linux/drivers/scsi/ufs/ufs-qcom.c
Yaniv Gardi 54b879b76e scsi: ufs-qcom: add number of lanes per direction
Different platform may have different number of lanes
for the UFS link.
Add parameter to device tree specifying how many lanes
should be configured for the UFS link.

Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Gilad Broner <gbroner@codeaurora.org>
Signed-off-by: Yaniv Gardi <ygardi@codeaurora.org>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2016-03-14 21:04:45 -04:00

1582 lines
40 KiB
C

/*
* Copyright (c) 2013-2016, Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/time.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-qcom-ufs.h>
#include "ufshcd.h"
#include "ufshcd-pltfrm.h"
#include "unipro.h"
#include "ufs-qcom.h"
#include "ufshci.h"
#define UFS_QCOM_DEFAULT_DBG_PRINT_EN \
(UFS_QCOM_DBG_PRINT_REGS_EN | UFS_QCOM_DBG_PRINT_TEST_BUS_EN)
enum {
TSTBUS_UAWM,
TSTBUS_UARM,
TSTBUS_TXUC,
TSTBUS_RXUC,
TSTBUS_DFC,
TSTBUS_TRLUT,
TSTBUS_TMRLUT,
TSTBUS_OCSC,
TSTBUS_UTP_HCI,
TSTBUS_COMBINED,
TSTBUS_WRAPPER,
TSTBUS_UNIPRO,
TSTBUS_MAX,
};
static struct ufs_qcom_host *ufs_qcom_hosts[MAX_UFS_QCOM_HOSTS];
static int ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote);
static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host);
static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba,
u32 clk_cycles);
static void ufs_qcom_dump_regs(struct ufs_hba *hba, int offset, int len,
char *prefix)
{
print_hex_dump(KERN_ERR, prefix,
len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,
16, 4, (void __force *)hba->mmio_base + offset,
len * 4, false);
}
static int ufs_qcom_get_connected_tx_lanes(struct ufs_hba *hba, u32 *tx_lanes)
{
int err = 0;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), tx_lanes);
if (err)
dev_err(hba->dev, "%s: couldn't read PA_CONNECTEDTXDATALANES %d\n",
__func__, err);
return err;
}
static int ufs_qcom_host_clk_get(struct device *dev,
const char *name, struct clk **clk_out)
{
struct clk *clk;
int err = 0;
clk = devm_clk_get(dev, name);
if (IS_ERR(clk)) {
err = PTR_ERR(clk);
dev_err(dev, "%s: failed to get %s err %d",
__func__, name, err);
} else {
*clk_out = clk;
}
return err;
}
static int ufs_qcom_host_clk_enable(struct device *dev,
const char *name, struct clk *clk)
{
int err = 0;
err = clk_prepare_enable(clk);
if (err)
dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err);
return err;
}
static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
{
if (!host->is_lane_clks_enabled)
return;
clk_disable_unprepare(host->tx_l1_sync_clk);
clk_disable_unprepare(host->tx_l0_sync_clk);
clk_disable_unprepare(host->rx_l1_sync_clk);
clk_disable_unprepare(host->rx_l0_sync_clk);
host->is_lane_clks_enabled = false;
}
static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
if (host->is_lane_clks_enabled)
return 0;
err = ufs_qcom_host_clk_enable(dev, "rx_lane0_sync_clk",
host->rx_l0_sync_clk);
if (err)
goto out;
err = ufs_qcom_host_clk_enable(dev, "tx_lane0_sync_clk",
host->tx_l0_sync_clk);
if (err)
goto disable_rx_l0;
if (host->hba->lanes_per_direction > 1) {
err = ufs_qcom_host_clk_enable(dev, "rx_lane1_sync_clk",
host->rx_l1_sync_clk);
if (err)
goto disable_tx_l0;
err = ufs_qcom_host_clk_enable(dev, "tx_lane1_sync_clk",
host->tx_l1_sync_clk);
if (err)
goto disable_rx_l1;
}
host->is_lane_clks_enabled = true;
goto out;
disable_rx_l1:
if (host->hba->lanes_per_direction > 1)
clk_disable_unprepare(host->rx_l1_sync_clk);
disable_tx_l0:
clk_disable_unprepare(host->tx_l0_sync_clk);
disable_rx_l0:
clk_disable_unprepare(host->rx_l0_sync_clk);
out:
return err;
}
static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
err = ufs_qcom_host_clk_get(dev,
"rx_lane0_sync_clk", &host->rx_l0_sync_clk);
if (err)
goto out;
err = ufs_qcom_host_clk_get(dev,
"tx_lane0_sync_clk", &host->tx_l0_sync_clk);
if (err)
goto out;
/* In case of single lane per direction, don't read lane1 clocks */
if (host->hba->lanes_per_direction > 1) {
err = ufs_qcom_host_clk_get(dev, "rx_lane1_sync_clk",
&host->rx_l1_sync_clk);
if (err)
goto out;
err = ufs_qcom_host_clk_get(dev, "tx_lane1_sync_clk",
&host->tx_l1_sync_clk);
}
out:
return err;
}
static int ufs_qcom_link_startup_post_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
u32 tx_lanes;
int err = 0;
err = ufs_qcom_get_connected_tx_lanes(hba, &tx_lanes);
if (err)
goto out;
err = ufs_qcom_phy_set_tx_lane_enable(phy, tx_lanes);
if (err)
dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable failed\n",
__func__);
out:
return err;
}
static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
{
int err;
u32 tx_fsm_val = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
do {
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
if (err || tx_fsm_val == TX_FSM_HIBERN8)
break;
/* sleep for max. 200us */
usleep_range(100, 200);
} while (time_before(jiffies, timeout));
/*
* we might have scheduled out for long during polling so
* check the state again.
