linux/mm/slub.c
Christoph Lameter 1941b31482 Reenable NUMA policy support in the slab allocator
Revert commit 8014c46ad9 ("slub: use alloc_pages_node() in alloc_slab_page()").

The patch disabled the numa policy support in the slab allocator. It
did not consider that alloc_pages() uses memory policies but
alloc_pages_node() does not.

As a result of this patch slab memory allocations are no longer spread via
interleave policy across all available NUMA nodes on bootup. Instead
all slab memory is allocated close to the boot processor. This leads to
an imbalance of memory accesses on NUMA systems.

Also applications using MPOL_INTERLEAVE as a memory policy will no longer
spread slab allocations over all nodes in the interleave set but allocate
memory locally. This may also result in unbalanced allocations
on a single numa node.

SLUB does not apply memory policies to individual object allocations.
However, it relies on the page allocators support of memory policies
through alloc_pages() to do the NUMA memory allocations on a per
folio or page level. SLUB also applies memory policies when retrieving
partial allocated slab pages from the partial list.

Fixes: 8014c46ad9 ("slub: use alloc_pages_node() in alloc_slab_page()")
Signed-off-by: Christoph Lameter <cl@gentwo.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-08-26 21:42:57 +02:00

7311 lines
183 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* SLUB: A slab allocator that limits cache line use instead of queuing
* objects in per cpu and per node lists.
*
* The allocator synchronizes using per slab locks or atomic operations
* and only uses a centralized lock to manage a pool of partial slabs.
*
* (C) 2007 SGI, Christoph Lameter
* (C) 2011 Linux Foundation, Christoph Lameter
*/
#include <linux/mm.h>
#include <linux/swap.h> /* mm_account_reclaimed_pages() */
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/swab.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include "slab.h"
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/kasan.h>
#include <linux/kmsan.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/stackdepot.h>
#include <linux/debugobjects.h>
#include <linux/kallsyms.h>
#include <linux/kfence.h>
#include <linux/memory.h>
#include <linux/math64.h>
#include <linux/fault-inject.h>
#include <linux/kmemleak.h>
#include <linux/stacktrace.h>
#include <linux/prefetch.h>
#include <linux/memcontrol.h>
#include <linux/random.h>
#include <kunit/test.h>
#include <kunit/test-bug.h>
#include <linux/sort.h>
#include <linux/debugfs.h>
#include <trace/events/kmem.h>
#include "internal.h"
/*
* Lock order:
* 1. slab_mutex (Global Mutex)
* 2. node->list_lock (Spinlock)
* 3. kmem_cache->cpu_slab->lock (Local lock)
* 4. slab_lock(slab) (Only on some arches)
* 5. object_map_lock (Only for debugging)
*
* slab_mutex
*
* The role of the slab_mutex is to protect the list of all the slabs
* and to synchronize major metadata changes to slab cache structures.
* Also synchronizes memory hotplug callbacks.
*
* slab_lock
*
* The slab_lock is a wrapper around the page lock, thus it is a bit
* spinlock.
*
* The slab_lock is only used on arches that do not have the ability
* to do a cmpxchg_double. It only protects:
*
* A. slab->freelist -> List of free objects in a slab
* B. slab->inuse -> Number of objects in use
* C. slab->objects -> Number of objects in slab
* D. slab->frozen -> frozen state
*
* Frozen slabs
*
* If a slab is frozen then it is exempt from list management. It is
* the cpu slab which is actively allocated from by the processor that
* froze it and it is not on any list. The processor that froze the
* slab is the one who can perform list operations on the slab. Other
* processors may put objects onto the freelist but the processor that
* froze the slab is the only one that can retrieve the objects from the
* slab's freelist.
*
* CPU partial slabs
*
* The partially empty slabs cached on the CPU partial list are used
* for performance reasons, which speeds up the allocation process.
* These slabs are not frozen, but are also exempt from list management,
* by clearing the PG_workingset flag when moving out of the node
* partial list. Please see __slab_free() for more details.
*
* To sum up, the current scheme is:
* - node partial slab: PG_Workingset && !frozen
* - cpu partial slab: !PG_Workingset && !frozen
* - cpu slab: !PG_Workingset && frozen
* - full slab: !PG_Workingset && !frozen
*
* list_lock
*
* The list_lock protects the partial and full list on each node and
* the partial slab counter. If taken then no new slabs may be added or
* removed from the lists nor make the number of partial slabs be modified.
* (Note that the total number of slabs is an atomic value that may be
* modified without taking the list lock).
*
* The list_lock is a centralized lock and thus we avoid taking it as
* much as possible. As long as SLUB does not have to handle partial
* slabs, operations can continue without any centralized lock. F.e.
* allocating a long series of objects that fill up slabs does not require
* the list lock.
*
* For debug caches, all allocations are forced to go through a list_lock
* protected region to serialize against concurrent validation.
