mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 20:51:44 +00:00
f5c421d545
The comment in gf128mul_x8_ble() was copy-and-pasted from gf128mul.h and makes no sense in the new context. Remove it. Cc: Harsh Jain <harsh@chelsio.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
417 lines
12 KiB
C
417 lines
12 KiB
C
/* gf128mul.c - GF(2^128) multiplication functions
|
|
*
|
|
* Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
|
|
* Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
|
|
*
|
|
* Based on Dr Brian Gladman's (GPL'd) work published at
|
|
* http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
|
|
* See the original copyright notice below.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*/
|
|
|
|
/*
|
|
---------------------------------------------------------------------------
|
|
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
|
|
|
LICENSE TERMS
|
|
|
|
The free distribution and use of this software in both source and binary
|
|
form is allowed (with or without changes) provided that:
|
|
|
|
1. distributions of this source code include the above copyright
|
|
notice, this list of conditions and the following disclaimer;
|
|
|
|
2. distributions in binary form include the above copyright
|
|
notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other associated materials;
|
|
|
|
3. the copyright holder's name is not used to endorse products
|
|
built using this software without specific written permission.
|
|
|
|
ALTERNATIVELY, provided that this notice is retained in full, this product
|
|
may be distributed under the terms of the GNU General Public License (GPL),
|
|
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
|
|
|
DISCLAIMER
|
|
|
|
This software is provided 'as is' with no explicit or implied warranties
|
|
in respect of its properties, including, but not limited to, correctness
|
|
and/or fitness for purpose.
|
|
---------------------------------------------------------------------------
|
|
Issue 31/01/2006
|
|
|
|
This file provides fast multiplication in GF(2^128) as required by several
|
|
cryptographic authentication modes
|
|
*/
|
|
|
|
#include <crypto/gf128mul.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
|
|
#define gf128mul_dat(q) { \
|
|
q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
|
|
q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
|
|
q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
|
|
q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
|
|
q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
|
|
q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
|
|
q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
|
|
q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
|
|
q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
|
|
q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
|
|
q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
|
|
q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
|
|
q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
|
|
q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
|
|
q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
|
|
q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
|
|
q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
|
|
q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
|
|
q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
|
|
q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
|
|
q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
|
|
q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
|
|
q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
|
|
q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
|
|
q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
|
|
q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
|
|
q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
|
|
q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
|
|
q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
|
|
q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
|
|
q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
|
|
q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
|
|
}
|
|
|
|
/*
|
|
* Given a value i in 0..255 as the byte overflow when a field element
|
|
* in GF(2^128) is multiplied by x^8, the following macro returns the
|
|
* 16-bit value that must be XOR-ed into the low-degree end of the
|
|
* product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
|
|
*
|
|
* There are two versions of the macro, and hence two tables: one for
|
|
* the "be" convention where the highest-order bit is the coefficient of
|
|
* the highest-degree polynomial term, and one for the "le" convention
|
|
* where the highest-order bit is the coefficient of the lowest-degree
|
|
* polynomial term. In both cases the values are stored in CPU byte
|
|
* endianness such that the coefficients are ordered consistently across
|
|
* bytes, i.e. in the "be" table bits 15..0 of the stored value
|
|
* correspond to the coefficients of x^15..x^0, and in the "le" table
|
|
* bits 15..0 correspond to the coefficients of x^0..x^15.
|
|
*
|
|
* Therefore, provided that the appropriate byte endianness conversions
|
|
* are done by the multiplication functions (and these must be in place
|
|
* anyway to support both little endian and big endian CPUs), the "be"
|
|
* table can be used for multiplications of both "bbe" and "ble"
|
|
* elements, and the "le" table can be used for multiplications of both
|
|
* "lle" and "lbe" elements.
|
|
*/
|
|
|
|
#define xda_be(i) ( \
|
|
(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
|
|
(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
|
|
(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
|
|
(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
|
|
)
|
|
|
|
#define xda_le(i) ( \
|
|
(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
|
|
(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
|
|
(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
|
|
(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
|
|
)
|
|
|
|
static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
|
|
static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
|
|
|
|
/*
|
|
* The following functions multiply a field element by x^8 in
|
|
* the polynomial field representation. They use 64-bit word operations
|
|
* to gain speed but compensate for machine endianness and hence work
|
|
* correctly on both styles of machine.