*/
if (time_after(jiffies, timeout))
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
if (err) {
dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
__func__, err);
} else if (tx_fsm_val != TX_FSM_HIBERN8) {
err = tx_fsm_val;
dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
__func__, err);
}
return err;
}
static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host)
{
ufshcd_rmwl(host->hba, QUNIPRO_SEL,
ufs_qcom_cap_qunipro(host) ? QUNIPRO_SEL : 0,
REG_UFS_CFG1);
/* make sure above configuration is applied before we return */
mb();
}
static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
int ret = 0;
bool is_rate_B = (UFS_QCOM_LIMIT_HS_RATE == PA_HS_MODE_B)
? true : false;
/* Assert PHY reset and apply PHY calibration values */
ufs_qcom_assert_reset(hba);
/* provide 1ms delay to let the reset pulse propagate */
usleep_range(1000, 1100);
ret = ufs_qcom_phy_calibrate_phy(phy, is_rate_B);
if (ret) {
dev_err(hba->dev,
"%s: ufs_qcom_phy_calibrate_phy()failed, ret = %d\n",
__func__, ret);
goto out;
}
/* De-assert PHY reset and start serdes */
ufs_qcom_deassert_reset(hba);
/*
* after reset deassertion, phy will need all ref clocks,
* voltage, current to settle down before starting serdes.
*/
usleep_range(1000, 1100);
ret = ufs_qcom_phy_start_serdes(phy);
if (ret) {
dev_err(hba->dev, "%s: ufs_qcom_phy_start_serdes() failed, ret = %d\n",
__func__, ret);
goto out;
}
ret = ufs_qcom_phy_is_pcs_ready(phy);
if (ret)
dev_err(hba->dev,
"%s: is_physical_coding_sublayer_ready() failed, ret = %d\n",
__func__, ret);
ufs_qcom_select_unipro_mode(host);
out:
return ret;
}
/*
* The UTP controller has a number of internal clock gating cells (CGCs).
* Internal hardware sub-modules within the UTP controller control the CGCs.
* Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
* in a specific operation, UTP controller CGCs are by default disabled and
* this function enables them (after every UFS link startup) to save some power
* leakage.
*/
static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
{
ufshcd_writel(hba,
ufshcd_readl(hba, REG_UFS_CFG2) | REG_UFS_CFG2_CGC_EN_ALL,
REG_UFS_CFG2);
/* Ensure that HW clock gating is enabled before next operations */
mb();
}
static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err = 0;
switch (status) {
case PRE_CHANGE:
ufs_qcom_power_up_sequence(hba);
/*
* The PHY PLL output is the source of tx/rx lane symbol
* clocks, hence, enable the lane clocks only after PHY
* is initialized.
*/
err = ufs_qcom_enable_lane_clks(host);
break;
case POST_CHANGE:
/* check if UFS PHY moved from DISABLED to HIBERN8 */
err = ufs_qcom_check_hibern8(hba);
ufs_qcom_enable_hw_clk_gating(hba);
break;
default:
dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
err = -EINVAL;
break;
}
return err;
}
/**
* Returns zero for success and non-zero in case of a failure
*/
static int ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear,
u32 hs, u32 rate, bool update_link_startup_timer)
{
int ret = 0;
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_clk_info *clki;
u32 core_clk_period_in_ns;
u32 tx_clk_cycles_per_us = 0;
unsigned long core_clk_rate = 0;
u32 core_clk_cycles_per_us = 0;
static u32 pwm_fr_table[][2] = {
{UFS_PWM_G1, 0x1},
{UFS_PWM_G2, 0x1},
{UFS_PWM_G3, 0x1},
{UFS_PWM_G4, 0x1},
};
static u32 hs_fr_table_rA[][2] = {
{UFS_HS_G1, 0x1F},
{UFS_HS_G2, 0x3e},
{UFS_HS_G3, 0x7D},
};
static u32 hs_fr_table_rB[][2] = {
{UFS_HS_G1, 0x24},
{UFS_HS_G2, 0x49},
{UFS_HS_G3, 0x92},
};
/*
* The Qunipro controller does not use following registers:
* SYS1CLK_1US_REG, TX_SYMBOL_CLK_1US_REG, CLK_NS_REG &
* UFS_REG_PA_LINK_STARTUP_TIMER
* But UTP controller uses SYS1CLK_1US_REG register for Interrupt
* Aggregation logic.
*/
if (ufs_qcom_cap_qunipro(host) && !ufshcd_is_intr_aggr_allowed(hba))
goto out;
if (gear == 0) {
dev_err(hba->dev, "%s: invalid gear = %d\n", __func__, gear);
goto out_error;
}
list_for_each_entry(clki, &hba->clk_list_head, list) {
if (!strcmp(clki->name, "core_clk"))
core_clk_rate = clk_get_rate(clki->clk);
}
/* If frequency is smaller than 1MHz, set to 1MHz */
if (core_clk_rate < DEFAULT_CLK_RATE_HZ)
core_clk_rate = DEFAULT_CLK_RATE_HZ;
core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC;
if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
/*
* make sure above write gets applied before we return from
* this function.