*
* cpu_slab->lock local lock
*
* This locks protect slowpath manipulation of all kmem_cache_cpu fields
* except the stat counters. This is a percpu structure manipulated only by
* the local cpu, so the lock protects against being preempted or interrupted
* by an irq. Fast path operations rely on lockless operations instead.
*
* On PREEMPT_RT, the local lock neither disables interrupts nor preemption
* which means the lockless fastpath cannot be used as it might interfere with
* an in-progress slow path operations. In this case the local lock is always
* taken but it still utilizes the freelist for the common operations.
*
* lockless fastpaths
*
* The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
* are fully lockless when satisfied from the percpu slab (and when
* cmpxchg_double is possible to use, otherwise slab_lock is taken).
* They also don't disable preemption or migration or irqs. They rely on
* the transaction id (tid) field to detect being preempted or moved to
* another cpu.
*
* irq, preemption, migration considerations
*
* Interrupts are disabled as part of list_lock or local_lock operations, or
* around the slab_lock operation, in order to make the slab allocator safe
* to use in the context of an irq.
*
* In addition, preemption (or migration on PREEMPT_RT) is disabled in the
* allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
* local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
* doesn't have to be revalidated in each section protected by the local lock.
*
* SLUB assigns one slab for allocation to each processor.
* Allocations only occur from these slabs called cpu slabs.
*
* Slabs with free elements are kept on a partial list and during regular
* operations no list for full slabs is used. If an object in a full slab is
* freed then the slab will show up again on the partial lists.
* We track full slabs for debugging purposes though because otherwise we
* cannot scan all objects.
*
* Slabs are freed when they become empty. Teardown and setup is
* minimal so we rely on the page allocators per cpu caches for
* fast frees and allocs.
*
* slab->frozen The slab is frozen and exempt from list processing.
* This means that the slab is dedicated to a purpose
* such as satisfying allocations for a specific
* processor. Objects may be freed in the slab while
* it is frozen but slab_free will then skip the usual
* list operations. It is up to the processor holding
* the slab to integrate the slab into the slab lists
* when the slab is no longer needed.
*
* One use of this flag is to mark slabs that are
* used for allocations. Then such a slab becomes a cpu
* slab. The cpu slab may be equipped with an additional
* freelist that allows lockless access to
* free objects in addition to the regular freelist
* that requires the slab lock.
*
* SLAB_DEBUG_FLAGS Slab requires special handling due to debug
* options set. This moves slab handling out of
* the fast path and disables lockless freelists.
*/
/*
* We could simply use migrate_disable()/enable() but as long as it's a
* function call even on !PREEMPT_RT, use inline preempt_disable() there.
*/
#ifndef CONFIG_PREEMPT_RT
#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
#define USE_LOCKLESS_FAST_PATH() (true)
#else
#define slub_get_cpu_ptr(var) \
({ \
migrate_disable(); \
this_cpu_ptr(var); \
})
#define slub_put_cpu_ptr(var) \
do { \
(void)(var); \
migrate_enable(); \
} while (0)
#define USE_LOCKLESS_FAST_PATH() (false)
#endif
#ifndef CONFIG_SLUB_TINY
#define __fastpath_inline __always_inline
#else
#define __fastpath_inline
#endif
#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
#endif /* CONFIG_SLUB_DEBUG */
/* Structure holding parameters for get_partial() call chain */
struct partial_context {
gfp_t flags;
unsigned int orig_size;
void *object;
};
static inline bool kmem_cache_debug(struct kmem_cache *s)
{
return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
}
static inline bool slub_debug_orig_size(struct kmem_cache *s)
{
return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
(s->flags & SLAB_KMALLOC));
}
void *fixup_red_left(struct kmem_cache *s, void *p)
{
if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
p += s->red_left_pad;
return p;
}
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
return !kmem_cache_debug(s);
#else
return false;
#endif
}
/*
* Issues still to be resolved:
*
* - Support PAGE_ALLOC_DEBUG. Should be easy to do.
*
* - Variable sizing of the per node arrays
*/
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG
#ifndef CONFIG_SLUB_TINY
/*
* Minimum number of partial slabs. These will be left on the partial
* lists even if they are empty. kmem_cache_shrink may reclaim them.
*/
#define MIN_PARTIAL 5
/*
* Maximum number of desirable partial slabs.
* The existence of more partial slabs makes kmem_cache_shrink
* sort the partial list by the number of objects in use.
*/
#define MAX_PARTIAL 10
#else
#define MIN_PARTIAL 0
#define MAX_PARTIAL 0
#endif
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
SLAB_POISON | SLAB_STORE_USER)
/*
* These debug flags cannot use CMPXCHG because there might be consistency
* issues when checking or reading debug information
*/
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
SLAB_TRACE)
/*
* Debugging flags that require metadata to be stored in the slab. These get
* disabled when slab_debug=O is used and a cache's min order increases with
* metadata.
