mirror of
https://github.com/torvalds/linux.git
synced 2024-12-13 06:32:50 +00:00
f4510a2752
Now that CRTC's have a primary plane, there's no need to track the framebuffer in the CRTC. Replace all references to the CRTC fb with the primary plane's fb. This patch was generated by the Coccinelle semantic patching tool using the following rules: @@ struct drm_crtc C; @@ - (C).fb + C.primary->fb @@ struct drm_crtc *C; @@ - (C)->fb + C->primary->fb v3: Generate patch via coccinelle. Actual removal of crtc->fb has been moved to a subsequent patch. v2: Fixup several lingering crtc->fb instances that were missed in the first patch iteration. [Rob Clark] Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com>
1000 lines
26 KiB
C
1000 lines
26 KiB
C
/*
|
|
* Copyright © 2006-2011 Intel Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*/
|
|
|
|
#include <linux/i2c.h>
|
|
|
|
#include <drm/drmP.h>
|
|
#include "framebuffer.h"
|
|
#include "psb_drv.h"
|
|
#include "psb_intel_drv.h"
|
|
#include "psb_intel_reg.h"
|
|
#include "gma_display.h"
|
|
#include "power.h"
|
|
#include "cdv_device.h"
|
|
|
|
static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
|
|
struct drm_crtc *crtc, int target,
|
|
int refclk, struct gma_clock_t *best_clock);
|
|
|
|
|
|
#define CDV_LIMIT_SINGLE_LVDS_96 0
|
|
#define CDV_LIMIT_SINGLE_LVDS_100 1
|
|
#define CDV_LIMIT_DAC_HDMI_27 2
|
|
#define CDV_LIMIT_DAC_HDMI_96 3
|
|
#define CDV_LIMIT_DP_27 4
|
|
#define CDV_LIMIT_DP_100 5
|
|
|
|
static const struct gma_limit_t cdv_intel_limits[] = {
|
|
{ /* CDV_SINGLE_LVDS_96MHz */
|
|
.dot = {.min = 20000, .max = 115500},
|
|
.vco = {.min = 1800000, .max = 3600000},
|
|
.n = {.min = 2, .max = 6},
|
|
.m = {.min = 60, .max = 160},
|
|
.m1 = {.min = 0, .max = 0},
|
|
.m2 = {.min = 58, .max = 158},
|
|
.p = {.min = 28, .max = 140},
|
|
.p1 = {.min = 2, .max = 10},
|
|
.p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
|
|
.find_pll = gma_find_best_pll,
|
|
},
|
|
{ /* CDV_SINGLE_LVDS_100MHz */
|
|
.dot = {.min = 20000, .max = 115500},
|
|
.vco = {.min = 1800000, .max = 3600000},
|
|
.n = {.min = 2, .max = 6},
|
|
.m = {.min = 60, .max = 160},
|
|
.m1 = {.min = 0, .max = 0},
|
|
.m2 = {.min = 58, .max = 158},
|
|
.p = {.min = 28, .max = 140},
|
|
.p1 = {.min = 2, .max = 10},
|
|
/* The single-channel range is 25-112Mhz, and dual-channel
|
|
* is 80-224Mhz. Prefer single channel as much as possible.