*/
mb();
}
if (ufs_qcom_cap_qunipro(host))
goto out;
core_clk_period_in_ns = NSEC_PER_SEC / core_clk_rate;
core_clk_period_in_ns <<= OFFSET_CLK_NS_REG;
core_clk_period_in_ns &= MASK_CLK_NS_REG;
switch (hs) {
case FASTAUTO_MODE:
case FAST_MODE:
if (rate == PA_HS_MODE_A) {
if (gear > ARRAY_SIZE(hs_fr_table_rA)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rA));
goto out_error;
}
tx_clk_cycles_per_us = hs_fr_table_rA[gear-1][1];
} else if (rate == PA_HS_MODE_B) {
if (gear > ARRAY_SIZE(hs_fr_table_rB)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rB));
goto out_error;
}
tx_clk_cycles_per_us = hs_fr_table_rB[gear-1][1];
} else {
dev_err(hba->dev, "%s: invalid rate = %d\n",
__func__, rate);
goto out_error;
}
break;
case SLOWAUTO_MODE:
case SLOW_MODE:
if (gear > ARRAY_SIZE(pwm_fr_table)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(pwm_fr_table));
goto out_error;
}
tx_clk_cycles_per_us = pwm_fr_table[gear-1][1];
break;
case UNCHANGED:
default:
dev_err(hba->dev, "%s: invalid mode = %d\n", __func__, hs);
goto out_error;
}
if (ufshcd_readl(hba, REG_UFS_TX_SYMBOL_CLK_NS_US) !=
(core_clk_period_in_ns | tx_clk_cycles_per_us)) {
/* this register 2 fields shall be written at once */
ufshcd_writel(hba, core_clk_period_in_ns | tx_clk_cycles_per_us,
REG_UFS_TX_SYMBOL_CLK_NS_US);
/*
* make sure above write gets applied before we return from
* this function.
*/
mb();
}
if (update_link_startup_timer) {
ufshcd_writel(hba, ((core_clk_rate / MSEC_PER_SEC) * 100),
REG_UFS_PA_LINK_STARTUP_TIMER);
/*
* make sure that this configuration is applied before
* we return
*/
mb();
}
goto out;
out_error:
ret = -EINVAL;
out:
return ret;
}
static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
int err = 0;
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
switch (status) {
case PRE_CHANGE:
if (ufs_qcom_cfg_timers(hba, UFS_PWM_G1, SLOWAUTO_MODE,
0, true)) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
err = -EINVAL;
goto out;
}
if (ufs_qcom_cap_qunipro(host))
/*
* set unipro core clock cycles to 150 & clear clock
* divider
*/
err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba,
150);
break;
case POST_CHANGE:
ufs_qcom_link_startup_post_change(hba);
break;
default:
break;
}
out:
return err;
}
static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
int ret = 0;
if (ufs_qcom_is_link_off(hba)) {
/*
* Disable the tx/rx lane symbol clocks before PHY is
* powered down as the PLL source should be disabled
* after downstream clocks are disabled.
*/
ufs_qcom_disable_lane_clks(host);
phy_power_off(phy);
/* Assert PHY soft reset */
ufs_qcom_assert_reset(hba);
goto out;
}
/*
* If UniPro link is not active, PHY ref_clk, main PHY analog power
* rail and low noise analog power rail for PLL can be switched off.
*/
if (!ufs_qcom_is_link_active(hba)) {
ufs_qcom_disable_lane_clks(host);
phy_power_off(phy);
}
out:
return ret;
}
static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
int err;
err = phy_power_on(phy);
if (err) {
dev_err(hba->dev, "%s: failed enabling regs, err = %d\n",
__func__, err);
goto out;
}
err = ufs_qcom_enable_lane_clks(host);
if (err)
goto out;
hba->is_sys_suspended = false;
out:
return err;
}
struct ufs_qcom_dev_params {
u32 pwm_rx_gear; /* pwm rx gear to work in */
u32 pwm_tx_gear; /* pwm tx gear to work in */
u32 hs_rx_gear; /* hs rx gear to work in */
u32 hs_tx_gear; /* hs tx gear to work in */
u32 rx_lanes; /* number of rx lanes */
u32 tx_lanes; /* number of tx lanes */
u32 rx_pwr_pwm; /* rx pwm working pwr */
u32 tx_pwr_pwm; /* tx pwm working pwr */
u32 rx_pwr_hs; /* rx hs working pwr */
u32 tx_pwr_hs; /* tx hs working pwr */
u32 hs_rate; /* rate A/B to work in HS */
u32 desired_working_mode;
};
static int ufs_qcom_get_pwr_dev_param(struct ufs_qcom_dev_params *qcom_param,
struct ufs_pa_layer_attr *dev_max,
struct ufs_pa_layer_attr *agreed_pwr)
{
int min_qcom_gear;
int min_dev_gear;
bool is_dev_sup_hs = false;
bool is_qcom_max_hs = false;
if (dev_max->pwr_rx == FAST_MODE)
is_dev_sup_hs = true;
if (qcom_param->desired_working_mode == FAST) {
is_qcom_max_hs = true;
min_qcom_gear = min_t(u32, qcom_param->hs_rx_gear,
qcom_param->hs_tx_gear);
} else {
min_qcom_gear = min_t(u32, qcom_param->pwm_rx_gear,
qcom_param->pwm_tx_gear);
}
/*
* device doesn't support HS but qcom_param->desired_working_mode is
* HS, thus device and qcom_param don't agree
*/
if (!is_dev_sup_hs && is_qcom_max_hs) {
pr_err("%s: failed to agree on power mode (device doesn't support HS but requested power is HS)\n",
__func__);
return -ENOTSUPP;
} else if (is_dev_sup_hs && is_qcom_max_hs) {
/*
* since device supports HS, it supports FAST_MODE.
