mirror of
https://github.com/torvalds/linux.git
synced 2024-12-26 12:52:30 +00:00
d70b3ef54c
Pull x86 core updates from Ingo Molnar: "There were so many changes in the x86/asm, x86/apic and x86/mm topics in this cycle that the topical separation of -tip broke down somewhat - so the result is a more traditional architecture pull request, collected into the 'x86/core' topic. The topics were still maintained separately as far as possible, so bisectability and conceptual separation should still be pretty good - but there were a handful of merge points to avoid excessive dependencies (and conflicts) that would have been poorly tested in the end. The next cycle will hopefully be much more quiet (or at least will have fewer dependencies). The main changes in this cycle were: * x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas Gleixner) - This is the second and most intrusive part of changes to the x86 interrupt handling - full conversion to hierarchical interrupt domains: [IOAPIC domain] ----- | [MSI domain] --------[Remapping domain] ----- [ Vector domain ] | (optional) | [HPET MSI domain] ----- | | [DMAR domain] ----------------------------- | [Legacy domain] ----------------------------- This now reflects the actual hardware and allowed us to distangle the domain specific code from the underlying parent domain, which can be optional in the case of interrupt remapping. It's a clear separation of functionality and removes quite some duct tape constructs which plugged the remap code between ioapic/msi/hpet and the vector management. - Intel IOMMU IRQ remapping enhancements, to allow direct interrupt injection into guests (Feng Wu) * x86/asm changes: - Tons of cleanups and small speedups, micro-optimizations. This is in preparation to move a good chunk of the low level entry code from assembly to C code (Denys Vlasenko, Andy Lutomirski, Brian Gerst) - Moved all system entry related code to a new home under arch/x86/entry/ (Ingo Molnar) - Removal of the fragile and ugly CFI dwarf debuginfo annotations. Conversion to C will reintroduce many of them - but meanwhile they are only getting in the way, and the upstream kernel does not rely on them (Ingo Molnar) - NOP handling refinements. (Borislav Petkov) * x86/mm changes: - Big PAT and MTRR rework: making the code more robust and preparing to phase out exposing direct MTRR interfaces to drivers - in favor of using PAT driven interfaces (Toshi Kani, Luis R Rodriguez, Borislav Petkov) - New ioremap_wt()/set_memory_wt() interfaces to support Write-Through cached memory mappings. This is especially important for good performance on NVDIMM hardware (Toshi Kani) * x86/ras changes: - Add support for deferred errors on AMD (Aravind Gopalakrishnan) This is an important RAS feature which adds hardware support for poisoned data. That means roughly that the hardware marks data which it has detected as corrupted but wasn't able to correct, as poisoned data and raises an APIC interrupt to signal that in the form of a deferred error. It is the OS's responsibility then to take proper recovery action and thus prolonge system lifetime as far as possible. - Add support for Intel "Local MCE"s: upcoming CPUs will support CPU-local MCE interrupts, as opposed to the traditional system- wide broadcasted MCE interrupts (Ashok Raj) - Misc cleanups (Borislav Petkov) * x86/platform changes: - Intel Atom SoC updates ... and lots of other cleanups, fixlets and other changes - see the shortlog and the Git log for details" * 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits) x86/hpet: Use proper hpet device number for MSI allocation x86/hpet: Check for irq==0 when allocating hpet MSI interrupts x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail genirq: Prevent crash in irq_move_irq() genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain iommu, x86: Properly handle posted interrupts for IOMMU hotplug iommu, x86: Provide irq_remapping_cap() interface iommu, x86: Setup Posted-Interrupts capability for Intel iommu iommu, x86: Add cap_pi_support() to detect VT-d PI capability iommu, x86: Avoid migrating VT-d posted interrupts iommu, x86: Save the mode (posted or remapped) of an IRTE iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip iommu: dmar: Provide helper to copy shared irte fields iommu: dmar: Extend struct irte for VT-d Posted-Interrupts iommu: Add new member capability to struct irq_remap_ops x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry() ...
2596 lines
60 KiB
C
2596 lines
60 KiB
C
/*
|
|
* Machine check handler.
|
|
*
|
|
* K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
|
|
* Rest from unknown author(s).
|
|
* 2004 Andi Kleen. Rewrote most of it.
|
|
* Copyright 2008 Intel Corporation
|
|
* Author: Andi Kleen
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/thread_info.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/string.h>
|
|
#include <linux/device.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/export.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/msr.h>
|
|
|
|
#include "mce-internal.h"
|
|
|
|
static DEFINE_MUTEX(mce_chrdev_read_mutex);
|
|
|
|
#define rcu_dereference_check_mce(p) \
|
|
({ \
|
|
rcu_lockdep_assert(rcu_read_lock_sched_held() || \
|
|
lockdep_is_held(&mce_chrdev_read_mutex), \
|
|
"suspicious rcu_dereference_check_mce() usage"); \
|
|
smp_load_acquire(&(p)); \
|
|
})
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/mce.h>
|
|
|
|
#define SPINUNIT 100 /* 100ns */
|
|
|
|
DEFINE_PER_CPU(unsigned, mce_exception_count);
|
|
|
|
struct mce_bank *mce_banks __read_mostly;
|
|
struct mce_vendor_flags mce_flags __read_mostly;
|
|
|
|
struct mca_config mca_cfg __read_mostly = {
|
|
.bootlog = -1,
|
|
/*
|
|
* Tolerant levels:
|
|
* 0: always panic on uncorrected errors, log corrected errors
|
|
* 1: panic or SIGBUS on uncorrected errors, log corrected errors
|
|
* 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
|
|
* 3: never panic or SIGBUS, log all errors (for testing only)
|
|
*/
|
|
.tolerant = 1,
|
|
.monarch_timeout = -1
|
|
};
|
|
|
|
/* User mode helper program triggered by machine check event */
|
|
static unsigned long mce_need_notify;
|
|
static char mce_helper[128];
|
|
static char *mce_helper_argv[2] = { mce_helper, NULL };
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
|
|
|
|
static DEFINE_PER_CPU(struct mce, mces_seen);
|
|
static int cpu_missing;
|
|
|
|
/*
|
|
* MCA banks polled by the period polling timer for corrected events.
|
|
* With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
|
|
*/
|
|
DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
|
|
[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
|
|
};
|
|
|
|
/*
|
|
* MCA banks controlled through firmware first for corrected errors.
|
|
* This is a global list of banks for which we won't enable CMCI and we
|
|
* won't poll. Firmware controls these banks and is responsible for
|
|
* reporting corrected errors through GHES. Uncorrected/recoverable
|
|
* errors are still notified through a machine check.
|
|
*/
|
|
mce_banks_t mce_banks_ce_disabled;
|
|
|
|
static DEFINE_PER_CPU(struct work_struct, mce_work);
|
|
|
|
static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
|
|
|
|
/*
|
|
* CPU/chipset specific EDAC code can register a notifier call here to print
|
|
* MCE errors in a human-readable form.
|
|
*/
|
|
static ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
|
|
|
|
/* Do initial initialization of a struct mce */
|
|
void mce_setup(struct mce *m)
|
|
{
|
|
memset(m, 0, sizeof(struct mce));
|
|
m->cpu = m->extcpu = smp_processor_id();
|
|
rdtscll(m->tsc);
|
|
/* We hope get_seconds stays lockless */
|
|
m->time = get_seconds();
|
|
m->cpuvendor = boot_cpu_data.x86_vendor;
|
|
m->cpuid = cpuid_eax(1);
|
|
m->socketid = cpu_data(m->extcpu).phys_proc_id;
|
|
m->apicid = cpu_data(m->extcpu).initial_apicid;
|
|
rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
|
|
}
|
|
|
|
DEFINE_PER_CPU(struct mce, injectm);
|
|
EXPORT_PER_CPU_SYMBOL_GPL(injectm);
|
|
|
|
/*
|
|
* Lockless MCE logging infrastructure.
|
|
* This avoids deadlocks on printk locks without having to break locks. Also
|
|
* separate MCEs from kernel messages to avoid bogus bug reports.
|
|
*/
|
|
|
|
static struct mce_log mcelog = {
|
|
.signature = MCE_LOG_SIGNATURE,
|
|
.len = MCE_LOG_LEN,
|
|
.recordlen = sizeof(struct mce),
|
|
};
|
|
|
|
void mce_log(struct mce *mce)
|
|
{
|
|
unsigned next, entry;
|
|
|
|
/* Emit the trace record: */
|
|
trace_mce_record(mce);
|
|
|
|
atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
|
|
|
|
mce->finished = 0;
|
|
wmb();
|
|
for (;;) {
|
|
entry = rcu_dereference_check_mce(mcelog.next);
|
|
for (;;) {
|
|
|
|
/*
|
|
* When the buffer fills up discard new entries.
|
|
* Assume that the earlier errors are the more
|
|
* interesting ones:
|
|
*/
|
|
if (entry >= MCE_LOG_LEN) {
|
|
set_bit(MCE_OVERFLOW,
|
|
(unsigned long *)&mcelog.flags);
|
|
return;
|
|
}
|
|
/* Old left over entry. Skip: */
|
|
if (mcelog.entry[entry].finished) {
|
|
entry++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
smp_rmb();
|
|
next = entry + 1;
|
|
if (cmpxchg(&mcelog.next, entry, next) == entry)
|
|
break;
|
|
}
|
|
memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
|
|
wmb();
|
|
mcelog.entry[entry].finished = 1;
|
|
wmb();
|
|
|
|
mce->finished = 1;
|
|
set_bit(0, &mce_need_notify);
|
|
}
|
|
|
|
static void drain_mcelog_buffer(void)
|
|
{
|
|
unsigned int next, i, prev = 0;
|
|
|
|
next = ACCESS_ONCE(mcelog.next);
|
|
|
|
do {
|
|
struct mce *m;
|
|
|
|
/* drain what was logged during boot */
|
|
for (i = prev; i < next; i++) {
|
|
unsigned long start = jiffies;
|
|
unsigned retries = 1;
|
|
|
|
m = &mcelog.entry[i];
|
|
|
|
while (!m->finished) {
|
|
if (time_after_eq(jiffies, start + 2*retries))
|
|
retries++;
|
|
|
|
cpu_relax();
|
|
|
|
if (!m->finished && retries >= 4) {
|
|
pr_err("skipping error being logged currently!\n");
|
|
break;
|
|
}
|
|
}
|
|
smp_rmb();
|
|
atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
|
|
}
|
|
|
|
memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
|
|
prev = next;
|
|
next = cmpxchg(&mcelog.next, prev, 0);
|
|
} while (next != prev);
|
|
}
|
|
|
|
|
|
void mce_register_decode_chain(struct notifier_block *nb)
|
|
{
|
|
atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
|
|
drain_mcelog_buffer();
|
|
}
|
|
EXPORT_SYMBOL_GPL(mce_register_decode_chain);
|
|
|
|
void mce_unregister_decode_chain(struct notifier_block *nb)
|
|
{
|
|
atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
|
|
|
|
static void print_mce(struct mce *m)
|
|
{
|
|
int ret = 0;
|
|
|
|
pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
|
|
m->extcpu, m->mcgstatus, m->bank, m->status);
|
|
|
|
if (m->ip) {
|
|
pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
|
|
!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
|
|
m->cs, m->ip);
|
|
|
|
if (m->cs == __KERNEL_CS)
|
|
print_symbol("{%s}", m->ip);
|
|
pr_cont("\n");
|
|
}
|
|
|
|
pr_emerg(HW_ERR "TSC %llx ", m->tsc);
|
|
if (m->addr)
|
|
pr_cont("ADDR %llx ", m->addr);
|
|
if (m->misc)
|
|
pr_cont("MISC %llx ", m->misc);
|
|
|
|
pr_cont("\n");
|
|
/*
|
|
* Note this output is parsed by external tools and old fields
|
|
* should not be changed.