*/
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#define OO_SHIFT 16
#define OO_MASK ((1 << OO_SHIFT) - 1)
#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
/* Internal SLUB flags */
/* Poison object */
#define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
/* Use cmpxchg_double */
#ifdef system_has_freelist_aba
#define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
#else
#define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
#endif
/*
* Tracking user of a slab.
*/
#define TRACK_ADDRS_COUNT 16
struct track {
unsigned long addr; /* Called from address */
#ifdef CONFIG_STACKDEPOT
depot_stack_handle_t handle;
#endif
int cpu; /* Was running on cpu */
int pid; /* Pid context */
unsigned long when; /* When did the operation occur */
};
enum track_item { TRACK_ALLOC, TRACK_FREE };
#ifdef SLAB_SUPPORTS_SYSFS
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
#else
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
{ return 0; }
#endif
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
static void debugfs_slab_add(struct kmem_cache *);
#else
static inline void debugfs_slab_add(struct kmem_cache *s) { }
#endif
enum stat_item {
ALLOC_FASTPATH, /* Allocation from cpu slab */
ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
FREE_FASTPATH, /* Free to cpu slab */
FREE_SLOWPATH, /* Freeing not to cpu slab */
FREE_FROZEN, /* Freeing to frozen slab */
FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
FREE_REMOVE_PARTIAL, /* Freeing removes last object */
ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
ALLOC_SLAB, /* Cpu slab acquired from page allocator */
ALLOC_REFILL, /* Refill cpu slab from slab freelist */
ALLOC_NODE_MISMATCH, /* Switching cpu slab */
FREE_SLAB, /* Slab freed to the page allocator */
CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
DEACTIVATE_BYPASS, /* Implicit deactivation */
ORDER_FALLBACK, /* Number of times fallback was necessary */
CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
CPU_PARTIAL_FREE, /* Refill cpu partial on free */
CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
NR_SLUB_STAT_ITEMS
};
#ifndef CONFIG_SLUB_TINY
/*
* When changing the layout, make sure freelist and tid are still compatible
* with this_cpu_cmpxchg_double() alignment requirements.
*/
struct kmem_cache_cpu {
union {
struct {
void **freelist; /* Pointer to next available object */
unsigned long tid; /* Globally unique transaction id */
};
freelist_aba_t freelist_tid;
};
struct slab *slab; /* The slab from which we are allocating */
#ifdef CONFIG_SLUB_CPU_PARTIAL
struct slab *partial; /* Partially allocated slabs */
#endif
local_lock_t lock; /* Protects the fields above */
#ifdef CONFIG_SLUB_STATS
unsigned int stat[NR_SLUB_STAT_ITEMS];
#endif
};
#endif /* CONFIG_SLUB_TINY */
static inline void stat(const struct kmem_cache *s, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
/*
* The rmw is racy on a preemptible kernel but this is acceptable, so
* avoid this_cpu_add()'s irq-disable overhead.
*/
raw_cpu_inc(s->cpu_slab->stat[si]);
#endif
}
static inline
void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
{
#ifdef CONFIG_SLUB_STATS
raw_cpu_add(s->cpu_slab->stat[si], v);
#endif
}
/*
* The slab lists for all objects.
*/
struct kmem_cache_node {
spinlock_t list_lock;
unsigned long nr_partial;
struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
atomic_long_t nr_slabs;
atomic_long_t total_objects;
struct list_head full;
#endif
};
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
return s->node[node];
}
/*
* Iterator over all nodes. The body will be executed for each node that has
* a kmem_cache_node structure allocated (which is true for all online nodes)
*/
#define for_each_kmem_cache_node(__s, __node, __n) \
for (__node = 0; __node < nr_node_ids; __node++) \
if ((__n = get_node(__s, __node)))
/*
* Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
* Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
* differ during memory hotplug/hotremove operations.
* Protected by slab_mutex.
*/
static nodemask_t slab_nodes;
#ifndef CONFIG_SLUB_TINY
/*
* Workqueue used for flush_cpu_slab().
*/
static struct workqueue_struct *flushwq;
#endif
/********************************************************************
* Core slab cache functions
*******************************************************************/
/*
* freeptr_t represents a SLUB freelist pointer, which might be encoded
* and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
*/
typedef struct { unsigned long v; } freeptr_t;
/*
* Returns freelist pointer (ptr). With hardening, this is obfuscated
* with an XOR of the address where the pointer is held and a per-cache
* random number.