|
|
*/
|
|
.p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
|
|
.find_pll = gma_find_best_pll,
|
|
},
|
|
{ /* CDV_DAC_HDMI_27MHz */
|
|
.dot = {.min = 20000, .max = 400000},
|
|
.vco = {.min = 1809000, .max = 3564000},
|
|
.n = {.min = 1, .max = 1},
|
|
.m = {.min = 67, .max = 132},
|
|
.m1 = {.min = 0, .max = 0},
|
|
.m2 = {.min = 65, .max = 130},
|
|
.p = {.min = 5, .max = 90},
|
|
.p1 = {.min = 1, .max = 9},
|
|
.p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
|
|
.find_pll = gma_find_best_pll,
|
|
},
|
|
{ /* CDV_DAC_HDMI_96MHz */
|
|
.dot = {.min = 20000, .max = 400000},
|
|
.vco = {.min = 1800000, .max = 3600000},
|
|
.n = {.min = 2, .max = 6},
|
|
.m = {.min = 60, .max = 160},
|
|
.m1 = {.min = 0, .max = 0},
|
|
.m2 = {.min = 58, .max = 158},
|
|
.p = {.min = 5, .max = 100},
|
|
.p1 = {.min = 1, .max = 10},
|
|
.p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
|
|
.find_pll = gma_find_best_pll,
|
|
},
|
|
{ /* CDV_DP_27MHz */
|
|
.dot = {.min = 160000, .max = 272000},
|
|
.vco = {.min = 1809000, .max = 3564000},
|
|
.n = {.min = 1, .max = 1},
|
|
.m = {.min = 67, .max = 132},
|
|
.m1 = {.min = 0, .max = 0},
|
|
.m2 = {.min = 65, .max = 130},
|
|
.p = {.min = 5, .max = 90},
|
|
.p1 = {.min = 1, .max = 9},
|
|
.p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
|
|
.find_pll = cdv_intel_find_dp_pll,
|
|
},
|
|
{ /* CDV_DP_100MHz */
|
|
.dot = {.min = 160000, .max = 272000},
|
|
.vco = {.min = 1800000, .max = 3600000},
|
|
.n = {.min = 2, .max = 6},
|
|
.m = {.min = 60, .max = 164},
|
|
.m1 = {.min = 0, .max = 0},
|
|
.m2 = {.min = 58, .max = 162},
|
|
.p = {.min = 5, .max = 100},
|
|
.p1 = {.min = 1, .max = 10},
|
|
.p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
|
|
.find_pll = cdv_intel_find_dp_pll,
|
|
}
|
|
};
|
|
|
|
#define _wait_for(COND, MS, W) ({ \
|
|
unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
|
|
int ret__ = 0; \
|
|
while (!(COND)) { \
|
|
if (time_after(jiffies, timeout__)) { \
|
|
ret__ = -ETIMEDOUT; \
|
|
break; \
|
|
} \
|
|
if (W && !in_dbg_master()) \
|
|
msleep(W); \
|
|
} \
|
|
ret__; \
|
|
})
|
|
|
|
#define wait_for(COND, MS) _wait_for(COND, MS, 1)
|
|
|
|
|
|
int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
|
|
{
|
|
int ret;
|
|
|
|
ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
|
|
if (ret) {
|
|
DRM_ERROR("timeout waiting for SB to idle before read\n");
|
|
return ret;
|
|
}
|
|
|
|
REG_WRITE(SB_ADDR, reg);
|
|
REG_WRITE(SB_PCKT,
|
|
SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
|
|
SET_FIELD(SB_DEST_DPLL, SB_DEST) |
|
|
SET_FIELD(0xf, SB_BYTE_ENABLE));
|
|
|
|
ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
|
|
if (ret) {
|
|
DRM_ERROR("timeout waiting for SB to idle after read\n");
|
|
return ret;
|
|
}
|
|
|
|
*val = REG_READ(SB_DATA);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
|
|
{
|
|
int ret;
|
|
static bool dpio_debug = true;
|
|
u32 temp;
|
|
|
|
if (dpio_debug) {
|
|
if (cdv_sb_read(dev, reg, &temp) == 0)
|
|
DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
|
|
DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
|
|
}
|
|
|
|
ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
|
|
if (ret) {
|
|
DRM_ERROR("timeout waiting for SB to idle before write\n");
|
|
return ret;
|
|
}
|
|
|
|
REG_WRITE(SB_ADDR, reg);
|
|
REG_WRITE(SB_DATA, val);
|
|
REG_WRITE(SB_PCKT,
|
|
SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
|
|
SET_FIELD(SB_DEST_DPLL, SB_DEST) |
|
|
SET_FIELD(0xf, SB_BYTE_ENABLE));
|
|
|
|
ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
|
|
if (ret) {
|
|
DRM_ERROR("timeout waiting for SB to idle after write\n");
|
|
return ret;
|
|
}
|
|
|
|
if (dpio_debug) {
|
|
if (cdv_sb_read(dev, reg, &temp) == 0)
|
|
DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Reset the DPIO configuration register. The BIOS does this at every
|
|
* mode set.