|
|
*/
|
|
pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
|
|
m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
|
|
cpu_data(m->extcpu).microcode);
|
|
|
|
/*
|
|
* Print out human-readable details about the MCE error,
|
|
* (if the CPU has an implementation for that)
|
|
*/
|
|
ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
|
|
if (ret == NOTIFY_STOP)
|
|
return;
|
|
|
|
pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
|
|
}
|
|
|
|
#define PANIC_TIMEOUT 5 /* 5 seconds */
|
|
|
|
static atomic_t mce_panicked;
|
|
|
|
static int fake_panic;
|
|
static atomic_t mce_fake_panicked;
|
|
|
|
/* Panic in progress. Enable interrupts and wait for final IPI */
|
|
static void wait_for_panic(void)
|
|
{
|
|
long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
|
|
|
|
preempt_disable();
|
|
local_irq_enable();
|
|
while (timeout-- > 0)
|
|
udelay(1);
|
|
if (panic_timeout == 0)
|
|
panic_timeout = mca_cfg.panic_timeout;
|
|
panic("Panicing machine check CPU died");
|
|
}
|
|
|
|
static void mce_panic(const char *msg, struct mce *final, char *exp)
|
|
{
|
|
int i, apei_err = 0;
|
|
|
|
if (!fake_panic) {
|
|
/*
|
|
* Make sure only one CPU runs in machine check panic
|
|
*/
|
|
if (atomic_inc_return(&mce_panicked) > 1)
|
|
wait_for_panic();
|
|
barrier();
|
|
|
|
bust_spinlocks(1);
|
|
console_verbose();
|
|
} else {
|
|
/* Don't log too much for fake panic */
|
|
if (atomic_inc_return(&mce_fake_panicked) > 1)
|
|
return;
|
|
}
|
|
/* First print corrected ones that are still unlogged */
|
|
for (i = 0; i < MCE_LOG_LEN; i++) {
|
|
struct mce *m = &mcelog.entry[i];
|
|
if (!(m->status & MCI_STATUS_VAL))
|
|
continue;
|
|
if (!(m->status & MCI_STATUS_UC)) {
|
|
print_mce(m);
|
|
if (!apei_err)
|
|
apei_err = apei_write_mce(m);
|
|
}
|
|
}
|
|
/* Now print uncorrected but with the final one last */
|
|
for (i = 0; i < MCE_LOG_LEN; i++) {
|
|
struct mce *m = &mcelog.entry[i];
|
|
if (!(m->status & MCI_STATUS_VAL))
|
|
continue;
|
|
if (!(m->status & MCI_STATUS_UC))
|
|
continue;
|
|
if (!final || memcmp(m, final, sizeof(struct mce))) {
|
|
print_mce(m);
|
|
if (!apei_err)
|
|
apei_err = apei_write_mce(m);
|
|
}
|
|
}
|
|
if (final) {
|
|
print_mce(final);
|
|
if (!apei_err)
|
|
apei_err = apei_write_mce(final);
|
|
}
|
|
if (cpu_missing)
|
|
pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
|
|
if (exp)
|
|
pr_emerg(HW_ERR "Machine check: %s\n", exp);
|
|
if (!fake_panic) {
|
|
if (panic_timeout == 0)
|
|
panic_timeout = mca_cfg.panic_timeout;
|
|
panic(msg);
|
|
} else
|
|
pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
|
|
}
|
|
|
|
/* Support code for software error injection */
|
|
|
|
static int msr_to_offset(u32 msr)
|
|
{
|
|
unsigned bank = __this_cpu_read(injectm.bank);
|
|
|
|
if (msr == mca_cfg.rip_msr)
|
|
return offsetof(struct mce, ip);
|
|
if (msr == MSR_IA32_MCx_STATUS(bank))
|
|
return offsetof(struct mce, status);
|
|
if (msr == MSR_IA32_MCx_ADDR(bank))
|
|
return offsetof(struct mce, addr);
|
|
if (msr == MSR_IA32_MCx_MISC(bank))
|
|
return offsetof(struct mce, misc);
|
|
if (msr == MSR_IA32_MCG_STATUS)
|
|
return offsetof(struct mce, mcgstatus);
|
|
return -1;
|
|
}
|
|
|
|
/* MSR access wrappers used for error injection */
|
|
static u64 mce_rdmsrl(u32 msr)
|
|
{
|
|
u64 v;
|
|
|
|
if (__this_cpu_read(injectm.finished)) {
|
|
int offset = msr_to_offset(msr);
|
|
|
|
if (offset < 0)
|
|
return 0;
|
|
return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
|
|
}
|
|
|
|
if (rdmsrl_safe(msr, &v)) {
|
|
WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
|
|
/*
|
|
* Return zero in case the access faulted. This should
|
|
* not happen normally but can happen if the CPU does
|
|
* something weird, or if the code is buggy.
|
|
*/
|
|
v = 0;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
static void mce_wrmsrl(u32 msr, u64 v)
|
|
{
|
|
if (__this_cpu_read(injectm.finished)) {
|
|
int offset = msr_to_offset(msr);
|
|
|
|
if (offset >= 0)
|
|
*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
|
|
return;
|
|
}
|
|
wrmsrl(msr, v);
|
|
}
|
|
|
|
/*
|
|
* Collect all global (w.r.t. this processor) status about this machine
|
|
* check into our "mce" struct so that we can use it later to assess
|
|
* the severity of the problem as we read per-bank specific details.
|
|
*/
|
|
static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
|
|
{
|
|
mce_setup(m);
|
|
|
|
m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
|
|
if (regs) {
|
|
/*
|
|
* Get the address of the instruction at the time of
|
|
* the machine check error.
|
|
*/
|
|
if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
|
|
m->ip = regs->ip;
|
|
m->cs = regs->cs;
|
|
|
|
/*
|
|
* When in VM86 mode make the cs look like ring 3
|
|
* always. This is a lie, but it's better than passing
|
|
* the additional vm86 bit around everywhere.
|
|
*/
|
|
if (v8086_mode(regs))
|
|
m->cs |= 3;
|
|
}
|
|
/* Use accurate RIP reporting if available. */
|
|
if (mca_cfg.rip_msr)
|
|
m->ip = mce_rdmsrl(mca_cfg.rip_msr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Simple lockless ring to communicate PFNs from the exception handler with the
|
|
* process context work function. This is vastly simplified because there's
|
|
* only a single reader and a single writer.
|
|
*/
|
|
#define MCE_RING_SIZE 16 /* we use one entry less */
|
|
|
|
struct mce_ring {
|
|
unsigned short start;
|
|
unsigned short end;
|
|
unsigned long ring[MCE_RING_SIZE];
|
|
};
|
|
static DEFINE_PER_CPU(struct mce_ring, mce_ring);
|
|
|
|
/* Runs with CPU affinity in workqueue */
|
|
static int mce_ring_empty(void)
|
|
{
|
|
struct mce_ring *r = this_cpu_ptr(&mce_ring);
|
|
|
|
return r->start == r->end;
|
|
}
|
|
|
|
static int mce_ring_get(unsigned long *pfn)
|
|
{
|
|
struct mce_ring *r;
|
|
int ret = 0;
|
|
|
|
*pfn = 0;
|
|
get_cpu();
|
|
r = this_cpu_ptr(&mce_ring);
|
|
if (r->start == r->end)
|
|
goto out;
|
|
*pfn = r->ring[r->start];
|
|
r->start = (r->start + 1) % MCE_RING_SIZE;
|
|
ret = 1;
|
|
out:
|
|
put_cpu();
|
|
return ret;
|
|
}
|
|
|
|
/* Always runs in MCE context with preempt off */
|
|
static int mce_ring_add(unsigned long pfn)
|
|
{
|
|
struct mce_ring *r = this_cpu_ptr(&mce_ring);
|
|
unsigned next;
|
|
|
|
next = (r->end + 1) % MCE_RING_SIZE;
|
|
if (next == r->start)
|
|
return -1;
|
|
r->ring[r->end] = pfn;
|
|
wmb();
|
|
r->end = next;
|
|
return 0;
|
|
}
|
|
|
|
int mce_available(struct cpuinfo_x86 *c)
|
|
{
|
|
if (mca_cfg.disabled)
|
|
return 0;
|
|
return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
|
|
}
|
|
|
|
static void mce_schedule_work(void)
|
|
{
|
|
if (!mce_ring_empty())
|
|
schedule_work(this_cpu_ptr(&mce_work));
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct irq_work, mce_irq_work);
|
|
|
|
static void mce_irq_work_cb(struct irq_work *entry)
|
|
{
|
|
mce_notify_irq();
|
|
mce_schedule_work();
|
|
}
|
|
|
|
static void mce_report_event(struct pt_regs *regs)
|
|
{
|
|
if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
|
|
mce_notify_irq();
|
|
/*
|
|
* Triggering the work queue here is just an insurance
|
|
* policy in case the syscall exit notify handler
|
|
* doesn't run soon enough or ends up running on the
|
|
* wrong CPU (can happen when audit sleeps)
|
|
*/
|
|
mce_schedule_work();
|
|
return;
|
|
}
|
|
|
|
irq_work_queue(this_cpu_ptr(&mce_irq_work));
|
|
}
|
|
|
|
/*
|
|
* Read ADDR and MISC registers.
