_info;
|
|
pvt->system_address = pdev; /* Record this device in our private */
|
|
pvt->maxch = MAX_CHANNELS;
|
|
pvt->maxdimmperch = DIMMS_PER_CHANNEL;
|
|
|
|
/* 'get' the pci devices we want to reserve for our use */
|
|
if (i5400_get_devices(mci, dev_idx))
|
|
goto fail0;
|
|
|
|
/* Time to get serious */
|
|
i5400_get_mc_regs(mci); /* retrieve the hardware registers */
|
|
|
|
mci->mc_idx = 0;
|
|
mci->mtype_cap = MEM_FLAG_FB_DDR2;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
mci->mod_name = "i5400_edac.c";
|
|
mci->mod_ver = I5400_REVISION;
|
|
mci->ctl_name = i5400_devs[dev_idx].ctl_name;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
/* Set the function pointer to an actual operation function */
|
|
mci->edac_check = i5400_check_error;
|
|
|
|
/* initialize the MC control structure 'dimms' table
|
|
* with the mapping and control information */
|
|
if (i5400_init_dimms(mci)) {
|
|
edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
|
|
mci->edac_cap = EDAC_FLAG_NONE; /* no dimms found */
|
|
} else {
|
|
edac_dbg(1, "MC: Enable error reporting now\n");
|
|
i5400_enable_error_reporting(mci);
|
|
}
|
|
|
|
/* add this new MC control structure to EDAC's list of MCs */
|
|
if (edac_mc_add_mc(mci)) {
|
|
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
|
|
/* FIXME: perhaps some code should go here that disables error
|
|
* reporting if we just enabled it
|
|
*/
|
|
goto fail1;
|
|
}
|
|
|
|
i5400_clear_error(mci);
|
|
|
|
/* allocating generic PCI control info */
|
|
i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
|
|
if (!i5400_pci) {
|
|
printk(KERN_WARNING
|
|
"%s(): Unable to create PCI control\n",
|
|
__func__);
|
|
printk(KERN_WARNING
|
|
"%s(): PCI error report via EDAC not setup\n",
|
|
__func__);
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* Error exit unwinding stack */
|
|
fail1:
|
|
|
|
i5400_put_devices(mci);
|
|
|
|
fail0:
|
|
edac_mc_free(mci);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* i5400_init_one constructor for one instance of device
|
|
*
|
|
* returns:
|
|
* negative on error
|
|
* count (>= 0)
|
|
*/
|
|
static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
int rc;
|
|
|
|
edac_dbg(0, "MC:\n");
|
|
|
|
/* wake up device */
|
|
rc = pci_enable_device(pdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* now probe and enable the device */
|
|
return i5400_probe1(pdev, id->driver_data);
|
|
}
|
|
|
|
/*
|
|
* i5400_remove_one destructor for one instance of device
|
|
*
|
|
*/
|
|
static void i5400_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
if (i5400_pci)
|
|
edac_pci_release_generic_ctl(i5400_pci);
|
|
|
|
mci = edac_mc_del_mc(&pdev->dev);
|
|
if (!mci)
|
|
return;
|
|
|
|
/* retrieve references to resources, and free those resources */
|
|
i5400_put_devices(mci);
|
|
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
/*
|
|
* pci_device_id table for which devices we are looking for
|
|
*
|
|
* The "E500P" device is the first device supported.
|
|
*/
|
|
static const struct pci_device_id i5400_pci_tbl[] = {
|
|
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
|
|
|
|
/*
|
|
* i5400_driver pci_driver structure for this module
|
|
*
|
|
*/
|
|
static struct pci_driver i5400_driver = {
|
|
.name = "i5400_edac",
|
|
.probe = i5400_init_one,
|
|
.remove = i5400_remove_one,
|
|
.id_table = i5400_pci_tbl,
|
|
};
|
|
|
|
/*
|
|
* i5400_init Module entry function
|
|
* Try to initialize this module for its devices
|
|
*/
|
|
static int __init i5400_init(void)
|
|
{
|
|
int pci_rc;
|
|
|
|
edac_dbg(2, "MC:\n");
|
|
|
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
|
opstate_init();
|
|
|
|
pci_rc = pci_register_driver(&i5400_driver);
|
|
|
|
return (pci_rc < 0) ? pci_rc : 0;
|
|
}
|
|
|
|
/*
|
|
* i5400_exit() Module exit function
|
|
* Unregister the driver
|
|
*/
|
|
static void __exit i5400_exit(void)
|
|
{
|
|
edac_dbg(2, "MC:\n");
|
|
pci_unregister_driver(&i5400_driver);
|
|
}
|
|
|
|
module_init(i5400_init);
|
|
module_exit(i5400_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
|
|
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
|
|
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
|
|
MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
|
|
I5400_REVISION);
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|