*/
static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
void *ptr, unsigned long ptr_addr)
{
unsigned long encoded;
#ifdef CONFIG_SLAB_FREELIST_HARDENED
encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
#else
encoded = (unsigned long)ptr;
#endif
return (freeptr_t){.v = encoded};
}
static inline void *freelist_ptr_decode(const struct kmem_cache *s,
freeptr_t ptr, unsigned long ptr_addr)
{
void *decoded;
#ifdef CONFIG_SLAB_FREELIST_HARDENED
decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
#else
decoded = (void *)ptr.v;
#endif
return decoded;
}
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
unsigned long ptr_addr;
freeptr_t p;
object = kasan_reset_tag(object);
ptr_addr = (unsigned long)object + s->offset;
p = *(freeptr_t *)(ptr_addr);
return freelist_ptr_decode(s, p, ptr_addr);
}
#ifndef CONFIG_SLUB_TINY
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
prefetchw(object + s->offset);
}
#endif
/*
* When running under KMSAN, get_freepointer_safe() may return an uninitialized
* pointer value in the case the current thread loses the race for the next
* memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
* slab_alloc_node() will fail, so the uninitialized value won't be used, but
* KMSAN will still check all arguments of cmpxchg because of imperfect
* handling of inline assembly.
* To work around this problem, we apply __no_kmsan_checks to ensure that
* get_freepointer_safe() returns initialized memory.
*/
__no_kmsan_checks
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
unsigned long freepointer_addr;
freeptr_t p;
if (!debug_pagealloc_enabled_static())
return get_freepointer(s, object);
object = kasan_reset_tag(object);
freepointer_addr = (unsigned long)object + s->offset;
copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
return freelist_ptr_decode(s, p, freepointer_addr);
}
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
unsigned long freeptr_addr = (unsigned long)object + s->offset;
#ifdef CONFIG_SLAB_FREELIST_HARDENED
BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif
freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
}
/*
* See comment in calculate_sizes().
*/
static inline bool freeptr_outside_object(struct kmem_cache *s)
{
return s->offset >= s->inuse;
}
/*
* Return offset of the end of info block which is inuse + free pointer if
* not overlapping with object.
*/
static inline unsigned int get_info_end(struct kmem_cache *s)
{
if (freeptr_outside_object(s))
return s->inuse + sizeof(void *);
else
return s->inuse;
}
/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr, __objects) \
for (__p = fixup_red_left(__s, __addr); \
__p < (__addr) + (__objects) * (__s)->size; \
__p += (__s)->size)
static inline unsigned int order_objects(unsigned int order, unsigned int size)
{
return ((unsigned int)PAGE_SIZE << order) / size;
}
static inline struct kmem_cache_order_objects oo_make(unsigned int order,
unsigned int size)
{
struct kmem_cache_order_objects x = {
(order << OO_SHIFT) + order_objects(order, size)
};
return x;
}
static inline unsigned int oo_order(struct kmem_cache_order_objects x)
{
return x.x >> OO_SHIFT;
}
static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
{
return x.x & OO_MASK;
}
#ifdef CONFIG_SLUB_CPU_PARTIAL
static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
{
unsigned int nr_slabs;
s->cpu_partial = nr_objects;
/*
* We take the number of objects but actually limit the number of
* slabs on the per cpu partial list, in order to limit excessive
* growth of the list. For simplicity we assume that the slabs will
* be half-full.
*/
nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
s->cpu_partial_slabs = nr_slabs;
}
static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
{
return s->cpu_partial_slabs;
}
#else
static inline void
slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
{
}
static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
{
return 0;
}
#endif /* CONFIG_SLUB_CPU_PARTIAL */
/*
* Per slab locking using the pagelock
*/
static __always_inline void slab_lock(struct slab *slab)
{
bit_spin_lock(PG_locked, &slab->__page_flags);
}
static __always_inline void slab_unlock(struct slab *slab)
{
bit_spin_unlock(PG_locked, &slab->__page_flags);
}
static inline bool
__update_freelist_fast(struct slab *slab,
void *freelist_old, unsigned long counters_old,
void *freelist_new, unsigned long counters_new)
{
#ifdef system_has_freelist_aba
freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
#else
return false;
#endif
}
static inline bool
__update_freelist_slow(struct slab *slab,
void *freelist_old, unsigned long counters_old,
void *freelist_new, unsigned long counters_new)
{
bool ret = false;
slab_lock(slab);
if (slab->freelist == freelist_old &&
slab->counters == counters_old) {
slab->freelist = freelist_new;
slab->counters = counters_new;
ret = true;
}
slab_unlock(slab);
return ret;
}
/*
* Interrupts must be disabled (for the fallback code to work right), typically
* by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
* part of bit_spin_lock(), is sufficient because the policy is not to allow any
* allocation/ free operation in hardirq context. Therefore nothing can
* interrupt the operation.