|
|
*/
|
|
static void mce_read_aux(struct mce *m, int i)
|
|
{
|
|
if (m->status & MCI_STATUS_MISCV)
|
|
m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
|
|
if (m->status & MCI_STATUS_ADDRV) {
|
|
m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
|
|
|
|
/*
|
|
* Mask the reported address by the reported granularity.
|
|
*/
|
|
if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
|
|
u8 shift = MCI_MISC_ADDR_LSB(m->misc);
|
|
m->addr >>= shift;
|
|
m->addr <<= shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool memory_error(struct mce *m)
|
|
{
|
|
struct cpuinfo_x86 *c = &boot_cpu_data;
|
|
|
|
if (c->x86_vendor == X86_VENDOR_AMD) {
|
|
/*
|
|
* coming soon
|
|
*/
|
|
return false;
|
|
} else if (c->x86_vendor == X86_VENDOR_INTEL) {
|
|
/*
|
|
* Intel SDM Volume 3B - 15.9.2 Compound Error Codes
|
|
*
|
|
* Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
|
|
* indicating a memory error. Bit 8 is used for indicating a
|
|
* cache hierarchy error. The combination of bit 2 and bit 3
|
|
* is used for indicating a `generic' cache hierarchy error
|
|
* But we can't just blindly check the above bits, because if
|
|
* bit 11 is set, then it is a bus/interconnect error - and
|
|
* either way the above bits just gives more detail on what
|
|
* bus/interconnect error happened. Note that bit 12 can be
|
|
* ignored, as it's the "filter" bit.
|
|
*/
|
|
return (m->status & 0xef80) == BIT(7) ||
|
|
(m->status & 0xef00) == BIT(8) ||
|
|
(m->status & 0xeffc) == 0xc;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
DEFINE_PER_CPU(unsigned, mce_poll_count);
|
|
|
|
/*
|
|
* Poll for corrected events or events that happened before reset.
|
|
* Those are just logged through /dev/mcelog.
|
|
*
|
|
* This is executed in standard interrupt context.
|
|
*
|
|
* Note: spec recommends to panic for fatal unsignalled
|
|
* errors here. However this would be quite problematic --
|
|
* we would need to reimplement the Monarch handling and
|
|
* it would mess up the exclusion between exception handler
|
|
* and poll hander -- * so we skip this for now.
|
|
* These cases should not happen anyways, or only when the CPU
|
|
* is already totally * confused. In this case it's likely it will
|
|
* not fully execute the machine check handler either.
|
|
*/
|
|
bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
|
|
{
|
|
bool error_logged = false;
|
|
struct mce m;
|
|
int severity;
|
|
int i;
|
|
|
|
this_cpu_inc(mce_poll_count);
|
|
|
|
mce_gather_info(&m, NULL);
|
|
|
|
for (i = 0; i < mca_cfg.banks; i++) {
|
|
if (!mce_banks[i].ctl || !test_bit(i, *b))
|
|
continue;
|
|
|
|
m.misc = 0;
|
|
m.addr = 0;
|
|
m.bank = i;
|
|
m.tsc = 0;
|
|
|
|
barrier();
|
|
m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
|
|
if (!(m.status & MCI_STATUS_VAL))
|
|
continue;
|
|
|
|
|
|
/*
|
|
* Uncorrected or signalled events are handled by the exception
|
|
* handler when it is enabled, so don't process those here.
|
|
*
|
|
* TBD do the same check for MCI_STATUS_EN here?
|
|
*/
|
|
if (!(flags & MCP_UC) &&
|
|
(m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
|
|
continue;
|
|
|
|
mce_read_aux(&m, i);
|
|
|
|
if (!(flags & MCP_TIMESTAMP))
|
|
m.tsc = 0;
|
|
|
|
severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
|
|
|
|
/*
|
|
* In the cases where we don't have a valid address after all,
|
|
* do not add it into the ring buffer.
|
|
*/
|
|
if (severity == MCE_DEFERRED_SEVERITY && memory_error(&m)) {
|
|
if (m.status & MCI_STATUS_ADDRV) {
|
|
mce_ring_add(m.addr >> PAGE_SHIFT);
|
|
mce_schedule_work();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Don't get the IP here because it's unlikely to
|
|
* have anything to do with the actual error location.
|
|
*/
|
|
if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce) {
|
|
error_logged = true;
|
|
mce_log(&m);
|
|
}
|
|
|
|
/*
|
|
* Clear state for this bank.
|
|
*/
|
|
mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
|
|
}
|
|
|
|
/*
|
|
* Don't clear MCG_STATUS here because it's only defined for
|
|
* exceptions.
|
|
*/
|
|
|
|
sync_core();
|
|
|
|
return error_logged;
|
|
}
|
|
EXPORT_SYMBOL_GPL(machine_check_poll);
|
|
|
|
/*
|
|
* Do a quick check if any of the events requires a panic.
|
|
* This decides if we keep the events around or clear them.
|
|
*/
|
|
static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
|
|
struct pt_regs *regs)
|
|
{
|
|
int i, ret = 0;
|
|
char *tmp;
|
|
|
|
for (i = 0; i < mca_cfg.banks; i++) {
|
|
m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
|
|
if (m->status & MCI_STATUS_VAL) {
|
|
__set_bit(i, validp);
|
|
if (quirk_no_way_out)
|
|
quirk_no_way_out(i, m, regs);
|
|
}
|
|
|
|
if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
|
|
*msg = tmp;
|
|
ret = 1;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Variable to establish order between CPUs while scanning.
|
|
* Each CPU spins initially until executing is equal its number.
|
|
*/
|
|
static atomic_t mce_executing;
|
|
|
|
/*
|
|
* Defines order of CPUs on entry. First CPU becomes Monarch.
|
|
*/
|
|
static atomic_t mce_callin;
|
|
|
|
/*
|
|
* Check if a timeout waiting for other CPUs happened.
|
|
*/
|
|
static int mce_timed_out(u64 *t, const char *msg)
|
|
{
|
|
/*
|
|
* The others already did panic for some reason.
|
|
* Bail out like in a timeout.
|
|
* rmb() to tell the compiler that system_state
|
|
* might have been modified by someone else.
|
|
*/
|
|
rmb();
|
|
if (atomic_read(&mce_panicked))
|
|
wait_for_panic();
|
|
if (!mca_cfg.monarch_timeout)
|
|
goto out;
|
|
if ((s64)*t < SPINUNIT) {
|
|
if (mca_cfg.tolerant <= 1)
|
|
mce_panic(msg, NULL, NULL);
|
|
cpu_missing = 1;
|
|
return 1;
|
|
}
|
|
*t -= SPINUNIT;
|
|
out:
|
|
touch_nmi_watchdog();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The Monarch's reign. The Monarch is the CPU who entered
|
|
* the machine check handler first. It waits for the others to
|
|
* raise the exception too and then grades them. When any
|
|
* error is fatal panic. Only then let the others continue.
|
|
*
|
|
* The other CPUs entering the MCE handler will be controlled by the
|
|
* Monarch. They are called Subjects.
|
|
*
|
|
* This way we prevent any potential data corruption in a unrecoverable case
|
|
* and also makes sure always all CPU's errors are examined.
|
|
*
|
|
* Also this detects the case of a machine check event coming from outer
|
|
* space (not detected by any CPUs) In this case some external agent wants
|
|
* us to shut down, so panic too.
|
|
*
|
|
* The other CPUs might still decide to panic if the handler happens
|
|
* in a unrecoverable place, but in this case the system is in a semi-stable
|
|
* state and won't corrupt anything by itself. It's ok to let the others
|
|
* continue for a bit first.
|
|
*
|
|
* All the spin loops have timeouts; when a timeout happens a CPU
|
|
* typically elects itself to be Monarch.
|
|
*/
|
|
static void mce_reign(void)
|
|
{
|
|
int cpu;
|
|
struct mce *m = NULL;
|
|
int global_worst = 0;
|
|
char *msg = NULL;
|
|
char *nmsg = NULL;
|
|
|
|
/*
|
|
* This CPU is the Monarch and the other CPUs have run
|
|
* through their handlers.
|
|
* Grade the severity of the errors of all the CPUs.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
int severity = mce_severity(&per_cpu(mces_seen, cpu),
|
|
mca_cfg.tolerant,
|
|
&nmsg, true);
|
|
if (severity > global_worst) {
|
|
msg = nmsg;
|
|
global_worst = severity;
|
|
m = &per_cpu(mces_seen, cpu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Cannot recover? Panic here then.
|
|
* This dumps all the mces in the log buffer and stops the
|
|
* other CPUs.
|
|
*/
|
|
if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
|
|
mce_panic("Fatal machine check", m, msg);
|
|
|
|
/*
|
|
* For UC somewhere we let the CPU who detects it handle it.
|
|
* Also must let continue the others, otherwise the handling
|
|
* CPU could deadlock on a lock.
|
|
*/
|
|
|
|
/*
|
|
* No machine check event found. Must be some external
|
|
* source or one CPU is hung. Panic.
|
|
*/
|
|
if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
|
|
mce_panic("Fatal machine check from unknown source", NULL, NULL);
|
|
|
|
/*
|
|
* Now clear all the mces_seen so that they don't reappear on
|
|
* the next mce.
|
|
*/
|
|
for_each_possible_cpu(cpu)
|
|
memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
|
|
}
|
|
|
|
static atomic_t global_nwo;
|
|
|
|
/*
|
|
* Start of Monarch synchronization. This waits until all CPUs have
|
|
* entered the exception handler and then determines if any of them
|
|
* saw a fatal event that requires panic. Then it executes them
|
|
* in the entry order.
|
|
* TBD double check parallel CPU hotunplug
|
|
*/
|
|
static int mce_start(int *no_way_out)
|
|
{
|
|
int order;
|
|
int cpus = num_online_cpus();
|
|
u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
|
|
|
|
if (!timeout)
|
|
return -1;
|
|
|
|
atomic_add(*no_way_out, &global_nwo);
|
|
/*
|
|
* global_nwo should be updated before mce_callin
|
|
*/
|
|
smp_wmb();
|
|
order = atomic_inc_return(&mce_callin);
|
|
|
|
/*
|
|
* Wait for everyone.
