linux/arch/powerpc/kvm/e500mc.c
Thomas Gleixner d2912cb15b treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
Based on 2 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation #

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 4122 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19 17:09:55 +02:00

442 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2010,2012 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Varun Sethi, <varun.sethi@freescale.com>
*
* Description:
* This file is derived from arch/powerpc/kvm/e500.c,
* by Yu Liu <yu.liu@freescale.com>.
*/
#include <linux/kvm_host.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/kvm_ppc.h>
#include <asm/dbell.h>
#include "booke.h"
#include "e500.h"
void kvmppc_set_pending_interrupt(struct kvm_vcpu *vcpu, enum int_class type)
{
enum ppc_dbell dbell_type;
unsigned long tag;
switch (type) {
case INT_CLASS_NONCRIT:
dbell_type = PPC_G_DBELL;
break;
case INT_CLASS_CRIT:
dbell_type = PPC_G_DBELL_CRIT;
break;
case INT_CLASS_MC:
dbell_type = PPC_G_DBELL_MC;
break;
default:
WARN_ONCE(1, "%s: unknown int type %d\n", __func__, type);
return;
}
preempt_disable();
tag = PPC_DBELL_LPID(get_lpid(vcpu)) | vcpu->vcpu_id;
mb();
ppc_msgsnd(dbell_type, 0, tag);
preempt_enable();
}
/* gtlbe must not be mapped by more than one host tlb entry */
void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
unsigned int tid, ts;
gva_t eaddr;
u32 val;
unsigned long flags;
ts = get_tlb_ts(gtlbe);
tid = get_tlb_tid(gtlbe);
/* We search the host TLB to invalidate its shadow TLB entry */
val = (tid << 16) | ts;
eaddr = get_tlb_eaddr(gtlbe);
local_irq_save(flags);
mtspr(SPRN_MAS6, val);
mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(&vcpu_e500->vcpu));
asm volatile("tlbsx 0, %[eaddr]\n" : : [eaddr] "r" (eaddr));
val = mfspr(SPRN_MAS1);
if (val & MAS1_VALID) {
mtspr(SPRN_MAS1, val & ~MAS1_VALID);
asm volatile("tlbwe");
}
mtspr(SPRN_MAS5, 0);
/* NOTE: tlbsx also updates mas8, so clear it for host tlbwe */
mtspr(SPRN_MAS8, 0);
isync();
local_irq_restore(flags);
}
void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
{
unsigned long flags;
local_irq_save(flags);
mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(&vcpu_e500->vcpu));
asm volatile("tlbilxlpid");
mtspr(SPRN_MAS5, 0);
local_irq_restore(flags);
}
void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
{
vcpu->arch.pid = pid;
}
void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
{
}
/* We use two lpids per VM */
static DEFINE_PER_CPU(struct kvm_vcpu *[KVMPPC_NR_LPIDS], last_vcpu_of_lpid);
static void kvmppc_core_vcpu_load_e500mc(struct kvm_vcpu *vcpu, int cpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
kvmppc_booke_vcpu_load(vcpu, cpu);
mtspr(SPRN_LPID, get_lpid(vcpu));
mtspr(SPRN_EPCR, vcpu->arch.shadow_epcr);
mtspr(SPRN_GPIR, vcpu->vcpu_id);
mtspr(SPRN_MSRP, vcpu->arch.shadow_msrp);
vcpu->arch.eplc = EPC_EGS | (get_lpid(vcpu) << EPC_ELPID_SHIFT);
vcpu->arch.epsc = vcpu->arch.eplc;
mtspr(SPRN_EPLC, vcpu->arch.eplc);
mtspr(SPRN_EPSC, vcpu->arch.epsc);
mtspr(SPRN_GIVPR, vcpu->arch.ivpr);
mtspr(SPRN_GIVOR2, vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE]);
mtspr(SPRN_GIVOR8, vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL]);
mtspr(SPRN_GSPRG0, (unsigned long)vcpu->arch.shared->sprg0);
mtspr(SPRN_GSPRG1, (unsigned long)vcpu->arch.shared->sprg1);
mtspr(SPRN_GSPRG2, (unsigned long)vcpu->arch.shared->sprg2);