*/
static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
void *freelist_old, unsigned long counters_old,
void *freelist_new, unsigned long counters_new,
const char *n)
{
bool ret;
if (USE_LOCKLESS_FAST_PATH())
lockdep_assert_irqs_disabled();
if (s->flags & __CMPXCHG_DOUBLE) {
ret = __update_freelist_fast(slab, freelist_old, counters_old,
freelist_new, counters_new);
} else {
ret = __update_freelist_slow(slab, freelist_old, counters_old,
freelist_new, counters_new);
}
if (likely(ret))
return true;
cpu_relax();
stat(s, CMPXCHG_DOUBLE_FAIL);
#ifdef SLUB_DEBUG_CMPXCHG
pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif
return false;
}
static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
void *freelist_old, unsigned long counters_old,
void *freelist_new, unsigned long counters_new,
const char *n)
{
bool ret;
if (s->flags & __CMPXCHG_DOUBLE) {
ret = __update_freelist_fast(slab, freelist_old, counters_old,
freelist_new, counters_new);
} else {
unsigned long flags;
local_irq_save(flags);
ret = __update_freelist_slow(slab, freelist_old, counters_old,
freelist_new, counters_new);
local_irq_restore(flags);
}
if (likely(ret))
return true;
cpu_relax();
stat(s, CMPXCHG_DOUBLE_FAIL);
#ifdef SLUB_DEBUG_CMPXCHG
pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif
return false;
}
#ifdef CONFIG_SLUB_DEBUG
static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
static DEFINE_SPINLOCK(object_map_lock);
static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
struct slab *slab)
{
void *addr = slab_address(slab);
void *p;
bitmap_zero(obj_map, slab->objects);
for (p = slab->freelist; p; p = get_freepointer(s, p))
set_bit(__obj_to_index(s, addr, p), obj_map);
}
#if IS_ENABLED(CONFIG_KUNIT)
static bool slab_add_kunit_errors(void)
{
struct kunit_resource *resource;
if (!kunit_get_current_test())
return false;
resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
if (!resource)
return false;
(*(int *)resource->data)++;
kunit_put_resource(resource);
return true;
}
static bool slab_in_kunit_test(void)
{
struct kunit_resource *resource;
if (!kunit_get_current_test())
return false;
resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
if (!resource)
return false;
kunit_put_resource(resource);
return true;
}
#else
static inline bool slab_add_kunit_errors(void) { return false; }
static inline bool slab_in_kunit_test(void) { return false; }
#endif
static inline unsigned int size_from_object(struct kmem_cache *s)
{
if (s->flags & SLAB_RED_ZONE)
return s->size - s->red_left_pad;
return s->size;
}
static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
if (s->flags & SLAB_RED_ZONE)
p -= s->red_left_pad;
return p;
}
/*
* Debug settings:
*/
#if defined(CONFIG_SLUB_DEBUG_ON)
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
#else
static slab_flags_t slub_debug;
#endif
static char *slub_debug_string;
static int disable_higher_order_debug;
/*
* slub is about to manipulate internal object metadata. This memory lies
* outside the range of the allocated object, so accessing it would normally
* be reported by kasan as a bounds error. metadata_access_enable() is used
* to tell kasan that these accesses are OK.
*/
static inline void metadata_access_enable(void)
{
kasan_disable_current();
kmsan_disable_current();
}
static inline void metadata_access_disable(void)
{
kmsan_enable_current();
kasan_enable_current();
}
/*
* Object debugging
*/
/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
struct slab *slab, void *object)
{
void *base;
if (!object)
return 1;
base = slab_address(slab);
object = kasan_reset_tag(object);
object = restore_red_left(s, object);
if (object < base || object >= base + slab->objects * s->size ||
(object - base) % s->size) {
return 0;
}
return 1;
}
static void print_section(char *level, char *text, u8 *addr,
unsigned int length)
{
metadata_access_enable();
print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
16, 1, kasan_reset_tag((void *)addr), length, 1);
metadata_access_disable();
}
static struct track *get_track(struct kmem_cache *s, void *object,
enum track_item alloc)
{
struct track *p;
p = object + get_info_end(s);
return kasan_reset_tag(p + alloc);
}
#ifdef CONFIG_STACKDEPOT
static noinline depot_stack_handle_t set_track_prepare(void)
{
depot_stack_handle_t handle;
unsigned long entries[TRACK_ADDRS_COUNT];
unsigned int nr_entries;
nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
return handle;
}
#else
static inline depot_stack_handle_t set_track_prepare(void)
{
return 0;
}
#endif
static void set_track_update(struct kmem_cache *s, void *object,
enum track_item alloc, unsigned long addr,
depot_stack_handle_t handle)
{
struct track *p = get_track(s, object, alloc);
#ifdef CONFIG_STACKDEPOT
p->handle = handle;
#endif
p->addr = addr;
p->cpu = smp_processor_id();
p->pid = current->pid;
p->when = jiffies;
}
static __always_inline void set_track(struct kmem_cache *s, void *object,
enum track_item alloc, unsigned long addr)
{
depot_stack_handle_t handle = set_track_prepare();
set_track_update(s, object, alloc, addr, handle);
}
static void init_tracking(struct kmem_cache *s, void *object)
{
struct track *p;
if (!(s->flags & SLAB_STORE_USER))
return;
p = get_track(s, object, TRACK_ALLOC);
memset(p, 0, 2*sizeof(struct track));
}
static void print_track(const char *s, struct track *t, unsigned long pr_time)
{
depot_stack_handle_t handle __maybe_unused;
if (!t->addr)
return;
pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
#ifdef CONFIG_STACKDEPOT
handle = READ_ONCE(t->handle);
if (handle)
stack_depot_print(handle);
else
pr_err("object allocation/free stack trace missing\n");
#endif
}
void print_tracking(struct kmem_cache *s, void *object)
{
unsigned long pr_time = jiffies;
if (!(s->flags & SLAB_STORE_USER))
return;
print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
}
static void print_slab_info(const struct slab *slab)
{
pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
slab, slab->objects, slab->inuse, slab->freelist,
&slab->__page_flags);
}
/*
* kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
* family will round up the real request size to these fixed ones, so
* there could be an extra area than what is requested. Save the original
* request size in the meta data area, for better debug and sanity check.