* since qcom_param->desired_working_mode is also HS
* then final decision (FAST/FASTAUTO) is done according
* to qcom_params as it is the restricting factor
*/
agreed_pwr->pwr_rx = agreed_pwr->pwr_tx =
qcom_param->rx_pwr_hs;
} else {
/*
* here qcom_param->desired_working_mode is PWM.
* it doesn't matter whether device supports HS or PWM,
* in both cases qcom_param->desired_working_mode will
* determine the mode
*/
agreed_pwr->pwr_rx = agreed_pwr->pwr_tx =
qcom_param->rx_pwr_pwm;
}
/*
* we would like tx to work in the minimum number of lanes
* between device capability and vendor preferences.
* the same decision will be made for rx
*/
agreed_pwr->lane_tx = min_t(u32, dev_max->lane_tx,
qcom_param->tx_lanes);
agreed_pwr->lane_rx = min_t(u32, dev_max->lane_rx,
qcom_param->rx_lanes);
/* device maximum gear is the minimum between device rx and tx gears */
min_dev_gear = min_t(u32, dev_max->gear_rx, dev_max->gear_tx);
/*
* if both device capabilities and vendor pre-defined preferences are
* both HS or both PWM then set the minimum gear to be the chosen
* working gear.
* if one is PWM and one is HS then the one that is PWM get to decide
* what is the gear, as it is the one that also decided previously what
* pwr the device will be configured to.
*/
if ((is_dev_sup_hs && is_qcom_max_hs) ||
(!is_dev_sup_hs && !is_qcom_max_hs))
agreed_pwr->gear_rx = agreed_pwr->gear_tx =
min_t(u32, min_dev_gear, min_qcom_gear);
else if (!is_dev_sup_hs)
agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_dev_gear;
else
agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_qcom_gear;
agreed_pwr->hs_rate = qcom_param->hs_rate;
return 0;
}
#ifdef CONFIG_MSM_BUS_SCALING
static int ufs_qcom_get_bus_vote(struct ufs_qcom_host *host,
const char *speed_mode)
{
struct device *dev = host->hba->dev;
struct device_node *np = dev->of_node;
int err;
const char *key = "qcom,bus-vector-names";
if (!speed_mode) {
err = -EINVAL;
goto out;
}
if (host->bus_vote.is_max_bw_needed && !!strcmp(speed_mode, "MIN"))
err = of_property_match_string(np, key, "MAX");
else
err = of_property_match_string(np, key, speed_mode);
out:
if (err < 0)
dev_err(dev, "%s: Invalid %s mode %d\n",
__func__, speed_mode, err);
return err;
}
static void ufs_qcom_get_speed_mode(struct ufs_pa_layer_attr *p, char *result)
{
int gear = max_t(u32, p->gear_rx, p->gear_tx);
int lanes = max_t(u32, p->lane_rx, p->lane_tx);
int pwr;
/* default to PWM Gear 1, Lane 1 if power mode is not initialized */
if (!gear)
gear = 1;
if (!lanes)
lanes = 1;
if (!p->pwr_rx && !p->pwr_tx) {
pwr = SLOWAUTO_MODE;
snprintf(result, BUS_VECTOR_NAME_LEN, "MIN");
} else if (p->pwr_rx == FAST_MODE || p->pwr_rx == FASTAUTO_MODE ||
p->pwr_tx == FAST_MODE || p->pwr_tx == FASTAUTO_MODE) {
pwr = FAST_MODE;
snprintf(result, BUS_VECTOR_NAME_LEN, "%s_R%s_G%d_L%d", "HS",
p->hs_rate == PA_HS_MODE_B ? "B" : "A", gear, lanes);
} else {
pwr = SLOW_MODE;
snprintf(result, BUS_VECTOR_NAME_LEN, "%s_G%d_L%d",
"PWM", gear, lanes);
}
}
static int ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote)
{
int err = 0;
if (vote != host->bus_vote.curr_vote) {
err = msm_bus_scale_client_update_request(
host->bus_vote.client_handle, vote);
if (err) {
dev_err(host->hba->dev,
"%s: msm_bus_scale_client_update_request() failed: bus_client_handle=0x%x, vote=%d, err=%d\n",
__func__, host->bus_vote.client_handle,
vote, err);
goto out;
}
host->bus_vote.curr_vote = vote;
}
out:
return err;
}
static int ufs_qcom_update_bus_bw_vote(struct ufs_qcom_host *host)
{
int vote;
int err = 0;
char mode[BUS_VECTOR_NAME_LEN];
ufs_qcom_get_speed_mode(&host->dev_req_params, mode);
vote = ufs_qcom_get_bus_vote(host, mode);
if (vote >= 0)
err = ufs_qcom_set_bus_vote(host, vote);
else
err = vote;
if (err)
dev_err(host->hba->dev, "%s: failed %d\n", __func__, err);
else
host->bus_vote.saved_vote = vote;
return err;
}
static ssize_t
show_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
return snprintf(buf, PAGE_SIZE, "%u\n",
host->bus_vote.is_max_bw_needed);