|
|
*/
|
|
while (atomic_read(&mce_callin) != cpus) {
|
|
if (mce_timed_out(&timeout,
|
|
"Timeout: Not all CPUs entered broadcast exception handler")) {
|
|
atomic_set(&global_nwo, 0);
|
|
return -1;
|
|
}
|
|
ndelay(SPINUNIT);
|
|
}
|
|
|
|
/*
|
|
* mce_callin should be read before global_nwo
|
|
*/
|
|
smp_rmb();
|
|
|
|
if (order == 1) {
|
|
/*
|
|
* Monarch: Starts executing now, the others wait.
|
|
*/
|
|
atomic_set(&mce_executing, 1);
|
|
} else {
|
|
/*
|
|
* Subject: Now start the scanning loop one by one in
|
|
* the original callin order.
|
|
* This way when there are any shared banks it will be
|
|
* only seen by one CPU before cleared, avoiding duplicates.
|
|
*/
|
|
while (atomic_read(&mce_executing) < order) {
|
|
if (mce_timed_out(&timeout,
|
|
"Timeout: Subject CPUs unable to finish machine check processing")) {
|
|
atomic_set(&global_nwo, 0);
|
|
return -1;
|
|
}
|
|
ndelay(SPINUNIT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Cache the global no_way_out state.
|
|
*/
|
|
*no_way_out = atomic_read(&global_nwo);
|
|
|
|
return order;
|
|
}
|
|
|
|
/*
|
|
* Synchronize between CPUs after main scanning loop.
|
|
* This invokes the bulk of the Monarch processing.
|
|
*/
|
|
static int mce_end(int order)
|
|
{
|
|
int ret = -1;
|
|
u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
|
|
|
|
if (!timeout)
|
|
goto reset;
|
|
if (order < 0)
|
|
goto reset;
|
|
|
|
/*
|
|
* Allow others to run.
|
|
*/
|
|
atomic_inc(&mce_executing);
|
|
|
|
if (order == 1) {
|
|
/* CHECKME: Can this race with a parallel hotplug? */
|
|
int cpus = num_online_cpus();
|
|
|
|
/*
|
|
* Monarch: Wait for everyone to go through their scanning
|
|
* loops.
|
|
*/
|
|
while (atomic_read(&mce_executing) <= cpus) {
|
|
if (mce_timed_out(&timeout,
|
|
"Timeout: Monarch CPU unable to finish machine check processing"))
|
|
goto reset;
|
|
ndelay(SPINUNIT);
|
|
}
|
|
|
|
mce_reign();
|
|
barrier();
|
|
ret = 0;
|
|
} else {
|
|
/*
|
|
* Subject: Wait for Monarch to finish.
|
|
*/
|
|
while (atomic_read(&mce_executing) != 0) {
|
|
if (mce_timed_out(&timeout,
|
|
"Timeout: Monarch CPU did not finish machine check processing"))
|
|
goto reset;
|
|
ndelay(SPINUNIT);
|
|
}
|
|
|
|
/*
|
|
* Don't reset anything. That's done by the Monarch.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reset all global state.
|
|
*/
|
|
reset:
|
|
atomic_set(&global_nwo, 0);
|
|
atomic_set(&mce_callin, 0);
|
|
barrier();
|
|
|
|
/*
|
|
* Let others run again.
|
|
*/
|
|
atomic_set(&mce_executing, 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check if the address reported by the CPU is in a format we can parse.
|
|
* It would be possible to add code for most other cases, but all would
|
|
* be somewhat complicated (e.g. segment offset would require an instruction
|
|
* parser). So only support physical addresses up to page granuality for now.
|
|
*/
|
|
static int mce_usable_address(struct mce *m)
|
|
{
|
|
if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
|
|
return 0;
|
|
if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
|
|
return 0;
|
|
if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static void mce_clear_state(unsigned long *toclear)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mca_cfg.banks; i++) {
|
|
if (test_bit(i, toclear))
|
|
mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The actual machine check handler. This only handles real
|
|
* exceptions when something got corrupted coming in through int 18.
|
|
*
|
|
* This is executed in NMI context not subject to normal locking rules. This
|
|
* implies that most kernel services cannot be safely used. Don't even
|
|
* think about putting a printk in there!
|
|
*
|
|
* On Intel systems this is entered on all CPUs in parallel through
|
|
* MCE broadcast. However some CPUs might be broken beyond repair,
|
|
* so be always careful when synchronizing with others.
|
|
*/
|
|
void do_machine_check(struct pt_regs *regs, long error_code)
|
|
{
|
|
struct mca_config *cfg = &mca_cfg;
|
|
struct mce m, *final;
|
|
enum ctx_state prev_state;
|
|
int i;
|
|
int worst = 0;
|
|
int severity;
|
|
/*
|
|
* Establish sequential order between the CPUs entering the machine
|
|
* check handler.
|
|
*/
|
|
int order;
|
|
/*
|
|
* If no_way_out gets set, there is no safe way to recover from this
|
|
* MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
|
|
*/
|
|
int no_way_out = 0;
|
|
/*
|
|
* If kill_it gets set, there might be a way to recover from this
|
|
* error.
|
|
*/
|
|
int kill_it = 0;
|
|
DECLARE_BITMAP(toclear, MAX_NR_BANKS);
|
|
DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
|
|
char *msg = "Unknown";
|
|
u64 recover_paddr = ~0ull;
|
|
int flags = MF_ACTION_REQUIRED;
|
|
int lmce = 0;
|
|
|
|
prev_state = ist_enter(regs);
|
|
|
|
this_cpu_inc(mce_exception_count);
|
|
|
|
if (!cfg->banks)
|
|
goto out;
|
|
|
|
mce_gather_info(&m, regs);
|
|
|
|
final = this_cpu_ptr(&mces_seen);
|
|
*final = m;
|
|
|
|
memset(valid_banks, 0, sizeof(valid_banks));
|
|
no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
|
|
|
|
barrier();
|
|
|
|
/*
|
|
* When no restart IP might need to kill or panic.
|
|
* Assume the worst for now, but if we find the
|
|
* severity is MCE_AR_SEVERITY we have other options.
|
|
*/
|
|
if (!(m.mcgstatus & MCG_STATUS_RIPV))
|
|
kill_it = 1;
|
|
|
|
/*
|
|
* Check if this MCE is signaled to only this logical processor
|
|
*/
|
|
if (m.mcgstatus & MCG_STATUS_LMCES)
|
|
lmce = 1;
|
|
else {
|
|
/*
|
|
* Go through all the banks in exclusion of the other CPUs.
|
|
* This way we don't report duplicated events on shared banks
|
|
* because the first one to see it will clear it.
|
|
* If this is a Local MCE, then no need to perform rendezvous.
|
|
*/
|
|
order = mce_start(&no_way_out);
|
|
}
|
|
|
|
for (i = 0; i < cfg->banks; i++) {
|
|
__clear_bit(i, toclear);
|
|
if (!test_bit(i, valid_banks))
|
|
continue;
|
|
if (!mce_banks[i].ctl)
|
|
continue;
|
|
|
|
m.misc = 0;
|
|
m.addr = 0;
|
|
m.bank = i;
|
|
|
|
m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
|
|
if ((m.status & MCI_STATUS_VAL) == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Non uncorrected or non signaled errors are handled by
|
|
* machine_check_poll. Leave them alone, unless this panics.
|
|
*/
|
|
if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
|
|
!no_way_out)
|
|
continue;
|
|
|
|
/*
|
|
* Set taint even when machine check was not enabled.
|
|
*/
|
|
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
|
|
|
|
severity = mce_severity(&m, cfg->tolerant, NULL, true);
|
|
|
|
/*
|
|
* When machine check was for corrected/deferred handler don't
|
|
* touch, unless we're panicing.
|
|
*/
|
|
if ((severity == MCE_KEEP_SEVERITY ||
|
|
severity == MCE_UCNA_SEVERITY) && !no_way_out)
|
|
continue;
|
|
__set_bit(i, toclear);
|
|
if (severity == MCE_NO_SEVERITY) {
|
|
/*
|
|
* Machine check event was not enabled. Clear, but
|
|
* ignore.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
mce_read_aux(&m, i);
|
|
|
|
/*
|
|
* Action optional error. Queue address for later processing.
|
|
* When the ring overflows we just ignore the AO error.
|
|
* RED-PEN add some logging mechanism when
|
|
* usable_address or mce_add_ring fails.
|
|
* RED-PEN don't ignore overflow for mca_cfg.tolerant == 0
|
|
*/
|
|
if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
|
|
mce_ring_add(m.addr >> PAGE_SHIFT);
|
|
|
|
mce_log(&m);
|
|
|
|
if (severity > worst) {
|
|
*final = m;
|
|
worst = severity;
|
|
}
|
|
}
|
|
|
|
/* mce_clear_state will clear *final, save locally for use later */
|
|
m = *final;
|
|
|
|
if (!no_way_out)
|
|
mce_clear_state(toclear);
|
|
|
|
/*
|
|
* Do most of the synchronization with other CPUs.
|
|
* When there's any problem use only local no_way_out state.
|
|
*/
|
|
if (!lmce) {
|
|
if (mce_end(order) < 0)
|
|
no_way_out = worst >= MCE_PANIC_SEVERITY;
|
|
} else {
|
|
/*
|
|
* Local MCE skipped calling mce_reign()
|
|
* If we found a fatal error, we need to panic here.
|
|
*/
|
|
if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
|
|
mce_panic("Machine check from unknown source",
|
|
NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* At insane "tolerant" levels we take no action. Otherwise
|
|
* we only die if we have no other choice. For less serious
|
|
* issues we try to recover, or limit damage to the current
|
|
* process.
|
|
*/
|
|
if (cfg->tolerant < 3) {
|
|
if (no_way_out)
|
|
mce_panic("Fatal machine check on current CPU", &m, msg);
|
|
if (worst == MCE_AR_SEVERITY) {
|
|
recover_paddr = m.addr;
|
|
if (!(m.mcgstatus & MCG_STATUS_RIPV))
|
|
flags |= MF_MUST_KILL;
|
|
} else if (kill_it) {
|
|
force_sig(SIGBUS, current);
|
|
}
|
|
}
|
|
|
|
if (worst > 0)
|
|
mce_report_event(regs);
|
|
mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
|
|
out:
|
|
sync_core();
|
|
|
|
if (recover_paddr == ~0ull)
|
|
goto done;
|
|
|
|
pr_err("Uncorrected hardware memory error in user-access at %llx",
|
|
recover_paddr);
|
|
/*
|
|
* We must call memory_failure() here even if the current process is
|
|
* doomed. We still need to mark the page as poisoned and alert any
|
|
* other users of the page.