|
|
*/
|
|
void cdv_sb_reset(struct drm_device *dev)
|
|
{
|
|
|
|
REG_WRITE(DPIO_CFG, 0);
|
|
REG_READ(DPIO_CFG);
|
|
REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
|
|
}
|
|
|
|
/* Unlike most Intel display engines, on Cedarview the DPLL registers
|
|
* are behind this sideband bus. They must be programmed while the
|
|
* DPLL reference clock is on in the DPLL control register, but before
|
|
* the DPLL is enabled in the DPLL control register.
|
|
*/
|
|
static int
|
|
cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
|
|
struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
|
|
{
|
|
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
|
|
int pipe = gma_crtc->pipe;
|
|
u32 m, n_vco, p;
|
|
int ret = 0;
|
|
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
|
|
int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
|
|
u32 ref_value;
|
|
u32 lane_reg, lane_value;
|
|
|
|
cdv_sb_reset(dev);
|
|
|
|
REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
|
|
|
|
udelay(100);
|
|
|
|
/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
|
|
ref_value = 0x68A701;
|
|
|
|
cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
|
|
|
|
/* We don't know what the other fields of these regs are, so
|
|
* leave them in place.
|
|
*/
|
|
/*
|
|
* The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
|
|
* for the pipe A/B. Display spec 1.06 has wrong definition.
|
|
* Correct definition is like below:
|
|
*
|
|
* refclka mean use clock from same PLL
|
|
*
|
|
* if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
|
|
*
|
|
* if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
|
|
*
|
|
*/
|
|
ret = cdv_sb_read(dev, ref_sfr, &ref_value);
|
|
if (ret)
|
|
return ret;
|
|
ref_value &= ~(REF_CLK_MASK);
|
|
|
|
/* use DPLL_A for pipeB on CRT/HDMI */
|
|
if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
|
|
DRM_DEBUG_KMS("use DPLLA for pipe B\n");
|
|
ref_value |= REF_CLK_DPLLA;
|
|
} else {
|
|
DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
|
|
ref_value |= REF_CLK_DPLL;
|
|
}
|
|
ret = cdv_sb_write(dev, ref_sfr, ref_value);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cdv_sb_read(dev, SB_M(pipe), &m);
|
|
if (ret)
|
|
return ret;
|
|
m &= ~SB_M_DIVIDER_MASK;
|
|
m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
|
|
ret = cdv_sb_write(dev, SB_M(pipe), m);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Follow the BIOS to program the N_DIVIDER REG */
|
|
n_vco &= 0xFFFF;
|
|
n_vco |= 0x107;
|
|
n_vco &= ~(SB_N_VCO_SEL_MASK |
|
|
SB_N_DIVIDER_MASK |
|
|
SB_N_CB_TUNE_MASK);
|
|
|
|
n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
|
|
|
|
if (clock->vco < 2250000) {
|
|
n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
|
|
n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
|
|
} else if (clock->vco < 2750000) {
|
|
n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
|
|
n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
|
|
} else if (clock->vco < 3300000) {
|
|
n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
|
|
n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
|
|
} else {
|
|
n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
|
|
n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
|
|
}
|
|
|
|
ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cdv_sb_read(dev, SB_P(pipe), &p);
|
|
if (ret)
|
|
return ret;
|
|
p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
|
|
p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
|
|
switch (clock->p2) {
|
|
case 5:
|
|
p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
|
|
break;
|
|
case 10:
|
|
p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
|
|
break;
|
|
case 14:
|
|
p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
|
|
break;
|
|
case 7:
|
|
p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
|
|
break;
|
|
default:
|
|
DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
|
|
return -EINVAL;
|
|
}
|
|
ret = cdv_sb_write(dev, SB_P(pipe), p);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ddi_select) {
|
|
if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
|
|
lane_reg = PSB_LANE0;
|
|
cdv_sb_read(dev, lane_reg, &lane_value);
|
|
lane_value &= ~(LANE_PLL_MASK);
|
|
lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
|
|
cdv_sb_write(dev, lane_reg, lane_value);
|
|
|
|
lane_reg = PSB_LANE1;
|
|
cdv_sb_read(dev, lane_reg, &lane_value);
|
|
lane_value &= ~(LANE_PLL_MASK);
|
|
lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
|
|
cdv_sb_write(dev, lane_reg, lane_value);
|
|
} else {
|
|
lane_reg = PSB_LANE2;
|
|
cdv_sb_read(dev, lane_reg, &lane_value);
|
|
lane_value &= ~(LANE_PLL_MASK);
|
|
lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
|
|
cdv_sb_write(dev, lane_reg, lane_value);
|
|
|
|
lane_reg = PSB_LANE3;
|
|
cdv_sb_read(dev, lane_reg, &lane_value);
|
|
lane_value &= ~(LANE_PLL_MASK);
|
|
lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
|
|
cdv_sb_write(dev, lane_reg, lane_value);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
|
|
int refclk)
|
|
{
|
|
const struct gma_limit_t *limit;
|
|
if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
/*
|
|
* Now only single-channel LVDS is supported on CDV. If it is
|
|
* incorrect, please add the dual-channel LVDS.