|
|
*/
|
|
|
|
static void gf128mul_x8_lle(be128 *x)
|
|
{
|
|
u64 a = be64_to_cpu(x->a);
|
|
u64 b = be64_to_cpu(x->b);
|
|
u64 _tt = gf128mul_table_le[b & 0xff];
|
|
|
|
x->b = cpu_to_be64((b >> 8) | (a << 56));
|
|
x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
|
|
}
|
|
|
|
static void gf128mul_x8_bbe(be128 *x)
|
|
{
|
|
u64 a = be64_to_cpu(x->a);
|
|
u64 b = be64_to_cpu(x->b);
|
|
u64 _tt = gf128mul_table_be[a >> 56];
|
|
|
|
x->a = cpu_to_be64((a << 8) | (b >> 56));
|
|
x->b = cpu_to_be64((b << 8) ^ _tt);
|
|
}
|
|
|
|
void gf128mul_x8_ble(le128 *r, const le128 *x)
|
|
{
|
|
u64 a = le64_to_cpu(x->a);
|
|
u64 b = le64_to_cpu(x->b);
|
|
u64 _tt = gf128mul_table_be[a >> 56];
|
|
|
|
r->a = cpu_to_le64((a << 8) | (b >> 56));
|
|
r->b = cpu_to_le64((b << 8) ^ _tt);
|
|
}
|
|
EXPORT_SYMBOL(gf128mul_x8_ble);
|
|
|
|
void gf128mul_lle(be128 *r, const be128 *b)
|
|
{
|
|
be128 p[8];
|
|
int i;
|
|
|
|
p[0] = *r;
|
|
for (i = 0; i < 7; ++i)
|
|
gf128mul_x_lle(&p[i + 1], &p[i]);
|
|
|
|
memset(r, 0, sizeof(*r));
|
|
for (i = 0;;) {
|
|
u8 ch = ((u8 *)b)[15 - i];
|
|
|
|
if (ch & 0x80)
|
|
be128_xor(r, r, &p[0]);
|
|
if (ch & 0x40)
|
|
be128_xor(r, r, &p[1]);
|
|
if (ch & 0x20)
|
|
be128_xor(r, r, &p[2]);
|
|
if (ch & 0x10)
|
|
be128_xor(r, r, &p[3]);
|
|
if (ch & 0x08)
|
|
be128_xor(r, r, &p[4]);
|
|
if (ch & 0x04)
|
|
be128_xor(r, r, &p[5]);
|
|
if (ch & 0x02)
|
|
be128_xor(r, r, &p[6]);
|
|
if (ch & 0x01)
|
|
be128_xor(r, r, &p[7]);
|
|
|
|
if (++i >= 16)
|
|
break;
|
|
|
|
gf128mul_x8_lle(r);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(gf128mul_lle);
|
|
|
|
void gf128mul_bbe(be128 *r, const be128 *b)
|
|
{
|
|
be128 p[8];
|
|
int i;
|
|
|
|
p[0] = *r;
|
|
for (i = 0; i < 7; ++i)
|
|
gf128mul_x_bbe(&p[i + 1], &p[i]);
|
|
|
|
memset(r, 0, sizeof(*r));
|
|
for (i = 0;;) {
|
|
u8 ch = ((u8 *)b)[i];
|
|
|
|
if (ch & 0x80)
|
|
be128_xor(r, r, &p[7]);
|
|
if (ch & 0x40)
|
|
be128_xor(r, r, &p[6]);
|
|
if (ch & 0x20)
|
|
be128_xor(r, r, &p[5]);
|
|
if (ch & 0x10)
|
|
be128_xor(r, r, &p[4]);
|
|
if (ch & 0x08)
|
|
be128_xor(r, r, &p[3]);
|
|
if (ch & 0x04)
|
|
be128_xor(r, r, &p[2]);
|
|
if (ch & 0x02)
|
|
be128_xor(r, r, &p[1]);
|
|
if (ch & 0x01)
|
|
be128_xor(r, r, &p[0]);
|
|
|
|
if (++i >= 16)
|
|
break;
|
|
|
|
gf128mul_x8_bbe(r);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(gf128mul_bbe);
|
|
|
|
/* This version uses 64k bytes of table space.
|
|
A 16 byte buffer has to be multiplied by a 16 byte key
|
|
value in GF(2^128). If we consider a GF(2^128) value in
|
|
the buffer's lowest byte, we can construct a table of
|
|
the 256 16 byte values that result from the 256 values
|
|
of this byte. This requires 4096 bytes. But we also
|
|
need tables for each of the 16 higher bytes in the
|
|
buffer as well, which makes 64 kbytes in total.
|
|
*/
|
|
/* additional explanation
|
|
* t[0][BYTE] contains g*BYTE
|
|
* t[1][BYTE] contains g*x^8*BYTE
|
|
* ..