|
|
*/
|
|
ist_begin_non_atomic(regs);
|
|
local_irq_enable();
|
|
if (memory_failure(recover_paddr >> PAGE_SHIFT, MCE_VECTOR, flags) < 0) {
|
|
pr_err("Memory error not recovered");
|
|
force_sig(SIGBUS, current);
|
|
}
|
|
local_irq_disable();
|
|
ist_end_non_atomic();
|
|
done:
|
|
ist_exit(regs, prev_state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(do_machine_check);
|
|
|
|
#ifndef CONFIG_MEMORY_FAILURE
|
|
int memory_failure(unsigned long pfn, int vector, int flags)
|
|
{
|
|
/* mce_severity() should not hand us an ACTION_REQUIRED error */
|
|
BUG_ON(flags & MF_ACTION_REQUIRED);
|
|
pr_err("Uncorrected memory error in page 0x%lx ignored\n"
|
|
"Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
|
|
pfn);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Action optional processing happens here (picking up
|
|
* from the list of faulting pages that do_machine_check()
|
|
* placed into the "ring").
|
|
*/
|
|
static void mce_process_work(struct work_struct *dummy)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
while (mce_ring_get(&pfn))
|
|
memory_failure(pfn, MCE_VECTOR, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_MCE_INTEL
|
|
/***
|
|
* mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
|
|
* @cpu: The CPU on which the event occurred.
|
|
* @status: Event status information
|
|
*
|
|
* This function should be called by the thermal interrupt after the
|
|
* event has been processed and the decision was made to log the event
|
|
* further.
|
|
*
|
|
* The status parameter will be saved to the 'status' field of 'struct mce'
|
|
* and historically has been the register value of the
|
|
* MSR_IA32_THERMAL_STATUS (Intel) msr.
|
|
*/
|
|
void mce_log_therm_throt_event(__u64 status)
|
|
{
|
|
struct mce m;
|
|
|
|
mce_setup(&m);
|
|
m.bank = MCE_THERMAL_BANK;
|
|
m.status = status;
|
|
mce_log(&m);
|
|
}
|
|
#endif /* CONFIG_X86_MCE_INTEL */
|
|
|
|
/*
|
|
* Periodic polling timer for "silent" machine check errors. If the
|
|
* poller finds an MCE, poll 2x faster. When the poller finds no more
|
|
* errors, poll 2x slower (up to check_interval seconds).
|
|
*/
|
|
static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
|
|
|
|
static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
|
|
static DEFINE_PER_CPU(struct timer_list, mce_timer);
|
|
|
|
static unsigned long mce_adjust_timer_default(unsigned long interval)
|
|
{
|
|
return interval;
|
|
}
|
|
|
|
static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
|
|
|
|
static void __restart_timer(struct timer_list *t, unsigned long interval)
|
|
{
|
|
unsigned long when = jiffies + interval;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (timer_pending(t)) {
|
|
if (time_before(when, t->expires))
|
|
mod_timer_pinned(t, when);
|
|
} else {
|
|
t->expires = round_jiffies(when);
|
|
add_timer_on(t, smp_processor_id());
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void mce_timer_fn(unsigned long data)
|
|
{
|
|
struct timer_list *t = this_cpu_ptr(&mce_timer);
|
|
int cpu = smp_processor_id();
|
|
unsigned long iv;
|
|
|
|
WARN_ON(cpu != data);
|
|
|
|
iv = __this_cpu_read(mce_next_interval);
|
|
|
|
if (mce_available(this_cpu_ptr(&cpu_info))) {
|
|
machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_poll_banks));
|
|
|
|
if (mce_intel_cmci_poll()) {
|
|
iv = mce_adjust_timer(iv);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Alert userspace if needed. If we logged an MCE, reduce the polling
|
|
* interval, otherwise increase the polling interval.
|
|
*/
|
|
if (mce_notify_irq())
|
|
iv = max(iv / 2, (unsigned long) HZ/100);
|
|
else
|
|
iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
|
|
|
|
done:
|
|
__this_cpu_write(mce_next_interval, iv);
|
|
__restart_timer(t, iv);
|
|
}
|
|
|
|
/*
|
|
* Ensure that the timer is firing in @interval from now.
|
|
*/
|
|
void mce_timer_kick(unsigned long interval)
|
|
{
|
|
struct timer_list *t = this_cpu_ptr(&mce_timer);
|
|
unsigned long iv = __this_cpu_read(mce_next_interval);
|
|
|
|
__restart_timer(t, interval);
|
|
|
|
if (interval < iv)
|
|
__this_cpu_write(mce_next_interval, interval);
|
|
}
|
|
|
|
/* Must not be called in IRQ context where del_timer_sync() can deadlock */
|
|
static void mce_timer_delete_all(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu)
|
|
del_timer_sync(&per_cpu(mce_timer, cpu));
|
|
}
|
|
|
|
static void mce_do_trigger(struct work_struct *work)
|
|
{
|
|
call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
|
|
}
|
|
|
|
static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
|
|
|
|
/*
|
|
* Notify the user(s) about new machine check events.
|
|
* Can be called from interrupt context, but not from machine check/NMI
|
|
* context.
|
|
*/
|
|
int mce_notify_irq(void)
|
|
{
|
|
/* Not more than two messages every minute */
|
|
static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
|
|
|
|
if (test_and_clear_bit(0, &mce_need_notify)) {
|
|
/* wake processes polling /dev/mcelog */
|
|
wake_up_interruptible(&mce_chrdev_wait);
|
|
|
|
if (mce_helper[0])
|
|
schedule_work(&mce_trigger_work);
|
|
|
|
if (__ratelimit(&ratelimit))
|
|
pr_info(HW_ERR "Machine check events logged\n");
|
|
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mce_notify_irq);
|
|
|
|
static int __mcheck_cpu_mce_banks_init(void)
|
|
{
|
|
int i;
|
|
u8 num_banks = mca_cfg.banks;
|
|
|
|
mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
|
|
if (!mce_banks)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < num_banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
|
|
b->ctl = -1ULL;
|
|
b->init = 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize Machine Checks for a CPU.
|
|
*/
|
|
static int __mcheck_cpu_cap_init(void)
|
|
{
|
|
unsigned b;
|
|
u64 cap;
|
|
|
|
rdmsrl(MSR_IA32_MCG_CAP, cap);
|
|
|
|
b = cap & MCG_BANKCNT_MASK;
|
|
if (!mca_cfg.banks)
|
|
pr_info("CPU supports %d MCE banks\n", b);
|
|
|
|
if (b > MAX_NR_BANKS) {
|
|
pr_warn("Using only %u machine check banks out of %u\n",
|
|
MAX_NR_BANKS, b);
|
|
b = MAX_NR_BANKS;
|
|
}
|
|
|
|
/* Don't support asymmetric configurations today */
|
|
WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
|
|
mca_cfg.banks = b;
|
|
|
|
if (!mce_banks) {
|
|
int err = __mcheck_cpu_mce_banks_init();
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Use accurate RIP reporting if available. */
|
|
if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
|
|
mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
|
|
|
|
if (cap & MCG_SER_P)
|
|
mca_cfg.ser = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __mcheck_cpu_init_generic(void)
|
|
{
|
|
enum mcp_flags m_fl = 0;
|
|
mce_banks_t all_banks;
|
|
u64 cap;
|
|
int i;
|
|
|
|
if (!mca_cfg.bootlog)
|
|
m_fl = MCP_DONTLOG;
|
|
|
|
/*
|
|
* Log the machine checks left over from the previous reset.
|
|
*/
|
|
bitmap_fill(all_banks, MAX_NR_BANKS);
|
|
machine_check_poll(MCP_UC | m_fl, &all_banks);
|
|
|
|
cr4_set_bits(X86_CR4_MCE);
|
|
|
|
rdmsrl(MSR_IA32_MCG_CAP, cap);
|
|
if (cap & MCG_CTL_P)
|
|
wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
|
|
|
|
for (i = 0; i < mca_cfg.banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
|
|
if (!b->init)
|
|
continue;
|
|
wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
|
|
wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
|
|
* EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
|
|
* Vol 3B Table 15-20). But this confuses both the code that determines
|
|
* whether the machine check occurred in kernel or user mode, and also
|
|
* the severity assessment code. Pretend that EIPV was set, and take the
|
|
* ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
|
|
*/
|
|
static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
|
|
{
|
|
if (bank != 0)
|
|
return;
|
|
if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
|
|
return;
|
|
if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
|
|
MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
|
|
MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
|
|
MCACOD)) !=
|
|
(MCI_STATUS_UC|MCI_STATUS_EN|
|
|
MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
|
|
MCI_STATUS_AR|MCACOD_INSTR))
|
|
return;
|
|
|
|
m->mcgstatus |= MCG_STATUS_EIPV;
|
|
m->ip = regs->ip;
|
|
m->cs = regs->cs;
|
|
}
|
|
|
|
/* Add per CPU specific workarounds here */
|
|
static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
|
|
{
|
|
struct mca_config *cfg = &mca_cfg;
|
|
|
|
if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
|
|
pr_info("unknown CPU type - not enabling MCE support\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* This should be disabled by the BIOS, but isn't always */
|
|
if (c->x86_vendor == X86_VENDOR_AMD) {
|
|
if (c->x86 == 15 && cfg->banks > 4) {
|
|
/*
|
|
* disable GART TBL walk error reporting, which
|
|
* trips off incorrectly with the IOMMU & 3ware
|
|
* & Cerberus:
|
|
*/
|
|
clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
|
|
}
|
|
if (c->x86 <= 17 && cfg->bootlog < 0) {
|
|
/*
|
|
* Lots of broken BIOS around that don't clear them
|
|
* by default and leave crap in there. Don't log:
|
|
*/
|
|
cfg->bootlog = 0;
|
|
}
|
|
/*
|
|
* Various K7s with broken bank 0 around. Always disable
|
|
* by default.