|
|
*/
|
|
if (refclk == 96000)
|
|
limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
|
|
else
|
|
limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
|
|
} else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
|
|
gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
|
|
if (refclk == 27000)
|
|
limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
|
|
else
|
|
limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
|
|
} else {
|
|
if (refclk == 27000)
|
|
limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
|
|
else
|
|
limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
|
|
}
|
|
return limit;
|
|
}
|
|
|
|
/* m1 is reserved as 0 in CDV, n is a ring counter */
|
|
static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
|
|
{
|
|
clock->m = clock->m2 + 2;
|
|
clock->p = clock->p1 * clock->p2;
|
|
clock->vco = (refclk * clock->m) / clock->n;
|
|
clock->dot = clock->vco / clock->p;
|
|
}
|
|
|
|
static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
|
|
struct drm_crtc *crtc, int target,
|
|
int refclk,
|
|
struct gma_clock_t *best_clock)
|
|
{
|
|
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
|
|
struct gma_clock_t clock;
|
|
|
|
switch (refclk) {
|
|
case 27000:
|
|
if (target < 200000) {
|
|
clock.p1 = 2;
|
|
clock.p2 = 10;
|
|
clock.n = 1;
|
|
clock.m1 = 0;
|
|
clock.m2 = 118;
|
|
} else {
|
|
clock.p1 = 1;
|
|
clock.p2 = 10;
|
|
clock.n = 1;
|
|
clock.m1 = 0;
|
|
clock.m2 = 98;
|
|
}
|
|
break;
|
|
|
|
case 100000:
|
|
if (target < 200000) {
|
|
clock.p1 = 2;
|
|
clock.p2 = 10;
|
|
clock.n = 5;
|
|
clock.m1 = 0;
|
|
clock.m2 = 160;
|
|
} else {
|
|
clock.p1 = 1;
|
|
clock.p2 = 10;
|
|
clock.n = 5;
|
|
clock.m1 = 0;
|
|
clock.m2 = 133;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
gma_crtc->clock_funcs->clock(refclk, &clock);
|
|
memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
|
|
return true;
|
|
}
|
|
|
|
#define FIFO_PIPEA (1 << 0)
|
|
#define FIFO_PIPEB (1 << 1)
|
|
|
|
static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
struct gma_crtc *gma_crtc = NULL;
|
|
|
|
crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
gma_crtc = to_gma_crtc(crtc);
|
|
|
|
if (crtc->primary->fb == NULL || !gma_crtc->active)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void cdv_disable_sr(struct drm_device *dev)
|
|
{
|
|
if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
|
|
|
|
/* Disable self-refresh before adjust WM */
|
|
REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
|
|
REG_READ(FW_BLC_SELF);
|
|
|
|
gma_wait_for_vblank(dev);
|
|
|
|
/* Cedarview workaround to write ovelay plane, which force to leave
|
|
* MAX_FIFO state.