}
static ssize_t
store_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
uint32_t value;
if (!kstrtou32(buf, 0, &value)) {
host->bus_vote.is_max_bw_needed = !!value;
ufs_qcom_update_bus_bw_vote(host);
}
return count;
}
static int ufs_qcom_bus_register(struct ufs_qcom_host *host)
{
int err;
struct msm_bus_scale_pdata *bus_pdata;
struct device *dev = host->hba->dev;
struct platform_device *pdev = to_platform_device(dev);
struct device_node *np = dev->of_node;
bus_pdata = msm_bus_cl_get_pdata(pdev);
if (!bus_pdata) {
dev_err(dev, "%s: failed to get bus vectors\n", __func__);
err = -ENODATA;
goto out;
}
err = of_property_count_strings(np, "qcom,bus-vector-names");
if (err < 0 || err != bus_pdata->num_usecases) {
dev_err(dev, "%s: qcom,bus-vector-names not specified correctly %d\n",
__func__, err);
goto out;
}
host->bus_vote.client_handle = msm_bus_scale_register_client(bus_pdata);
if (!host->bus_vote.client_handle) {
dev_err(dev, "%s: msm_bus_scale_register_client failed\n",
__func__);
err = -EFAULT;
goto out;
}
/* cache the vote index for minimum and maximum bandwidth */
host->bus_vote.min_bw_vote = ufs_qcom_get_bus_vote(host, "MIN");
host->bus_vote.max_bw_vote = ufs_qcom_get_bus_vote(host, "MAX");
host->bus_vote.max_bus_bw.show = show_ufs_to_mem_max_bus_bw;
host->bus_vote.max_bus_bw.store = store_ufs_to_mem_max_bus_bw;
sysfs_attr_init(&host->bus_vote.max_bus_bw.attr);
host->bus_vote.max_bus_bw.attr.name = "max_bus_bw";
host->bus_vote.max_bus_bw.attr.mode = S_IRUGO | S_IWUSR;
err = device_create_file(dev, &host->bus_vote.max_bus_bw);
out:
return err;
}
#else /* CONFIG_MSM_BUS_SCALING */
static int ufs_qcom_update_bus_bw_vote(struct ufs_qcom_host *host)
{
return 0;
}
static int ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote)
{
return 0;
}
static int ufs_qcom_bus_register(struct ufs_qcom_host *host)
{
return 0;
}
#endif /* CONFIG_MSM_BUS_SCALING */
static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable)
{
if (host->dev_ref_clk_ctrl_mmio &&
(enable ^ host->is_dev_ref_clk_enabled)) {
u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio);
if (enable)
temp |= host->dev_ref_clk_en_mask;
else
temp &= ~host->dev_ref_clk_en_mask;
/*
* If we are here to disable this clock it might be immediately
* after entering into hibern8 in which case we need to make
* sure that device ref_clk is active at least 1us after the
* hibern8 enter.
*/
if (!enable)
udelay(1);
writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio);
/* ensure that ref_clk is enabled/disabled before we return */
wmb();
/*
* If we call hibern8 exit after this, we need to make sure that
* device ref_clk is stable for at least 1us before the hibern8
* exit command.
*/
if (enable)
udelay(1);
host->is_dev_ref_clk_enabled = enable;
}
}
static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
u32 val;
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
struct ufs_qcom_dev_params ufs_qcom_cap;
int ret = 0;
int res = 0;
if (!dev_req_params) {
pr_err("%s: incoming dev_req_params is NULL\n", __func__);
ret = -EINVAL;
goto out;
}
switch (status) {
case PRE_CHANGE:
ufs_qcom_cap.tx_lanes = UFS_QCOM_LIMIT_NUM_LANES_TX;
ufs_qcom_cap.rx_lanes = UFS_QCOM_LIMIT_NUM_LANES_RX;
ufs_qcom_cap.hs_rx_gear = UFS_QCOM_LIMIT_HSGEAR_RX;
ufs_qcom_cap.hs_tx_gear = UFS_QCOM_LIMIT_HSGEAR_TX;
ufs_qcom_cap.pwm_rx_gear = UFS_QCOM_LIMIT_PWMGEAR_RX;
ufs_qcom_cap.pwm_tx_gear = UFS_QCOM_LIMIT_PWMGEAR_TX;
ufs_qcom_cap.rx_pwr_pwm = UFS_QCOM_LIMIT_RX_PWR_PWM;
ufs_qcom_cap.tx_pwr_pwm = UFS_QCOM_LIMIT_TX_PWR_PWM;
ufs_qcom_cap.rx_pwr_hs = UFS_QCOM_LIMIT_RX_PWR_HS;
ufs_qcom_cap.tx_pwr_hs = UFS_QCOM_LIMIT_TX_PWR_HS;
ufs_qcom_cap.hs_rate = UFS_QCOM_LIMIT_HS_RATE;
ufs_qcom_cap.desired_working_mode =
UFS_QCOM_LIMIT_DESIRED_MODE;
if (host->hw_ver.major == 0x1) {
/*
* HS-G3 operations may not reliably work on legacy QCOM
* UFS host controller hardware even though capability
* exchange during link startup phase may end up
* negotiating maximum supported gear as G3.