|
|
*/
|
|
if (c->x86 == 6 && cfg->banks > 0)
|
|
mce_banks[0].ctl = 0;
|
|
|
|
/*
|
|
* overflow_recov is supported for F15h Models 00h-0fh
|
|
* even though we don't have a CPUID bit for it.
|
|
*/
|
|
if (c->x86 == 0x15 && c->x86_model <= 0xf)
|
|
mce_flags.overflow_recov = 1;
|
|
|
|
/*
|
|
* Turn off MC4_MISC thresholding banks on those models since
|
|
* they're not supported there.
|
|
*/
|
|
if (c->x86 == 0x15 &&
|
|
(c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
|
|
int i;
|
|
u64 hwcr;
|
|
bool need_toggle;
|
|
u32 msrs[] = {
|
|
0x00000413, /* MC4_MISC0 */
|
|
0xc0000408, /* MC4_MISC1 */
|
|
};
|
|
|
|
rdmsrl(MSR_K7_HWCR, hwcr);
|
|
|
|
/* McStatusWrEn has to be set */
|
|
need_toggle = !(hwcr & BIT(18));
|
|
|
|
if (need_toggle)
|
|
wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
|
|
|
|
/* Clear CntP bit safely */
|
|
for (i = 0; i < ARRAY_SIZE(msrs); i++)
|
|
msr_clear_bit(msrs[i], 62);
|
|
|
|
/* restore old settings */
|
|
if (need_toggle)
|
|
wrmsrl(MSR_K7_HWCR, hwcr);
|
|
}
|
|
}
|
|
|
|
if (c->x86_vendor == X86_VENDOR_INTEL) {
|
|
/*
|
|
* SDM documents that on family 6 bank 0 should not be written
|
|
* because it aliases to another special BIOS controlled
|
|
* register.
|
|
* But it's not aliased anymore on model 0x1a+
|
|
* Don't ignore bank 0 completely because there could be a
|
|
* valid event later, merely don't write CTL0.
|
|
*/
|
|
|
|
if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
|
|
mce_banks[0].init = 0;
|
|
|
|
/*
|
|
* All newer Intel systems support MCE broadcasting. Enable
|
|
* synchronization with a one second timeout.
|
|
*/
|
|
if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
|
|
cfg->monarch_timeout < 0)
|
|
cfg->monarch_timeout = USEC_PER_SEC;
|
|
|
|
/*
|
|
* There are also broken BIOSes on some Pentium M and
|
|
* earlier systems:
|
|
*/
|
|
if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
|
|
cfg->bootlog = 0;
|
|
|
|
if (c->x86 == 6 && c->x86_model == 45)
|
|
quirk_no_way_out = quirk_sandybridge_ifu;
|
|
}
|
|
if (cfg->monarch_timeout < 0)
|
|
cfg->monarch_timeout = 0;
|
|
if (cfg->bootlog != 0)
|
|
cfg->panic_timeout = 30;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
|
|
{
|
|
if (c->x86 != 5)
|
|
return 0;
|
|
|
|
switch (c->x86_vendor) {
|
|
case X86_VENDOR_INTEL:
|
|
intel_p5_mcheck_init(c);
|
|
return 1;
|
|
break;
|
|
case X86_VENDOR_CENTAUR:
|
|
winchip_mcheck_init(c);
|
|
return 1;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
|
|
{
|
|
switch (c->x86_vendor) {
|
|
case X86_VENDOR_INTEL:
|
|
mce_intel_feature_init(c);
|
|
mce_adjust_timer = cmci_intel_adjust_timer;
|
|
break;
|
|
|
|
case X86_VENDOR_AMD: {
|
|
u32 ebx = cpuid_ebx(0x80000007);
|
|
|
|
mce_amd_feature_init(c);
|
|
mce_flags.overflow_recov = !!(ebx & BIT(0));
|
|
mce_flags.succor = !!(ebx & BIT(1));
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void mce_start_timer(unsigned int cpu, struct timer_list *t)
|
|
{
|
|
unsigned long iv = check_interval * HZ;
|
|
|
|
if (mca_cfg.ignore_ce || !iv)
|
|
return;
|
|
|
|
per_cpu(mce_next_interval, cpu) = iv;
|
|
|
|
t->expires = round_jiffies(jiffies + iv);
|
|
add_timer_on(t, cpu);
|
|
}
|
|
|
|
static void __mcheck_cpu_init_timer(void)
|
|
{
|
|
struct timer_list *t = this_cpu_ptr(&mce_timer);
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
setup_timer(t, mce_timer_fn, cpu);
|
|
mce_start_timer(cpu, t);
|
|
}
|
|
|
|
/* Handle unconfigured int18 (should never happen) */
|
|
static void unexpected_machine_check(struct pt_regs *regs, long error_code)
|
|
{
|
|
pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
|
|
smp_processor_id());
|
|
}
|
|
|
|
/* Call the installed machine check handler for this CPU setup. */
|
|
void (*machine_check_vector)(struct pt_regs *, long error_code) =
|
|
unexpected_machine_check;
|
|
|
|
/*
|
|
* Called for each booted CPU to set up machine checks.
|
|
* Must be called with preempt off:
|
|
*/
|
|
void mcheck_cpu_init(struct cpuinfo_x86 *c)
|
|
{
|
|
if (mca_cfg.disabled)
|
|
return;
|
|
|
|
if (__mcheck_cpu_ancient_init(c))
|
|
return;
|
|
|
|
if (!mce_available(c))
|
|
return;
|
|
|
|
if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
|
|
mca_cfg.disabled = true;
|
|
return;
|
|
}
|
|
|
|
machine_check_vector = do_machine_check;
|
|
|
|
__mcheck_cpu_init_generic();
|
|
__mcheck_cpu_init_vendor(c);
|
|
__mcheck_cpu_init_timer();
|
|
INIT_WORK(this_cpu_ptr(&mce_work), mce_process_work);
|
|
init_irq_work(this_cpu_ptr(&mce_irq_work), &mce_irq_work_cb);
|
|
}
|
|
|
|
/*
|
|
* mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
|
|
*/
|
|
|
|
static DEFINE_SPINLOCK(mce_chrdev_state_lock);
|
|
static int mce_chrdev_open_count; /* #times opened */
|
|
static int mce_chrdev_open_exclu; /* already open exclusive? */
|
|
|
|
static int mce_chrdev_open(struct inode *inode, struct file *file)
|
|
{
|
|
spin_lock(&mce_chrdev_state_lock);
|
|
|
|
if (mce_chrdev_open_exclu ||
|
|
(mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
|
|
spin_unlock(&mce_chrdev_state_lock);
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (file->f_flags & O_EXCL)
|
|
mce_chrdev_open_exclu = 1;
|
|
mce_chrdev_open_count++;
|
|
|
|
spin_unlock(&mce_chrdev_state_lock);
|
|
|
|
return nonseekable_open(inode, file);
|
|
}
|
|
|
|
static int mce_chrdev_release(struct inode *inode, struct file *file)
|
|
{
|
|
spin_lock(&mce_chrdev_state_lock);
|
|
|
|
mce_chrdev_open_count--;
|
|
mce_chrdev_open_exclu = 0;
|
|
|
|
spin_unlock(&mce_chrdev_state_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void collect_tscs(void *data)
|
|
{
|
|
unsigned long *cpu_tsc = (unsigned long *)data;
|
|
|
|
rdtscll(cpu_tsc[smp_processor_id()]);
|
|
}
|
|
|
|
static int mce_apei_read_done;
|
|
|
|
/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
|
|
static int __mce_read_apei(char __user **ubuf, size_t usize)
|
|
{
|
|
int rc;
|
|
u64 record_id;
|
|
struct mce m;
|
|
|
|
if (usize < sizeof(struct mce))
|
|
return -EINVAL;
|
|
|
|
rc = apei_read_mce(&m, &record_id);
|
|
/* Error or no more MCE record */
|
|
if (rc <= 0) {
|
|
mce_apei_read_done = 1;
|
|
/*
|
|
* When ERST is disabled, mce_chrdev_read() should return
|
|
* "no record" instead of "no device."
|
|
*/
|
|
if (rc == -ENODEV)
|
|
return 0;
|
|
return rc;
|
|
}
|
|
rc = -EFAULT;
|
|
if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
|
|
return rc;
|
|
/*
|
|
* In fact, we should have cleared the record after that has
|
|
* been flushed to the disk or sent to network in
|
|
* /sbin/mcelog, but we have no interface to support that now,
|
|
* so just clear it to avoid duplication.
|
|
*/
|
|
rc = apei_clear_mce(record_id);
|
|
if (rc) {
|
|
mce_apei_read_done = 1;
|
|
return rc;
|
|
}
|
|
*ubuf += sizeof(struct mce);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
|
|
size_t usize, loff_t *off)
|
|
{
|
|
char __user *buf = ubuf;
|
|
unsigned long *cpu_tsc;
|
|
unsigned prev, next;
|
|
int i, err;
|
|
|
|
cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
|
|
if (!cpu_tsc)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&mce_chrdev_read_mutex);
|
|
|
|
if (!mce_apei_read_done) {
|
|
err = __mce_read_apei(&buf, usize);
|
|
if (err || buf != ubuf)
|
|
goto out;
|
|
}
|
|
|
|
next = rcu_dereference_check_mce(mcelog.next);
|
|
|
|
/* Only supports full reads right now */
|
|
err = -EINVAL;
|
|
if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
|
|
goto out;
|
|
|
|
err = 0;
|
|
prev = 0;
|
|
do {
|
|
for (i = prev; i < next; i++) {
|
|
unsigned long start = jiffies;
|
|
struct mce *m = &mcelog.entry[i];
|
|
|
|
while (!m->finished) {
|
|
if (time_after_eq(jiffies, start + 2)) {
|
|
memset(m, 0, sizeof(*m));
|
|
goto timeout;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
smp_rmb();
|
|
err |= copy_to_user(buf, m, sizeof(*m));
|
|
buf += sizeof(*m);
|
|
timeout:
|
|
;
|
|
}
|
|
|
|
memset(mcelog.entry + prev, 0,
|
|
(next - prev) * sizeof(struct mce));
|
|
prev = next;
|
|
next = cmpxchg(&mcelog.next, prev, 0);
|
|
} while (next != prev);
|
|
|
|
synchronize_sched();
|
|
|
|
/*
|
|
* Collect entries that were still getting written before the
|
|
* synchronize.