|
|
*/
|
|
REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
|
|
REG_READ(OV_OVADD);
|
|
|
|
gma_wait_for_vblank(dev);
|
|
}
|
|
|
|
}
|
|
|
|
void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
|
|
{
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
|
|
|
|
/* Is only one pipe enabled? */
|
|
if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
|
|
u32 fw;
|
|
|
|
fw = REG_READ(DSPFW1);
|
|
fw &= ~DSP_FIFO_SR_WM_MASK;
|
|
fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
|
|
fw &= ~CURSOR_B_FIFO_WM_MASK;
|
|
fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
|
|
REG_WRITE(DSPFW1, fw);
|
|
|
|
fw = REG_READ(DSPFW2);
|
|
fw &= ~CURSOR_A_FIFO_WM_MASK;
|
|
fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
|
|
fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
|
|
fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
|
|
REG_WRITE(DSPFW2, fw);
|
|
|
|
REG_WRITE(DSPFW3, 0x36000000);
|
|
|
|
/* ignore FW4 */
|
|
|
|
/* Is pipe b lvds ? */
|
|
if (gma_crtc->pipe == 1 &&
|
|
gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
REG_WRITE(DSPFW5, 0x00040330);
|
|
} else {
|
|
fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
|
|
(4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
|
|
(3 << CURSOR_B_FIFO_WM1_SHIFT) |
|
|
(4 << CURSOR_FIFO_SR_WM1_SHIFT);
|
|
REG_WRITE(DSPFW5, fw);
|
|
}
|
|
|
|
REG_WRITE(DSPFW6, 0x10);
|
|
|
|
gma_wait_for_vblank(dev);
|
|
|
|
/* enable self-refresh for single pipe active */
|
|
REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
|
|
REG_READ(FW_BLC_SELF);
|
|
gma_wait_for_vblank(dev);
|
|
|
|
} else {
|
|
|
|
/* HW team suggested values... */
|
|
REG_WRITE(DSPFW1, 0x3f880808);
|
|
REG_WRITE(DSPFW2, 0x0b020202);
|
|
REG_WRITE(DSPFW3, 0x24000000);
|
|
REG_WRITE(DSPFW4, 0x08030202);
|
|
REG_WRITE(DSPFW5, 0x01010101);
|
|
REG_WRITE(DSPFW6, 0x1d0);
|
|
|
|
gma_wait_for_vblank(dev);
|
|
|
|
dev_priv->ops->disable_sr(dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return the pipe currently connected to the panel fitter,
|
|
* or -1 if the panel fitter is not present or not in use
|
|
*/
|
|
static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
|
|
{
|
|
u32 pfit_control;
|
|
|
|
pfit_control = REG_READ(PFIT_CONTROL);
|
|
|
|
/* See if the panel fitter is in use */
|
|
if ((pfit_control & PFIT_ENABLE) == 0)
|
|
return -1;
|
|
return (pfit_control >> 29) & 0x3;
|
|
}
|
|
|
|
static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode,
|
|
int x, int y,
|
|
struct drm_framebuffer *old_fb)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
|
|
int pipe = gma_crtc->pipe;
|
|
const struct psb_offset *map = &dev_priv->regmap[pipe];
|
|
int refclk;
|
|
struct gma_clock_t clock;
|
|
u32 dpll = 0, dspcntr, pipeconf;
|
|
bool ok;
|
|
bool is_crt = false, is_lvds = false, is_tv = false;
|
|
bool is_hdmi = false, is_dp = false;
|
|
struct drm_mode_config *mode_config = &dev->mode_config;
|
|
struct drm_connector *connector;
|
|
const struct gma_limit_t *limit;
|
|
u32 ddi_select = 0;
|
|
bool is_edp = false;
|
|
|
|
list_for_each_entry(connector, &mode_config->connector_list, head) {
|
|
struct gma_encoder *gma_encoder =
|
|
gma_attached_encoder(connector);
|
|
|
|
if (!connector->encoder
|
|
|| connector->encoder->crtc != crtc)
|
|
continue;
|
|
|
|
ddi_select = gma_encoder->ddi_select;
|
|
switch (gma_encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
is_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_TVOUT:
|
|
is_tv = true;
|
|
break;
|
|
case INTEL_OUTPUT_ANALOG:
|
|
is_crt = true;
|
|
break;
|
|
case INTEL_OUTPUT_HDMI:
|
|
is_hdmi = true;
|
|
break;
|
|
case INTEL_OUTPUT_DISPLAYPORT:
|
|
is_dp = true;
|
|
break;
|
|
case INTEL_OUTPUT_EDP:
|
|
is_edp = true;
|
|
break;
|
|
default:
|
|
DRM_ERROR("invalid output type.\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (dev_priv->dplla_96mhz)
|
|
/* low-end sku, 96/100 mhz */
|
|
refclk = 96000;
|
|
else
|
|
/* high-end sku, 27/100 mhz */
|
|
refclk = 27000;
|
|
if (is_dp || is_edp) {
|
|
/*
|
|
* Based on the spec the low-end SKU has only CRT/LVDS. So it is
|
|
* unnecessary to consider it for DP/eDP.