* Hence downgrade the maximum supported gear to HS-G2.
*/
if (ufs_qcom_cap.hs_tx_gear > UFS_HS_G2)
ufs_qcom_cap.hs_tx_gear = UFS_HS_G2;
if (ufs_qcom_cap.hs_rx_gear > UFS_HS_G2)
ufs_qcom_cap.hs_rx_gear = UFS_HS_G2;
}
ret = ufs_qcom_get_pwr_dev_param(&ufs_qcom_cap,
dev_max_params,
dev_req_params);
if (ret) {
pr_err("%s: failed to determine capabilities\n",
__func__);
goto out;
}
break;
case POST_CHANGE:
if (ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx,
dev_req_params->pwr_rx,
dev_req_params->hs_rate, false)) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
/*
* we return error code at the end of the routine,
* but continue to configure UFS_PHY_TX_LANE_ENABLE
* and bus voting as usual
*/
ret = -EINVAL;
}
val = ~(MAX_U32 << dev_req_params->lane_tx);
res = ufs_qcom_phy_set_tx_lane_enable(phy, val);
if (res) {
dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable() failed res = %d\n",
__func__, res);
ret = res;
}
/* cache the power mode parameters to use internally */
memcpy(&host->dev_req_params,
dev_req_params, sizeof(*dev_req_params));
ufs_qcom_update_bus_bw_vote(host);
break;
default:
ret = -EINVAL;
break;
}
out:
return ret;
}
static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (host->hw_ver.major == 0x1)
return UFSHCI_VERSION_11;
else
return UFSHCI_VERSION_20;
}
/**
* ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
* @hba: host controller instance
*
* QCOM UFS host controller might have some non standard behaviours (quirks)
* than what is specified by UFSHCI specification. Advertise all such
* quirks to standard UFS host controller driver so standard takes them into
* account.
*/
static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (host->hw_ver.major == 0x01) {
hba->quirks |= UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS
| UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP
| UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE;
if (host->hw_ver.minor == 0x0001 && host->hw_ver.step == 0x0001)
hba->quirks |= UFSHCD_QUIRK_BROKEN_INTR_AGGR;
hba->quirks |= UFSHCD_QUIRK_BROKEN_LCC;
}
if (host->hw_ver.major >= 0x2) {
hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
if (!ufs_qcom_cap_qunipro(host))
/* Legacy UniPro mode still need following quirks */
hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS
| UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE
| UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP);
}
}
static void ufs_qcom_set_caps(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
hba->caps |= UFSHCD_CAP_CLK_SCALING;
hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
if (host->hw_ver.major >= 0x2) {
host->caps = UFS_QCOM_CAP_QUNIPRO |
UFS_QCOM_CAP_RETAIN_SEC_CFG_AFTER_PWR_COLLAPSE;
}
}
/**
* ufs_qcom_setup_clocks - enables/disable clocks
* @hba: host controller instance
* @on: If true, enable clocks else disable them.
*
* Returns 0 on success, non-zero on failure.
*/
static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err;
int vote = 0;
/*
* In case ufs_qcom_init() is not yet done, simply ignore.
* This ufs_qcom_setup_clocks() shall be called from
* ufs_qcom_init() after init is done.
*/
if (!host)
return 0;
if (on) {
err = ufs_qcom_phy_enable_iface_clk(host->generic_phy);
if (err)
goto out;
err = ufs_qcom_phy_enable_ref_clk(host->generic_phy);
if (err) {
dev_err(hba->dev, "%s enable phy ref clock failed, err=%d\n",
__func__, err);
ufs_qcom_phy_disable_iface_clk(host->generic_phy);
goto out;
}
vote = host->bus_vote.saved_vote;
if (vote == host->bus_vote.min_bw_vote)
ufs_qcom_update_bus_bw_vote(host);
} else {
/* M-PHY RMMI interface clocks can be turned off */
ufs_qcom_phy_disable_iface_clk(host->generic_phy);
if (!ufs_qcom_is_link_active(hba))
/* disable device ref_clk */
ufs_qcom_dev_ref_clk_ctrl(host, false);
vote = host->bus_vote.min_bw_vote;
}
err = ufs_qcom_set_bus_vote(host, vote);
if (err)
dev_err(hba->dev, "%s: set bus vote failed %d\n",
__func__, err);
out:
return err;
}
#define ANDROID_BOOT_DEV_MAX 30
static char android_boot_dev[ANDROID_BOOT_DEV_MAX];
#ifndef MODULE
static int __init get_android_boot_dev(char *str)
{
strlcpy(android_boot_dev, str, ANDROID_BOOT_DEV_MAX);
return 1;
}
__setup("androidboot.bootdevice=", get_android_boot_dev);
#endif
/**
* ufs_qcom_init - bind phy with controller
* @hba: host controller instance
*
* Binds PHY with controller and powers up PHY enabling clocks
* and regulators.
*
* Returns -EPROBE_DEFER if binding fails, returns negative error
* on phy power up failure and returns zero on success.
*/
static int ufs_qcom_init(struct ufs_hba *hba)
{
int err;
struct device *dev = hba->dev;
struct platform_device *pdev = to_platform_device(dev);
struct ufs_qcom_host *host;
struct resource *res;
if (strlen(android_boot_dev) && strcmp(android_boot_dev, dev_name(dev)))
return -ENODEV;
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host) {
err = -ENOMEM;
dev_err(dev, "%s: no memory for qcom ufs host\n", __func__);
goto out;
}
/* Make a two way bind between the qcom host and the hba */
host->hba = hba;
ufshcd_set_variant(hba, host);
/*
* voting/devoting device ref_clk source is time consuming hence
* skip devoting it during aggressive clock gating. This clock
* will still be gated off during runtime suspend.