|
|
*/
|
|
on_each_cpu(collect_tscs, cpu_tsc, 1);
|
|
|
|
for (i = next; i < MCE_LOG_LEN; i++) {
|
|
struct mce *m = &mcelog.entry[i];
|
|
|
|
if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
|
|
err |= copy_to_user(buf, m, sizeof(*m));
|
|
smp_rmb();
|
|
buf += sizeof(*m);
|
|
memset(m, 0, sizeof(*m));
|
|
}
|
|
}
|
|
|
|
if (err)
|
|
err = -EFAULT;
|
|
|
|
out:
|
|
mutex_unlock(&mce_chrdev_read_mutex);
|
|
kfree(cpu_tsc);
|
|
|
|
return err ? err : buf - ubuf;
|
|
}
|
|
|
|
static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
|
|
{
|
|
poll_wait(file, &mce_chrdev_wait, wait);
|
|
if (READ_ONCE(mcelog.next))
|
|
return POLLIN | POLLRDNORM;
|
|
if (!mce_apei_read_done && apei_check_mce())
|
|
return POLLIN | POLLRDNORM;
|
|
return 0;
|
|
}
|
|
|
|
static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
int __user *p = (int __user *)arg;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
switch (cmd) {
|
|
case MCE_GET_RECORD_LEN:
|
|
return put_user(sizeof(struct mce), p);
|
|
case MCE_GET_LOG_LEN:
|
|
return put_user(MCE_LOG_LEN, p);
|
|
case MCE_GETCLEAR_FLAGS: {
|
|
unsigned flags;
|
|
|
|
do {
|
|
flags = mcelog.flags;
|
|
} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
|
|
|
|
return put_user(flags, p);
|
|
}
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
|
|
size_t usize, loff_t *off);
|
|
|
|
void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
|
|
const char __user *ubuf,
|
|
size_t usize, loff_t *off))
|
|
{
|
|
mce_write = fn;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_mce_write_callback);
|
|
|
|
static ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
|
|
size_t usize, loff_t *off)
|
|
{
|
|
if (mce_write)
|
|
return mce_write(filp, ubuf, usize, off);
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static const struct file_operations mce_chrdev_ops = {
|
|
.open = mce_chrdev_open,
|
|
.release = mce_chrdev_release,
|
|
.read = mce_chrdev_read,
|
|
.write = mce_chrdev_write,
|
|
.poll = mce_chrdev_poll,
|
|
.unlocked_ioctl = mce_chrdev_ioctl,
|
|
.llseek = no_llseek,
|
|
};
|
|
|
|
static struct miscdevice mce_chrdev_device = {
|
|
MISC_MCELOG_MINOR,
|
|
"mcelog",
|
|
&mce_chrdev_ops,
|
|
};
|
|
|
|
static void __mce_disable_bank(void *arg)
|
|
{
|
|
int bank = *((int *)arg);
|
|
__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
|
|
cmci_disable_bank(bank);
|
|
}
|
|
|
|
void mce_disable_bank(int bank)
|
|
{
|
|
if (bank >= mca_cfg.banks) {
|
|
pr_warn(FW_BUG
|
|
"Ignoring request to disable invalid MCA bank %d.\n",
|
|
bank);
|
|
return;
|
|
}
|
|
set_bit(bank, mce_banks_ce_disabled);
|
|
on_each_cpu(__mce_disable_bank, &bank, 1);
|
|
}
|
|
|
|
/*
|
|
* mce=off Disables machine check
|
|
* mce=no_cmci Disables CMCI
|
|
* mce=no_lmce Disables LMCE
|
|
* mce=dont_log_ce Clears corrected events silently, no log created for CEs.
|
|
* mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
|
|
* mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
|
|
* monarchtimeout is how long to wait for other CPUs on machine
|
|
* check, or 0 to not wait
|
|
* mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
|
|
* mce=nobootlog Don't log MCEs from before booting.
|
|
* mce=bios_cmci_threshold Don't program the CMCI threshold
|
|
*/
|
|
static int __init mcheck_enable(char *str)
|
|
{
|
|
struct mca_config *cfg = &mca_cfg;
|
|
|
|
if (*str == 0) {
|
|
enable_p5_mce();
|
|
return 1;
|
|
}
|
|
if (*str == '=')
|
|
str++;
|
|
if (!strcmp(str, "off"))
|
|
cfg->disabled = true;
|
|
else if (!strcmp(str, "no_cmci"))
|
|
cfg->cmci_disabled = true;
|
|
else if (!strcmp(str, "no_lmce"))
|
|
cfg->lmce_disabled = true;
|
|
else if (!strcmp(str, "dont_log_ce"))
|
|
cfg->dont_log_ce = true;
|
|
else if (!strcmp(str, "ignore_ce"))
|
|
cfg->ignore_ce = true;
|
|
else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
|
|
cfg->bootlog = (str[0] == 'b');
|
|
else if (!strcmp(str, "bios_cmci_threshold"))
|
|
cfg->bios_cmci_threshold = true;
|
|
else if (isdigit(str[0])) {
|
|
if (get_option(&str, &cfg->tolerant) == 2)
|
|
get_option(&str, &(cfg->monarch_timeout));
|
|
} else {
|
|
pr_info("mce argument %s ignored. Please use /sys\n", str);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
__setup("mce", mcheck_enable);
|
|
|
|
int __init mcheck_init(void)
|
|
{
|
|
mcheck_intel_therm_init();
|
|
mcheck_vendor_init_severity();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* mce_syscore: PM support
|
|
*/
|
|
|
|
/*
|
|
* Disable machine checks on suspend and shutdown. We can't really handle
|
|
* them later.
|
|
*/
|
|
static int mce_disable_error_reporting(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mca_cfg.banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
|
|
if (b->init)
|
|
wrmsrl(MSR_IA32_MCx_CTL(i), 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mce_syscore_suspend(void)
|
|
{
|
|
return mce_disable_error_reporting();
|
|
}
|
|
|
|
static void mce_syscore_shutdown(void)
|
|
{
|
|
mce_disable_error_reporting();
|
|
}
|
|
|
|
/*
|
|
* On resume clear all MCE state. Don't want to see leftovers from the BIOS.
|
|
* Only one CPU is active at this time, the others get re-added later using
|
|
* CPU hotplug:
|
|
*/
|
|
static void mce_syscore_resume(void)
|
|
{
|
|
__mcheck_cpu_init_generic();
|
|
__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
|
|
}
|
|
|
|
static struct syscore_ops mce_syscore_ops = {
|
|
.suspend = mce_syscore_suspend,
|
|
.shutdown = mce_syscore_shutdown,
|
|
.resume = mce_syscore_resume,
|
|
};
|
|
|
|
/*
|
|
* mce_device: Sysfs support
|
|
*/
|
|
|
|
static void mce_cpu_restart(void *data)
|
|
{
|
|
if (!mce_available(raw_cpu_ptr(&cpu_info)))
|
|
return;
|
|
__mcheck_cpu_init_generic();
|
|
__mcheck_cpu_init_timer();
|
|
}
|
|
|
|
/* Reinit MCEs after user configuration changes */
|
|
static void mce_restart(void)
|
|
{
|
|
mce_timer_delete_all();
|
|
on_each_cpu(mce_cpu_restart, NULL, 1);
|
|
}
|
|
|
|
/* Toggle features for corrected errors */
|
|
static void mce_disable_cmci(void *data)
|
|
{
|
|
if (!mce_available(raw_cpu_ptr(&cpu_info)))
|
|
return;
|
|
cmci_clear();
|
|
}
|
|
|
|
static void mce_enable_ce(void *all)
|
|
{
|
|
if (!mce_available(raw_cpu_ptr(&cpu_info)))
|
|
return;
|
|
cmci_reenable();
|
|
cmci_recheck();
|
|
if (all)
|
|
__mcheck_cpu_init_timer();
|
|
}
|
|
|
|
static struct bus_type mce_subsys = {
|
|
.name = "machinecheck",
|
|
.dev_name = "machinecheck",
|
|
};
|
|
|
|
DEFINE_PER_CPU(struct device *, mce_device);
|
|
|
|
void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
|
|
|
|
static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
|
|
{
|
|
return container_of(attr, struct mce_bank, attr);
|
|
}
|
|
|
|
static ssize_t show_bank(struct device *s, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
|
|
}
|
|
|
|
static ssize_t set_bank(struct device *s, struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
u64 new;
|
|
|
|
if (kstrtou64(buf, 0, &new) < 0)
|
|
return -EINVAL;
|
|
|
|
attr_to_bank(attr)->ctl = new;
|
|
mce_restart();
|
|
|
|
return size;
|
|
}
|
|
|
|
static ssize_t
|
|
show_trigger(struct device *s, struct device_attribute *attr, char *buf)
|
|
{
|
|
strcpy(buf, mce_helper);
|
|
strcat(buf, "\n");
|
|
return strlen(mce_helper) + 1;
|
|
}
|
|
|
|
static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
|
|
const char *buf, size_t siz)
|
|
{
|
|
char *p;
|
|
|
|
strncpy(mce_helper, buf, sizeof(mce_helper));
|
|
mce_helper[sizeof(mce_helper)-1] = 0;
|
|
p = strchr(mce_helper, '\n');
|
|
|
|
if (p)
|
|
*p = 0;
|
|
|
|
return strlen(mce_helper) + !!p;
|
|
}
|
|
|
|
static ssize_t set_ignore_ce(struct device *s,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
u64 new;
|
|
|
|
if (kstrtou64(buf, 0, &new) < 0)
|
|
return -EINVAL;
|
|
|
|
if (mca_cfg.ignore_ce ^ !!new) {
|
|
if (new) {
|
|
/* disable ce features */
|
|
mce_timer_delete_all();
|
|
on_each_cpu(mce_disable_cmci, NULL, 1);
|
|
mca_cfg.ignore_ce = true;
|
|
} else {
|
|
/* enable ce features */
|
|
mca_cfg.ignore_ce = false;
|
|
on_each_cpu(mce_enable_ce, (void *)1, 1);
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static ssize_t set_cmci_disabled(struct device *s,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
u64 new;
|
|
|
|
if (kstrtou64(buf, 0, &new) < 0)
|
|
return -EINVAL;
|
|
|
|
if (mca_cfg.cmci_disabled ^ !!new) {
|
|
if (new) {
|
|
/* disable cmci */
|
|
on_each_cpu(mce_disable_cmci, NULL, 1);
|
|
mca_cfg.cmci_disabled = true;