*/
static inline void set_orig_size(struct kmem_cache *s,
void *object, unsigned int orig_size)
{
void *p = kasan_reset_tag(object);
unsigned int kasan_meta_size;
if (!slub_debug_orig_size(s))
return;
/*
* KASAN can save its free meta data inside of the object at offset 0.
* If this meta data size is larger than 'orig_size', it will overlap
* the data redzone in [orig_size+1, object_size]. Thus, we adjust
* 'orig_size' to be as at least as big as KASAN's meta data.
*/
kasan_meta_size = kasan_metadata_size(s, true);
if (kasan_meta_size > orig_size)
orig_size = kasan_meta_size;
p += get_info_end(s);
p += sizeof(struct track) * 2;
*(unsigned int *)p = orig_size;
}
static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
{
void *p = kasan_reset_tag(object);
if (!slub_debug_orig_size(s))
return s->object_size;
p += get_info_end(s);
p += sizeof(struct track) * 2;
return *(unsigned int *)p;
}
void skip_orig_size_check(struct kmem_cache *s, const void *object)
{
set_orig_size(s, (void *)object, s->object_size);
}
static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_err("=============================================================================\n");
pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
pr_err("-----------------------------------------------------------------------------\n\n");
va_end(args);
}
__printf(2, 3)
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
struct va_format vaf;
va_list args;
if (slab_add_kunit_errors())
return;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_err("FIX %s: %pV\n", s->name, &vaf);
va_end(args);
}
static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
{
unsigned int off; /* Offset of last byte */
u8 *addr = slab_address(slab);
print_tracking(s, p);
print_slab_info(slab);
pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
p, p - addr, get_freepointer(s, p));
if (s->flags & SLAB_RED_ZONE)
print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
s->red_left_pad);
else if (p > addr + 16)
print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
print_section(KERN_ERR, "Object ", p,
min_t(unsigned int, s->object_size, PAGE_SIZE));
if (s->flags & SLAB_RED_ZONE)
print_section(KERN_ERR, "Redzone ", p + s->object_size,
s->inuse - s->object_size);
off = get_info_end(s);
if (s->flags & SLAB_STORE_USER)
off += 2 * sizeof(struct track);
if (slub_debug_orig_size(s))
off += sizeof(unsigned int);
off += kasan_metadata_size(s, false);
if (off != size_from_object(s))
/* Beginning of the filler is the free pointer */
print_section(KERN_ERR, "Padding ", p + off,
size_from_object(s) - off);
dump_stack();
}
static void object_err(struct kmem_cache *s, struct slab *slab,
u8 *object, char *reason)
{
if (slab_add_kunit_errors())
return;
slab_bug(s, "%s", reason);
print_trailer(s, slab, object);
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
void **freelist, void *nextfree)
{
if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
!check_valid_pointer(s, slab, nextfree) && freelist) {
object_err(s, slab, *freelist, "Freechain corrupt");
*freelist = NULL;
slab_fix(s, "Isolate corrupted freechain");
return true;
}
return false;
}
static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
const char *fmt, ...)
{
va_list args;
char buf[100];
if (slab_add_kunit_errors())
return;
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
slab_bug(s, "%s", buf);
print_slab_info(slab);
dump_stack();
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
static void init_object(struct kmem_cache *s, void *object, u8 val)
{
u8 *p = kasan_reset_tag(object);
unsigned int poison_size = s->object_size;
if (s->flags & SLAB_RED_ZONE) {
/*
* Here and below, avoid overwriting the KMSAN shadow. Keeping
* the shadow makes it possible to distinguish uninit-value
* from use-after-free.
*/
memset_no_sanitize_memory(p - s->red_left_pad, val,
s->red_left_pad);
if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
/*
* Redzone the extra allocated space by kmalloc than
* requested, and the poison size will be limited to
* the original request size accordingly.