mtspr(SPRN_GSPRG3, (unsigned long)vcpu->arch.shared->sprg3);
mtspr(SPRN_GSRR0, vcpu->arch.shared->srr0);
mtspr(SPRN_GSRR1, vcpu->arch.shared->srr1);
mtspr(SPRN_GEPR, vcpu->arch.epr);
mtspr(SPRN_GDEAR, vcpu->arch.shared->dar);
mtspr(SPRN_GESR, vcpu->arch.shared->esr);
if (vcpu->arch.oldpir != mfspr(SPRN_PIR) ||
__this_cpu_read(last_vcpu_of_lpid[get_lpid(vcpu)]) != vcpu) {
kvmppc_e500_tlbil_all(vcpu_e500);
__this_cpu_write(last_vcpu_of_lpid[get_lpid(vcpu)], vcpu);
}
}
static void kvmppc_core_vcpu_put_e500mc(struct kvm_vcpu *vcpu)
{
vcpu->arch.eplc = mfspr(SPRN_EPLC);
vcpu->arch.epsc = mfspr(SPRN_EPSC);
vcpu->arch.shared->sprg0 = mfspr(SPRN_GSPRG0);
vcpu->arch.shared->sprg1 = mfspr(SPRN_GSPRG1);
vcpu->arch.shared->sprg2 = mfspr(SPRN_GSPRG2);
vcpu->arch.shared->sprg3 = mfspr(SPRN_GSPRG3);
vcpu->arch.shared->srr0 = mfspr(SPRN_GSRR0);
vcpu->arch.shared->srr1 = mfspr(SPRN_GSRR1);
vcpu->arch.epr = mfspr(SPRN_GEPR);
vcpu->arch.shared->dar = mfspr(SPRN_GDEAR);
vcpu->arch.shared->esr = mfspr(SPRN_GESR);
vcpu->arch.oldpir = mfspr(SPRN_PIR);
kvmppc_booke_vcpu_put(vcpu);
}
int kvmppc_core_check_processor_compat(void)
{
int r;
if (strcmp(cur_cpu_spec->cpu_name, "e500mc") == 0)
r = 0;
else if (strcmp(cur_cpu_spec->cpu_name, "e5500") == 0)
r = 0;
#ifdef CONFIG_ALTIVEC
/*
* Since guests have the privilege to enable AltiVec, we need AltiVec
* support in the host to save/restore their context.
* Don't use CPU_FTR_ALTIVEC to identify cores with AltiVec unit
* because it's cleared in the absence of CONFIG_ALTIVEC!
*/
else if (strcmp(cur_cpu_spec->cpu_name, "e6500") == 0)
r = 0;
#endif
else
r = -ENOTSUPP;
return r;
}
int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
vcpu->arch.shadow_epcr = SPRN_EPCR_DSIGS | SPRN_EPCR_DGTMI | \
SPRN_EPCR_DUVD;
#ifdef CONFIG_64BIT
vcpu->arch.shadow_epcr |= SPRN_EPCR_ICM;
#endif
vcpu->arch.shadow_msrp = MSRP_UCLEP | MSRP_PMMP;
vcpu->arch.pvr = mfspr(SPRN_PVR);
vcpu_e500->svr = mfspr(SPRN_SVR);
vcpu->arch.cpu_type = KVM_CPU_E500MC;
return 0;
}
static int kvmppc_core_get_sregs_e500mc(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_PM |
KVM_SREGS_E_PC;
sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
sregs->u.e.impl.fsl.features = 0;
sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
kvmppc_get_sregs_e500_tlb(vcpu, sregs);
sregs->u.e.ivor_high[3] =
vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
sregs->u.e.ivor_high[4] = vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL];
sregs->u.e.ivor_high[5] = vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL_CRIT];
return kvmppc_get_sregs_ivor(vcpu, sregs);
}
static int kvmppc_core_set_sregs_e500mc(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int ret;
if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
}
ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
if (ret < 0)
return ret;
if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
return 0;
if (sregs->u.e.features & KVM_SREGS_E_PM) {
vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
sregs->u.e.ivor_high[3];
}
if (sregs->u.e.features & KVM_SREGS_E_PC) {
vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL] =
sregs->u.e.ivor_high[4];
vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL_CRIT] =
sregs->u.e.ivor_high[5];
}
return kvmppc_set_sregs_ivor(vcpu, sregs);
}
static int kvmppc_get_one_reg_e500mc(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
switch (id) {
case KVM_REG_PPC_SPRG9:
*val = get_reg_val(id, vcpu->arch.sprg9);
break;
default:
r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
}
return r;
}
static int kvmppc_set_one_reg_e500mc(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
switch (id) {
case KVM_REG_PPC_SPRG9:
vcpu->arch.sprg9 = set_reg_val(id, *val);
break;
default:
r = kvmppc_set_one_reg_e500_tlb(vcpu, id, val);
}
return r;
}
static struct kvm_vcpu *kvmppc_core_vcpu_create_e500mc(struct kvm *kvm,
unsigned int id)
{
struct kvmppc_vcpu_e500 *vcpu_e500;
struct kvm_vcpu *vcpu;
int err;
vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu_e500) {
err = -ENOMEM;
goto out;
}
vcpu = &vcpu_e500->vcpu;
/* Invalid PIR value -- this LPID dosn't have valid state on any cpu */
vcpu->arch.oldpir = 0xffffffff;
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_vcpu;
err = kvmppc_e500_tlb_init(vcpu_e500);
if (err)
goto uninit_vcpu;
vcpu->arch.shared = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
if (!vcpu->arch.shared) {
err = -ENOMEM;
goto uninit_tlb;
}
return vcpu;
uninit_tlb:
kvmppc_e500_tlb_uninit(vcpu_e500);
uninit_vcpu:
kvm_vcpu_uninit(vcpu);
free_vcpu:
kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
out:
return ERR_PTR(err);
}
static void kvmppc_core_vcpu_free_e500mc(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
free_page((unsigned long)vcpu->arch.shared);
kvmppc_e500_tlb_uninit(vcpu_e500);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
}
static int kvmppc_core_init_vm_e500mc(struct kvm *kvm)
{
int lpid;
lpid = kvmppc_alloc_lpid();
if (lpid < 0)
return lpid;
/*
* Use two lpids per VM on cores with two threads like e6500. Use
* even numbers to speedup vcpu lpid computation with consecutive lpids
* per VM. vm1 will use lpids 2 and 3, vm2 lpids 4 and 5, and so on.
*/
if (threads_per_core == 2)
lpid <<= 1;
kvm->arch.lpid = lpid;
return 0;
}
static void kvmppc_core_destroy_vm_e500mc(struct kvm *kvm)
{
int lpid = kvm->arch.lpid;
if (threads_per_core == 2)
lpid >>= 1;
kvmppc_free_lpid(lpid);
}
static struct kvmppc_ops kvm_ops_e500mc = {
.get_sregs = kvmppc_core_get_sregs_e500mc,
.set_sregs = kvmppc_core_set_sregs_e500mc,
.get_one_reg = kvmppc_get_one_reg_e500mc,
.set_one_reg = kvmppc_set_one_reg_e500mc,
.vcpu_load = kvmppc_core_vcpu_load_e500mc,
.vcpu_put = kvmppc_core_vcpu_put_e500mc,
.vcpu_create = kvmppc_core_vcpu_create_e500mc,
.vcpu_free = kvmppc_core_vcpu_free_e500mc,
.mmu_destroy = kvmppc_mmu_destroy_e500,
.init_vm = kvmppc_core_init_vm_e500mc,
.destroy_vm = kvmppc_core_destroy_vm_e500mc,
.emulate_op = kvmppc_core_emulate_op_e500,
.emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
.emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
};
static int __init kvmppc_e500mc_init(void)
{
int r;
r = kvmppc_booke_init();
if (r)
goto err_out;
/*
* Use two lpids per VM on dual threaded processors like e6500
* to workarround the lack of tlb write conditional instruction.
* Expose half the number of available hardware lpids to the lpid
* allocator.
*/
kvmppc_init_lpid(KVMPPC_NR_LPIDS/threads_per_core);
kvmppc_claim_lpid(0); /* host */
r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
if (r)
goto err_out;
kvm_ops_e500mc.owner = THIS_MODULE;
kvmppc_pr_ops = &kvm_ops_e500mc;
err_out:
return r;
}
static void __exit kvmppc_e500mc_exit(void)
{
kvmppc_pr_ops = NULL;
kvmppc_booke_exit();
}
module_init(kvmppc_e500mc_init);
module_exit(kvmppc_e500mc_exit);
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");