|
|
* On the high-end SKU, it will use the 27/100M reference clk
|
|
* for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
|
|
* it will be 27MHz. From the VBIOS code it seems that the pipe A choose
|
|
* 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
|
|
*/
|
|
if (pipe == 0)
|
|
refclk = 27000;
|
|
else
|
|
refclk = 100000;
|
|
}
|
|
|
|
if (is_lvds && dev_priv->lvds_use_ssc) {
|
|
refclk = dev_priv->lvds_ssc_freq * 1000;
|
|
DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
|
|
}
|
|
|
|
drm_mode_debug_printmodeline(adjusted_mode);
|
|
|
|
limit = gma_crtc->clock_funcs->limit(crtc, refclk);
|
|
|
|
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
|
|
&clock);
|
|
if (!ok) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
|
|
adjusted_mode->clock, clock.dot);
|
|
return 0;
|
|
}
|
|
|
|
dpll = DPLL_VGA_MODE_DIS;
|
|
if (is_tv) {
|
|
/* XXX: just matching BIOS for now */
|
|
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
|
|
dpll |= 3;
|
|
}
|
|
/* dpll |= PLL_REF_INPUT_DREFCLK; */
|
|
|
|
if (is_dp || is_edp) {
|
|
cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
|
|
} else {
|
|
REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
|
|
REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
|
|
REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
|
|
REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
|
|
}
|
|
|
|
dpll |= DPLL_SYNCLOCK_ENABLE;
|
|
/* if (is_lvds)
|
|
dpll |= DPLLB_MODE_LVDS;
|
|
else
|
|
dpll |= DPLLB_MODE_DAC_SERIAL; */
|
|
/* dpll |= (2 << 11); */
|
|
|
|
/* setup pipeconf */
|
|
pipeconf = REG_READ(map->conf);
|
|
|
|
pipeconf &= ~(PIPE_BPC_MASK);
|
|
if (is_edp) {
|
|
switch (dev_priv->edp.bpp) {
|
|
case 24:
|
|
pipeconf |= PIPE_8BPC;
|
|
break;
|
|
case 18:
|
|
pipeconf |= PIPE_6BPC;
|
|
break;
|
|
case 30:
|
|
pipeconf |= PIPE_10BPC;
|
|
break;
|
|
default:
|
|
pipeconf |= PIPE_8BPC;
|
|
break;
|
|
}
|
|
} else if (is_lvds) {
|
|
/* the BPC will be 6 if it is 18-bit LVDS panel */
|
|
if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
|
|
pipeconf |= PIPE_8BPC;
|
|
else
|
|
pipeconf |= PIPE_6BPC;
|
|
} else
|
|
pipeconf |= PIPE_8BPC;
|
|
|
|
/* Set up the display plane register */
|
|
dspcntr = DISPPLANE_GAMMA_ENABLE;
|
|
|
|
if (pipe == 0)
|
|
dspcntr |= DISPPLANE_SEL_PIPE_A;
|
|
else
|
|
dspcntr |= DISPPLANE_SEL_PIPE_B;
|
|
|
|
dspcntr |= DISPLAY_PLANE_ENABLE;
|
|
pipeconf |= PIPEACONF_ENABLE;
|
|
|
|
REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
|
|
REG_READ(map->dpll);
|
|
|
|
cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
|
|
|
|
udelay(150);
|
|
|
|
|
|
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
|
|
* This is an exception to the general rule that mode_set doesn't turn
|
|
* things on.