|
|
* t[15][BYTE] contains g*x^120*BYTE */
|
|
struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
|
|
{
|
|
struct gf128mul_64k *t;
|
|
int i, j, k;
|
|
|
|
t = kzalloc(sizeof(*t), GFP_KERNEL);
|
|
if (!t)
|
|
goto out;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
|
|
if (!t->t[i]) {
|
|
gf128mul_free_64k(t);
|
|
t = NULL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
t->t[0]->t[1] = *g;
|
|
for (j = 1; j <= 64; j <<= 1)
|
|
gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
|
|
|
|
for (i = 0;;) {
|
|
for (j = 2; j < 256; j += j)
|
|
for (k = 1; k < j; ++k)
|
|
be128_xor(&t->t[i]->t[j + k],
|
|
&t->t[i]->t[j], &t->t[i]->t[k]);
|
|
|
|
if (++i >= 16)
|
|
break;
|
|
|
|
for (j = 128; j > 0; j >>= 1) {
|
|
t->t[i]->t[j] = t->t[i - 1]->t[j];
|
|
gf128mul_x8_bbe(&t->t[i]->t[j]);
|
|
}
|
|
}
|
|
|
|
out:
|
|
return t;
|
|
}
|
|
EXPORT_SYMBOL(gf128mul_init_64k_bbe);
|
|
|
|
void gf128mul_free_64k(struct gf128mul_64k *t)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
kzfree(t->t[i]);
|
|
kzfree(t);
|
|
}
|
|
EXPORT_SYMBOL(gf128mul_free_64k);
|
|
|
|
void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
|
|
{
|
|
u8 *ap = (u8 *)a;
|
|
be128 r[1];
|
|
int i;
|
|
|
|
*r = t->t[0]->t[ap[15]];
|
|
for (i = 1; i < 16; ++i)
|
|
be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
|
|
*a = *r;
|
|
}
|
|
EXPORT_SYMBOL(gf128mul_64k_bbe);
|
|
|
|
/* This version uses 4k bytes of table space.
|
|
A 16 byte buffer has to be multiplied by a 16 byte key
|
|
value in GF(2^128). If we consider a GF(2^128) value in a
|
|
single byte, we can construct a table of the 256 16 byte
|
|
values that result from the 256 values of this byte.
|
|
This requires 4096 bytes. If we take the highest byte in
|
|
the buffer and use this table to get the result, we then
|
|
have to multiply by x^120 to get the final value. For the
|
|
next highest byte the result has to be multiplied by x^112
|
|
and so on. But we can do this by accumulating the result
|
|
in an accumulator starting with the result for the top
|
|
byte. We repeatedly multiply the accumulator value by
|
|
x^8 and then add in (i.e. xor) the 16 bytes of the next
|
|
lower byte in the buffer, stopping when we reach the
|
|
lowest byte. This requires a 4096 byte table.
|
|
*/
|
|
struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
|
|
{
|
|
struct gf128mul_4k *t;
|
|
int j, k;
|
|
|
|
t = kzalloc(sizeof(*t), GFP_KERNEL);
|
|
if (!t)
|
|
goto out;
|
|
|
|
t->t[128] = *g;
|
|
for (j = 64; j > 0; j >>= 1)
|
|
gf128mul_x_lle(&t->t[j], &t->t[j+j]);
|
|
|
|
for (j = 2; j < 256; j += j)
|
|
for (k = 1; k < j; ++k)
|
|
be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
|
|
|
|
out:
|
|
return t;
|
|
}
|
|
EXPORT_SYMBOL(gf128mul_init_4k_lle);
|
|
|
|
struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
|
|
{
|
|
struct gf128mul_4k *t;
|
|
int j, k;
|
|
|
|
t = kzalloc(sizeof(*t), GFP_KERNEL);
|
|
if (!t)
|
|
goto out;
|
|
|
|
t->t[1] = *g;
|
|
for (j = 1; j <= 64; j <<= 1)
|
|
gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
|
|
|
|
for (j = 2; j < 256; j += j)
|
|
for (k = 1; k < j; ++k)
|
|
be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
|
|
|
|
out:
|
|
return t;
|
|
}
|
|
EXPORT_SYMBOL(gf128mul_init_4k_bbe);
|
|
|
|
void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
|
|
{
|
|
u8 *ap = (u8 *)a;
|
|
be128 r[1];
|
|
int i = 15;
|
|
|
|
*r = t->t[ap[15]];
|
|
while (i--) {
|
|
gf128mul_x8_lle(r);
|
|
be128_xor(r, r, &t->t[ap[i]]);
|
|
}
|
|
*a = *r;
|
|
}
|
|
EXPORT_SYMBOL(gf128mul_4k_lle);
|
|
|
|
void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
|
|
{
|
|
u8 *ap = (u8 *)a;
|
|
be128 r[1];
|
|
int i = 0;
|
|
|
|
*r = t->t[ap[0]];
|
|
while (++i < 16) {
|
|
gf128mul_x8_bbe(r);
|
|
be128_xor(r, r, &t->t[ap[i]]);
|
|
}
|
|
*a = *r;
|
|
}
|
|
EXPORT_SYMBOL(gf128mul_4k_bbe);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
|