*/
poison_size = get_orig_size(s, object);
}
}
if (s->flags & __OBJECT_POISON) {
memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
}
if (s->flags & SLAB_RED_ZONE)
memset_no_sanitize_memory(p + poison_size, val,
s->inuse - poison_size);
}
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
void *from, void *to)
{
slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
memset(from, data, to - from);
}
#ifdef CONFIG_KMSAN
#define pad_check_attributes noinline __no_kmsan_checks
#else
#define pad_check_attributes
#endif
static pad_check_attributes int
check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
u8 *object, char *what,
u8 *start, unsigned int value, unsigned int bytes)
{
u8 *fault;
u8 *end;
u8 *addr = slab_address(slab);
metadata_access_enable();
fault = memchr_inv(kasan_reset_tag(start), value, bytes);
metadata_access_disable();
if (!fault)
return 1;
end = start + bytes;
while (end > fault && end[-1] == value)
end--;
if (slab_add_kunit_errors())
goto skip_bug_print;
slab_bug(s, "%s overwritten", what);
pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
fault, end - 1, fault - addr,
fault[0], value);
skip_bug_print:
restore_bytes(s, what, value, fault, end);
return 0;
}
/*
* Object layout:
*
* object address
* Bytes of the object to be managed.
* If the freepointer may overlay the object then the free
* pointer is at the middle of the object.
*
* Poisoning uses 0x6b (POISON_FREE) and the last byte is
* 0xa5 (POISON_END)
*
* object + s->object_size
* Padding to reach word boundary. This is also used for Redzoning.
* Padding is extended by another word if Redzoning is enabled and
* object_size == inuse.
*
* We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
* 0xcc (SLUB_RED_ACTIVE) for objects in use.
*
* object + s->inuse
* Meta data starts here.
*
* A. Free pointer (if we cannot overwrite object on free)
* B. Tracking data for SLAB_STORE_USER
* C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
* D. Padding to reach required alignment boundary or at minimum
* one word if debugging is on to be able to detect writes
* before the word boundary.
*
* Padding is done using 0x5a (POISON_INUSE)
*
* object + s->size
* Nothing is used beyond s->size.
*
* If slabcaches are merged then the object_size and inuse boundaries are mostly
* ignored. And therefore no slab options that rely on these boundaries
* may be used with merged slabcaches.
*/
static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
{
unsigned long off = get_info_end(s); /* The end of info */
if (s->flags & SLAB_STORE_USER) {
/* We also have user information there */
off += 2 * sizeof(struct track);
if (s->flags & SLAB_KMALLOC)
off += sizeof(unsigned int);
}
off += kasan_metadata_size(s, false);
if (size_from_object(s) == off)
return 1;
return check_bytes_and_report(s, slab, p, "Object padding",
p + off, POISON_INUSE, size_from_object(s) - off);
}
/* Check the pad bytes at the end of a slab page */
static pad_check_attributes void
slab_pad_check(struct kmem_cache *s, struct slab *slab)
{
u8 *start;
u8 *fault;
u8 *end;
u8 *pad;
int length;
int remainder;
if (!(s->flags & SLAB_POISON))
return;
start = slab_address(slab);
length = slab_size(slab);
end = start + length;
remainder = length % s->size;
if (!remainder)
return;
pad = end - remainder;
metadata_access_enable();
fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
metadata_access_disable();
if (!fault)
return;
while (end > fault && end[-1] == POISON_INUSE)
end--;
slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
fault, end - 1, fault - start);
print_section(KERN_ERR, "Padding ", pad, remainder);
restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
}
static int check_object(struct kmem_cache *s, struct slab *slab,
void *object, u8 val)
{
u8 *p = object;
u8 *endobject = object + s->object_size;
unsigned int orig_size, kasan_meta_size;
int ret = 1;
if (s->flags & SLAB_RED_ZONE) {
if (!check_bytes_and_report(s, slab, object, "Left Redzone",
object - s->red_left_pad, val, s->red_left_pad))
ret = 0;
if (!check_bytes_and_report(s, slab, object, "Right Redzone",
endobject, val, s->inuse - s->object_size))
ret = 0;
if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
orig_size = get_orig_size(s, object);
if (s->object_size > orig_size &&
!check_bytes_and_report(s, slab, object,
"kmalloc Redzone", p + orig_size,
val, s->object_size - orig_size)) {
ret = 0;
}
}
} else {
if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
if (!check_bytes_and_report(s, slab, p, "Alignment padding",
endobject, POISON_INUSE,
s->inuse - s->object_size))
ret = 0;
}
}
if (s->flags & SLAB_POISON) {
if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
/*
* KASAN can save its free meta data inside of the
* object at offset 0. Thus, skip checking the part of
* the redzone that overlaps with the meta data.
*/
kasan_meta_size = kasan_metadata_size(s, true);
if (kasan_meta_size < s->object_size - 1 &&
!check_bytes_and_report(s, slab, p, "Poison",
p + kasan_meta_size, POISON_FREE,
s->object_size - kasan_meta_size - 1))
ret = 0;
if (kasan_meta_size < s->object_size &&
!check_bytes_and_report(s, slab, p, "End Poison",
p + s->object_size - 1, POISON_END, 1))
ret = 0;
}
/*
* check_pad_bytes cleans up on its own.