|
|
*/
|
|
if (is_lvds) {
|
|
u32 lvds = REG_READ(LVDS);
|
|
|
|
lvds |=
|
|
LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
|
|
LVDS_PIPEB_SELECT;
|
|
/* Set the B0-B3 data pairs corresponding to
|
|
* whether we're going to
|
|
* set the DPLLs for dual-channel mode or not.
|
|
*/
|
|
if (clock.p2 == 7)
|
|
lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
|
|
else
|
|
lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
|
|
|
|
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
|
|
* appropriately here, but we need to look more
|
|
* thoroughly into how panels behave in the two modes.
|
|
*/
|
|
|
|
REG_WRITE(LVDS, lvds);
|
|
REG_READ(LVDS);
|
|
}
|
|
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
|
|
/* Disable the panel fitter if it was on our pipe */
|
|
if (cdv_intel_panel_fitter_pipe(dev) == pipe)
|
|
REG_WRITE(PFIT_CONTROL, 0);
|
|
|
|
DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
|
|
drm_mode_debug_printmodeline(mode);
|
|
|
|
REG_WRITE(map->dpll,
|
|
(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
|
|
REG_READ(map->dpll);
|
|
/* Wait for the clocks to stabilize. */
|
|
udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */
|
|
|
|
if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
|
|
dev_err(dev->dev, "Failed to get DPLL lock\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
{
|
|
int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
|
|
REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
|
|
}
|
|
|
|
REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
|
|
((adjusted_mode->crtc_htotal - 1) << 16));
|
|
REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
|
|
((adjusted_mode->crtc_hblank_end - 1) << 16));
|
|
REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
|
|
((adjusted_mode->crtc_hsync_end - 1) << 16));
|
|
REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
|
|
((adjusted_mode->crtc_vtotal - 1) << 16));
|
|
REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
|
|
((adjusted_mode->crtc_vblank_end - 1) << 16));
|
|
REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
|
|
((adjusted_mode->crtc_vsync_end - 1) << 16));
|
|
/* pipesrc and dspsize control the size that is scaled from,
|
|
* which should always be the user's requested size.
|
|
*/
|
|
REG_WRITE(map->size,
|
|
((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
|
|
REG_WRITE(map->pos, 0);
|
|
REG_WRITE(map->src,
|
|
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
|
|
REG_WRITE(map->conf, pipeconf);
|
|
REG_READ(map->conf);
|
|
|
|
gma_wait_for_vblank(dev);
|
|
|
|
REG_WRITE(map->cntr, dspcntr);
|
|
|
|
/* Flush the plane changes */
|
|
{
|
|
struct drm_crtc_helper_funcs *crtc_funcs =
|
|
crtc->helper_private;
|
|
crtc_funcs->mode_set_base(crtc, x, y, old_fb);
|
|
}
|
|
|
|
gma_wait_for_vblank(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
|
|
|
|
/* FIXME: why are we using this, should it be cdv_ in this tree ? */
|
|
|
|
static void i8xx_clock(int refclk, struct gma_clock_t *clock)
|
|
{
|
|
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
|
|
clock->p = clock->p1 * clock->p2;
|
|
clock->vco = refclk * clock->m / (clock->n + 2);
|
|
clock->dot = clock->vco / clock->p;
|
|
}
|
|
|
|
/* Returns the clock of the currently programmed mode of the given pipe. */
|
|
static int cdv_intel_crtc_clock_get(struct drm_device *dev,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
|
|
int pipe = gma_crtc->pipe;
|
|
const struct psb_offset *map = &dev_priv->regmap[pipe];
|
|
u32 dpll;
|
|
u32 fp;
|
|
struct gma_clock_t clock;
|
|
bool is_lvds;
|
|
struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
|
|
|
|
if (gma_power_begin(dev, false)) {
|
|
dpll = REG_READ(map->dpll);
|
|