*/
host->generic_phy = devm_phy_get(dev, "ufsphy");
if (IS_ERR(host->generic_phy)) {
err = PTR_ERR(host->generic_phy);
dev_err(dev, "%s: PHY get failed %d\n", __func__, err);
goto out;
}
err = ufs_qcom_bus_register(host);
if (err)
goto out_host_free;
ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
&host->hw_ver.minor, &host->hw_ver.step);
/*
* for newer controllers, device reference clock control bit has
* moved inside UFS controller register address space itself.
*/
if (host->hw_ver.major >= 0x02) {
host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
host->dev_ref_clk_en_mask = BIT(26);
} else {
/* "dev_ref_clk_ctrl_mem" is optional resource */
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (res) {
host->dev_ref_clk_ctrl_mmio =
devm_ioremap_resource(dev, res);
if (IS_ERR(host->dev_ref_clk_ctrl_mmio)) {
dev_warn(dev,
"%s: could not map dev_ref_clk_ctrl_mmio, err %ld\n",
__func__,
PTR_ERR(host->dev_ref_clk_ctrl_mmio));
host->dev_ref_clk_ctrl_mmio = NULL;
}
host->dev_ref_clk_en_mask = BIT(5);
}
}
/* update phy revision information before calling phy_init() */
ufs_qcom_phy_save_controller_version(host->generic_phy,
host->hw_ver.major, host->hw_ver.minor, host->hw_ver.step);
phy_init(host->generic_phy);
err = phy_power_on(host->generic_phy);
if (err)
goto out_unregister_bus;
err = ufs_qcom_init_lane_clks(host);
if (err)
goto out_disable_phy;
ufs_qcom_set_caps(hba);
ufs_qcom_advertise_quirks(hba);
ufs_qcom_setup_clocks(hba, true);
if (hba->dev->id < MAX_UFS_QCOM_HOSTS)
ufs_qcom_hosts[hba->dev->id] = host;
host->dbg_print_en |= UFS_QCOM_DEFAULT_DBG_PRINT_EN;
ufs_qcom_get_default_testbus_cfg(host);
err = ufs_qcom_testbus_config(host);
if (err) {
dev_warn(dev, "%s: failed to configure the testbus %d\n",
__func__, err);
err = 0;
}
goto out;
out_disable_phy:
phy_power_off(host->generic_phy);
out_unregister_bus:
phy_exit(host->generic_phy);
out_host_free:
devm_kfree(dev, host);
ufshcd_set_variant(hba, NULL);
out:
return err;
}
static void ufs_qcom_exit(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
ufs_qcom_disable_lane_clks(host);
phy_power_off(host->generic_phy);
}
static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba,
u32 clk_cycles)
{
int err;
u32 core_clk_ctrl_reg;
if (clk_cycles > DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK)
return -EINVAL;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
&core_clk_ctrl_reg);
if (err)
goto out;
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK;
core_clk_ctrl_reg |= clk_cycles;
/* Clear CORE_CLK_DIV_EN */
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
err = ufshcd_dme_set(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
core_clk_ctrl_reg);
out:
return err;
}
static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba)
{
/* nothing to do as of now */
return 0;
}
static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (!ufs_qcom_cap_qunipro(host))
return 0;
/* set unipro core clock cycles to 150 and clear clock divider */
return ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 150);
}
static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err;
u32 core_clk_ctrl_reg;
if (!ufs_qcom_cap_qunipro(host))
return 0;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
&core_clk_ctrl_reg);
/* make sure CORE_CLK_DIV_EN is cleared */
if (!err &&
(core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) {
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
err = ufshcd_dme_set(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
core_clk_ctrl_reg);
}
return err;
}
static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (!ufs_qcom_cap_qunipro(host))
return 0;
/* set unipro core clock cycles to 75 and clear clock divider */
return ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 75);
}
static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba,
bool scale_up, enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_pa_layer_attr *dev_req_params = &host->dev_req_params;
int err = 0;
if (status == PRE_CHANGE) {
if (scale_up)
err = ufs_qcom_clk_scale_up_pre_change(hba);
else
err = ufs_qcom_clk_scale_down_pre_change(hba);
} else {
if (scale_up)
err = ufs_qcom_clk_scale_up_post_change(hba);
else
err = ufs_qcom_clk_scale_down_post_change(hba);
if (err || !dev_req_params)
goto out;
ufs_qcom_cfg_timers(hba,
dev_req_params->gear_rx,
dev_req_params->pwr_rx,
dev_req_params->hs_rate,
false);
ufs_qcom_update_bus_bw_vote(host);
}
out:
return err;
}
static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host)
{
/* provide a legal default configuration */