|
|
} else {
|
|
/* enable cmci */
|
|
mca_cfg.cmci_disabled = false;
|
|
on_each_cpu(mce_enable_ce, NULL, 1);
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static ssize_t store_int_with_restart(struct device *s,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
ssize_t ret = device_store_int(s, attr, buf, size);
|
|
mce_restart();
|
|
return ret;
|
|
}
|
|
|
|
static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
|
|
static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
|
|
static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
|
|
static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
|
|
|
|
static struct dev_ext_attribute dev_attr_check_interval = {
|
|
__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
|
|
&check_interval
|
|
};
|
|
|
|
static struct dev_ext_attribute dev_attr_ignore_ce = {
|
|
__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
|
|
&mca_cfg.ignore_ce
|
|
};
|
|
|
|
static struct dev_ext_attribute dev_attr_cmci_disabled = {
|
|
__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
|
|
&mca_cfg.cmci_disabled
|
|
};
|
|
|
|
static struct device_attribute *mce_device_attrs[] = {
|
|
&dev_attr_tolerant.attr,
|
|
&dev_attr_check_interval.attr,
|
|
&dev_attr_trigger,
|
|
&dev_attr_monarch_timeout.attr,
|
|
&dev_attr_dont_log_ce.attr,
|
|
&dev_attr_ignore_ce.attr,
|
|
&dev_attr_cmci_disabled.attr,
|
|
NULL
|
|
};
|
|
|
|
static cpumask_var_t mce_device_initialized;
|
|
|
|
static void mce_device_release(struct device *dev)
|
|
{
|
|
kfree(dev);
|
|
}
|
|
|
|
/* Per cpu device init. All of the cpus still share the same ctrl bank: */
|
|
static int mce_device_create(unsigned int cpu)
|
|
{
|
|
struct device *dev;
|
|
int err;
|
|
int i, j;
|
|
|
|
if (!mce_available(&boot_cpu_data))
|
|
return -EIO;
|
|
|
|
dev = kzalloc(sizeof *dev, GFP_KERNEL);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
dev->id = cpu;
|
|
dev->bus = &mce_subsys;
|
|
dev->release = &mce_device_release;
|
|
|
|
err = device_register(dev);
|
|
if (err) {
|
|
put_device(dev);
|
|
return err;
|
|
}
|
|
|
|
for (i = 0; mce_device_attrs[i]; i++) {
|
|
err = device_create_file(dev, mce_device_attrs[i]);
|
|
if (err)
|
|
goto error;
|
|
}
|
|
for (j = 0; j < mca_cfg.banks; j++) {
|
|
err = device_create_file(dev, &mce_banks[j].attr);
|
|
if (err)
|
|
goto error2;
|
|
}
|
|
cpumask_set_cpu(cpu, mce_device_initialized);
|
|
per_cpu(mce_device, cpu) = dev;
|
|
|
|
return 0;
|
|
error2:
|
|
while (--j >= 0)
|
|
device_remove_file(dev, &mce_banks[j].attr);
|
|
error:
|
|
while (--i >= 0)
|
|
device_remove_file(dev, mce_device_attrs[i]);
|
|
|
|
device_unregister(dev);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void mce_device_remove(unsigned int cpu)
|
|
{
|
|
struct device *dev = per_cpu(mce_device, cpu);
|
|
int i;
|
|
|
|
if (!cpumask_test_cpu(cpu, mce_device_initialized))
|
|
return;
|
|
|
|
for (i = 0; mce_device_attrs[i]; i++)
|
|
device_remove_file(dev, mce_device_attrs[i]);
|
|
|
|
for (i = 0; i < mca_cfg.banks; i++)
|
|
device_remove_file(dev, &mce_banks[i].attr);
|
|
|
|
device_unregister(dev);
|
|
cpumask_clear_cpu(cpu, mce_device_initialized);
|
|
per_cpu(mce_device, cpu) = NULL;
|
|
}
|
|
|
|
/* Make sure there are no machine checks on offlined CPUs. */
|
|
static void mce_disable_cpu(void *h)
|
|
{
|
|
unsigned long action = *(unsigned long *)h;
|
|
int i;
|
|
|
|
if (!mce_available(raw_cpu_ptr(&cpu_info)))
|
|
return;
|
|
|
|
if (!(action & CPU_TASKS_FROZEN))
|
|
cmci_clear();
|
|
for (i = 0; i < mca_cfg.banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
|
|
if (b->init)
|
|
wrmsrl(MSR_IA32_MCx_CTL(i), 0);
|
|
}
|
|
}
|
|
|
|
static void mce_reenable_cpu(void *h)
|
|
{
|
|
unsigned long action = *(unsigned long *)h;
|
|
int i;
|
|
|
|
if (!mce_available(raw_cpu_ptr(&cpu_info)))
|
|
return;
|
|
|
|
if (!(action & CPU_TASKS_FROZEN))
|
|
cmci_reenable();
|
|
for (i = 0; i < mca_cfg.banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
|
|
if (b->init)
|
|
wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
|
|
}
|
|
}
|
|
|
|
/* Get notified when a cpu comes on/off. Be hotplug friendly. */
|
|
static int
|
|
mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned long)hcpu;
|
|
struct timer_list *t = &per_cpu(mce_timer, cpu);
|
|
|
|
switch (action & ~CPU_TASKS_FROZEN) {
|
|
case CPU_ONLINE:
|
|
mce_device_create(cpu);
|
|
if (threshold_cpu_callback)
|
|
threshold_cpu_callback(action, cpu);
|
|
break;
|
|
case CPU_DEAD:
|
|
if (threshold_cpu_callback)
|
|
threshold_cpu_callback(action, cpu);
|
|
mce_device_remove(cpu);
|
|
mce_intel_hcpu_update(cpu);
|
|
|
|
/* intentionally ignoring frozen here */
|
|
if (!(action & CPU_TASKS_FROZEN))
|
|
cmci_rediscover();
|
|
break;
|
|
case CPU_DOWN_PREPARE:
|
|
smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
|
|
del_timer_sync(t);
|
|
break;
|
|
case CPU_DOWN_FAILED:
|
|
smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
|
|
mce_start_timer(cpu, t);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block mce_cpu_notifier = {
|
|
.notifier_call = mce_cpu_callback,
|
|
};
|
|
|
|
static __init void mce_init_banks(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mca_cfg.banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
struct device_attribute *a = &b->attr;
|
|
|
|
sysfs_attr_init(&a->attr);
|
|
a->attr.name = b->attrname;
|
|
snprintf(b->attrname, ATTR_LEN, "bank%d", i);
|
|
|
|
a->attr.mode = 0644;
|
|
a->show = show_bank;
|
|
a->store = set_bank;
|
|
}
|
|
}
|
|
|
|
static __init int mcheck_init_device(void)
|
|
{
|
|
int err;
|
|
int i = 0;
|
|
|
|
if (!mce_available(&boot_cpu_data)) {
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
|
|
if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
mce_init_banks();
|
|
|
|
err = subsys_system_register(&mce_subsys, NULL);
|
|
if (err)
|
|
goto err_out_mem;
|
|
|
|
cpu_notifier_register_begin();
|
|
for_each_online_cpu(i) {
|
|
err = mce_device_create(i);
|
|
if (err) {
|
|
/*
|
|
* Register notifier anyway (and do not unreg it) so
|
|
* that we don't leave undeleted timers, see notifier
|
|
* callback above.
|
|
*/
|
|
__register_hotcpu_notifier(&mce_cpu_notifier);
|
|
cpu_notifier_register_done();
|
|
goto err_device_create;
|
|
}
|
|
}
|
|
|
|
__register_hotcpu_notifier(&mce_cpu_notifier);
|
|
cpu_notifier_register_done();
|
|
|
|
register_syscore_ops(&mce_syscore_ops);
|
|
|
|
/* register character device /dev/mcelog */
|
|
err = misc_register(&mce_chrdev_device);
|
|
if (err)
|
|
goto err_register;
|
|
|
|
return 0;
|
|
|
|
err_register:
|
|
unregister_syscore_ops(&mce_syscore_ops);
|
|
|
|
err_device_create:
|
|
/*
|
|
* We didn't keep track of which devices were created above, but
|
|
* even if we had, the set of online cpus might have changed.
|
|
* Play safe and remove for every possible cpu, since
|
|
* mce_device_remove() will do the right thing.
|
|
*/
|
|
for_each_possible_cpu(i)
|
|
mce_device_remove(i);
|
|
|
|
err_out_mem:
|
|
free_cpumask_var(mce_device_initialized);
|
|
|
|
err_out:
|
|
pr_err("Unable to init device /dev/mcelog (rc: %d)\n", err);
|
|
|
|
return err;
|
|
}
|
|
device_initcall_sync(mcheck_init_device);
|
|
|
|
/*
|
|
* Old style boot options parsing. Only for compatibility.
|
|
*/
|
|
static int __init mcheck_disable(char *str)
|
|
{
|
|
mca_cfg.disabled = true;
|
|
return 1;
|
|
}
|
|
__setup("nomce", mcheck_disable);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
struct dentry *mce_get_debugfs_dir(void)
|
|
{
|
|
static struct dentry *dmce;
|
|
|
|
if (!dmce)
|
|
dmce = debugfs_create_dir("mce", NULL);
|
|
|
|
return dmce;
|
|
}
|
|
|
|
static void mce_reset(void)
|
|
{
|
|
cpu_missing = 0;
|
|
atomic_set(&mce_fake_panicked, 0);
|
|
atomic_set(&mce_executing, 0);
|
|
atomic_set(&mce_callin, 0);
|
|
atomic_set(&global_nwo, 0);
|
|
}
|
|
|
|
static int fake_panic_get(void *data, u64 *val)
|
|
{
|
|
*val = fake_panic;
|
|
return 0;
|
|
}
|
|
|
|
static int fake_panic_set(void *data, u64 val)
|
|
{
|
|
mce_reset();
|
|
fake_panic = val;
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
|
|
fake_panic_set, "%llu\n");
|
|
|
|
static int __init mcheck_debugfs_init(void)
|
|
{
|
|
struct dentry *dmce, *ffake_panic;
|
|
|
|
dmce = mce_get_debugfs_dir();
|
|
if (!dmce)
|
|
return -ENOMEM;
|
|
ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
|
|
&fake_panic_fops);
|
|
if (!ffake_panic)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(mcheck_debugfs_init);
|
|
#endif
|