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
|
|
fp = REG_READ(map->fp0);
|
|
else
|
|
fp = REG_READ(map->fp1);
|
|
is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
|
|
gma_power_end(dev);
|
|
} else {
|
|
dpll = p->dpll;
|
|
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
|
|
fp = p->fp0;
|
|
else
|
|
fp = p->fp1;
|
|
|
|
is_lvds = (pipe == 1) &&
|
|
(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
|
|
}
|
|
|
|
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
|
|
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
|
|
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
|
|
|
|
if (is_lvds) {
|
|
clock.p1 =
|
|
ffs((dpll &
|
|
DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT);
|
|
if (clock.p1 == 0) {
|
|
clock.p1 = 4;
|
|
dev_err(dev->dev, "PLL %d\n", dpll);
|
|
}
|
|
clock.p2 = 14;
|
|
|
|
if ((dpll & PLL_REF_INPUT_MASK) ==
|
|
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
|
|
/* XXX: might not be 66MHz */
|
|
i8xx_clock(66000, &clock);
|
|
} else
|
|
i8xx_clock(48000, &clock);
|
|
} else {
|
|
if (dpll & PLL_P1_DIVIDE_BY_TWO)
|
|
clock.p1 = 2;
|
|
else {
|
|
clock.p1 =
|
|
((dpll &
|
|
DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
|
|
}
|
|
if (dpll & PLL_P2_DIVIDE_BY_4)
|
|
clock.p2 = 4;
|
|
else
|
|
clock.p2 = 2;
|
|
|
|
i8xx_clock(48000, &clock);
|
|
}
|
|
|
|
/* XXX: It would be nice to validate the clocks, but we can't reuse
|
|
* i830PllIsValid() because it relies on the xf86_config connector
|
|
* configuration being accurate, which it isn't necessarily.
|
|
*/
|
|
|
|
return clock.dot;
|
|
}
|
|
|
|
/** Returns the currently programmed mode of the given pipe. */
|
|
struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
|
|
int pipe = gma_crtc->pipe;
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
|
|
const struct psb_offset *map = &dev_priv->regmap[pipe];
|
|
struct drm_display_mode *mode;
|
|
int htot;
|
|
int hsync;
|
|
int vtot;
|
|
int vsync;
|
|
|
|
if (gma_power_begin(dev, false)) {
|
|
htot = REG_READ(map->htotal);
|
|
hsync = REG_READ(map->hsync);
|
|
vtot = REG_READ(map->vtotal);
|
|
vsync = REG_READ(map->vsync);
|
|
gma_power_end(dev);
|
|
} else {
|
|
htot = p->htotal;
|
|
hsync = p->hsync;
|
|
vtot = p->vtotal;
|
|
vsync = p->vsync;
|
|
}
|
|
|
|
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
|
|
if (!mode)
|
|
return NULL;
|
|
|
|
mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
|
|
mode->hdisplay = (htot & 0xffff) + 1;
|
|
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
|
|
mode->hsync_start = (hsync & 0xffff) + 1;
|
|
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
|
|
mode->vdisplay = (vtot & 0xffff) + 1;
|
|
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
|
|
mode->vsync_start = (vsync & 0xffff) + 1;
|
|
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
|
|
|
|
drm_mode_set_name(mode);
|
|
drm_mode_set_crtcinfo(mode, 0);
|
|
|
|
return mode;
|
|
}
|
|
|
|
const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
|
|
.dpms = gma_crtc_dpms,
|
|
.mode_fixup = gma_crtc_mode_fixup,
|
|
.mode_set = cdv_intel_crtc_mode_set,
|
|
.mode_set_base = gma_pipe_set_base,
|
|
.prepare = gma_crtc_prepare,
|
|
.commit = gma_crtc_commit,
|
|
.disable = gma_crtc_disable,
|
|
};
|
|
|
|
const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
|
|
.save = gma_crtc_save,
|
|
.restore = gma_crtc_restore,
|
|
.cursor_set = gma_crtc_cursor_set,
|
|
.cursor_move = gma_crtc_cursor_move,
|
|
.gamma_set = gma_crtc_gamma_set,
|
|
.set_config = gma_crtc_set_config,
|
|
.destroy = gma_crtc_destroy,
|
|
};
|
|
|
|
const struct gma_clock_funcs cdv_clock_funcs = {
|
|
.clock = cdv_intel_clock,
|
|
.limit = cdv_intel_limit,
|
|
.pll_is_valid = gma_pll_is_valid,
|
|
};
|