host->testbus.select_major = TSTBUS_UAWM;
host->testbus.select_minor = 1;
}
static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host)
{
if (host->testbus.select_major >= TSTBUS_MAX) {
dev_err(host->hba->dev,
"%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n",
__func__, host->testbus.select_major);
return false;
}
/*
* Not performing check for each individual select_major
* mappings of select_minor, since there is no harm in
* configuring a non-existent select_minor
*/
if (host->testbus.select_minor > 0x1F) {
dev_err(host->hba->dev,
"%s: 0x%05X is not a legal testbus option\n",
__func__, host->testbus.select_minor);
return false;
}
return true;
}
int ufs_qcom_testbus_config(struct ufs_qcom_host *host)
{
int reg;
int offset;
u32 mask = TEST_BUS_SUB_SEL_MASK;
if (!host)
return -EINVAL;
if (!ufs_qcom_testbus_cfg_is_ok(host))
return -EPERM;
switch (host->testbus.select_major) {
case TSTBUS_UAWM:
reg = UFS_TEST_BUS_CTRL_0;
offset = 24;
break;
case TSTBUS_UARM:
reg = UFS_TEST_BUS_CTRL_0;
offset = 16;
break;
case TSTBUS_TXUC:
reg = UFS_TEST_BUS_CTRL_0;
offset = 8;
break;
case TSTBUS_RXUC:
reg = UFS_TEST_BUS_CTRL_0;
offset = 0;
break;
case TSTBUS_DFC:
reg = UFS_TEST_BUS_CTRL_1;
offset = 24;
break;
case TSTBUS_TRLUT:
reg = UFS_TEST_BUS_CTRL_1;
offset = 16;
break;
case TSTBUS_TMRLUT:
reg = UFS_TEST_BUS_CTRL_1;
offset = 8;
break;
case TSTBUS_OCSC:
reg = UFS_TEST_BUS_CTRL_1;
offset = 0;
break;
case TSTBUS_WRAPPER:
reg = UFS_TEST_BUS_CTRL_2;
offset = 16;
break;
case TSTBUS_COMBINED:
reg = UFS_TEST_BUS_CTRL_2;
offset = 8;
break;
case TSTBUS_UTP_HCI:
reg = UFS_TEST_BUS_CTRL_2;
offset = 0;
break;
case TSTBUS_UNIPRO:
reg = UFS_UNIPRO_CFG;
offset = 1;
break;
/*
* No need for a default case, since
* ufs_qcom_testbus_cfg_is_ok() checks that the configuration
* is legal
*/
}
mask <<= offset;
pm_runtime_get_sync(host->hba->dev);
ufshcd_hold(host->hba, false);
ufshcd_rmwl(host->hba, TEST_BUS_SEL,
(u32)host->testbus.select_major << 19,
REG_UFS_CFG1);
ufshcd_rmwl(host->hba, mask,
(u32)host->testbus.select_minor << offset,
reg);
ufshcd_release(host->hba);
pm_runtime_put_sync(host->hba->dev);
return 0;
}
static void ufs_qcom_testbus_read(struct ufs_hba *hba)
{
ufs_qcom_dump_regs(hba, UFS_TEST_BUS, 1, "UFS_TEST_BUS ");
}
static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba)
{
ufs_qcom_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16,
"HCI Vendor Specific Registers ");
ufs_qcom_testbus_read(hba);
}
/**
* struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
*
* The variant operations configure the necessary controller and PHY
* handshake during initialization.
*/
static struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
.name = "qcom",
.init = ufs_qcom_init,
.exit = ufs_qcom_exit,
.get_ufs_hci_version = ufs_qcom_get_ufs_hci_version,
.clk_scale_notify = ufs_qcom_clk_scale_notify,
.setup_clocks = ufs_qcom_setup_clocks,
.hce_enable_notify = ufs_qcom_hce_enable_notify,
.link_startup_notify = ufs_qcom_link_startup_notify,
.pwr_change_notify = ufs_qcom_pwr_change_notify,
.suspend = ufs_qcom_suspend,
.resume = ufs_qcom_resume,
.dbg_register_dump = ufs_qcom_dump_dbg_regs,
};
/**
* ufs_qcom_probe - probe routine of the driver
* @pdev: pointer to Platform device handle
*
* Return zero for success and non-zero for failure
*/
static int ufs_qcom_probe(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
/* Perform generic probe */
err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops);
if (err)
dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err);
return err;
}
/**
* ufs_qcom_remove - set driver_data of the device to NULL
* @pdev: pointer to platform device handle
*
* Always return 0
*/
static int ufs_qcom_remove(struct platform_device *pdev)
{
struct ufs_hba *hba = platform_get_drvdata(pdev);
pm_runtime_get_sync(&(pdev)->dev);
ufshcd_remove(hba);
return 0;
}
static const struct of_device_id ufs_qcom_of_match[] = {
{ .compatible = "qcom,ufshc"},
{},
};
static const struct dev_pm_ops ufs_qcom_pm_ops = {
.suspend = ufshcd_pltfrm_suspend,
.resume = ufshcd_pltfrm_resume,
.runtime_suspend = ufshcd_pltfrm_runtime_suspend,
.runtime_resume = ufshcd_pltfrm_runtime_resume,
.runtime_idle = ufshcd_pltfrm_runtime_idle,
};
static struct platform_driver ufs_qcom_pltform = {
.probe = ufs_qcom_probe,
.remove = ufs_qcom_remove,
.shutdown = ufshcd_pltfrm_shutdown,
.driver = {
.name = "ufshcd-qcom",
.pm = &ufs_qcom_pm_ops,
.of_match_table = of_match_ptr(ufs_qcom_of_match),
},
};
module_platform_driver(ufs_qcom_pltform);
MODULE_LICENSE("GPL v2");