*/
if (!check_pad_bytes(s, slab, p))
ret = 0;
}
/*
* Cannot check freepointer while object is allocated if
* object and freepointer overlap.
*/
if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
!check_valid_pointer(s, slab, get_freepointer(s, p))) {
object_err(s, slab, p, "Freepointer corrupt");
/*
* No choice but to zap it and thus lose the remainder
* of the free objects in this slab. May cause
* another error because the object count is now wrong.
*/
set_freepointer(s, p, NULL);
ret = 0;
}
if (!ret && !slab_in_kunit_test()) {
print_trailer(s, slab, object);
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
return ret;
}
static int check_slab(struct kmem_cache *s, struct slab *slab)
{
int maxobj;
if (!folio_test_slab(slab_folio(slab))) {
slab_err(s, slab, "Not a valid slab page");
return 0;
}
maxobj = order_objects(slab_order(slab), s->size);
if (slab->objects > maxobj) {
slab_err(s, slab, "objects %u > max %u",
slab->objects, maxobj);
return 0;
}
if (slab->inuse > slab->objects) {
slab_err(s, slab, "inuse %u > max %u",
slab->inuse, slab->objects);
return 0;
}
/* Slab_pad_check fixes things up after itself */
slab_pad_check(s, slab);
return 1;
}
/*
* Determine if a certain object in a slab is on the freelist. Must hold the
* slab lock to guarantee that the chains are in a consistent state.
*/
static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
{
int nr = 0;
void *fp;
void *object = NULL;
int max_objects;
fp = slab->freelist;
while (fp && nr <= slab->objects) {
if (fp == search)
return 1;
if (!check_valid_pointer(s, slab, fp)) {
if (object) {
object_err(s, slab, object,
"Freechain corrupt");
set_freepointer(s, object, NULL);
} else {
slab_err(s, slab, "Freepointer corrupt");
slab->freelist = NULL;
slab->inuse = slab->objects;
slab_fix(s, "Freelist cleared");
return 0;
}
break;
}
object = fp;
fp = get_freepointer(s, object);
nr++;
}
max_objects = order_objects(slab_order(slab), s->size);
if (max_objects > MAX_OBJS_PER_PAGE)
max_objects = MAX_OBJS_PER_PAGE;
if (slab->objects != max_objects) {
slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
slab->objects, max_objects);
slab->objects = max_objects;
slab_fix(s, "Number of objects adjusted");
}
if (slab->inuse != slab->objects - nr) {
slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
slab->inuse, slab->objects - nr);
slab->inuse = slab->objects - nr;
slab_fix(s, "Object count adjusted");
}
return search == NULL;
}
static void trace(struct kmem_cache *s, struct slab *slab, void *object,
int alloc)
{
if (s->flags & SLAB_TRACE) {
pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
s->name,
alloc ? "alloc" : "free",
object, slab->inuse,
slab->freelist);
if (!alloc)
print_section(KERN_INFO, "Object ", (void *)object,
s->object_size);
dump_stack();
}
}
/*
* Tracking of fully allocated slabs for debugging purposes.
*/
static void add_full(struct kmem_cache *s,
struct kmem_cache_node *n, struct slab *slab)
{
if (!(s->flags & SLAB_STORE_USER))
return;
lockdep_assert_held(&n->list_lock);
list_add(&slab->slab_list, &n->full);
}
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
{
if (!(s->flags & SLAB_STORE_USER))
return;
lockdep_assert_held(&n->list_lock);
list_del(&slab->slab_list);
}
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
return atomic_long_read(&n->nr_slabs);
}
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
{
struct kmem_cache_node *n = get_node(s, node);
atomic_long_inc(&n->nr_slabs);
atomic_long_add(objects, &n->total_objects);
}
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
{
struct kmem_cache_node *n = get_node(s, node);
atomic_long_dec(&n->nr_slabs);
atomic_long_sub(objects, &n->total_objects);
}
/* Object debug checks for alloc/free paths */
static void setup_object_debug(struct kmem_cache *s, void *object)
{
if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
return;
init_object(s, object, SLUB_RED_INACTIVE);
init_tracking(s, object);
}
static
void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
{
if (!kmem_cache_debug_flags(s, SLAB_POISON))
return;
metadata_access_enable();
memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
metadata_access_disable();
}
static inline int alloc_consistency_checks(struct kmem_cache *s,
struct slab *slab, void *object)
{
if (!check_slab(s, slab))
return 0;
if (!check_valid_pointer(s, slab, object)) {
object_err(s, slab, object, "Freelist Pointer check fails");
return 0;
}
if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
return 0;
return 1;
}
static noinline bool alloc_debug_processing(struct kmem_cache *s,
struct slab *slab, void *object, int orig_size)
{
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
if (!alloc_consistency_checks(s, slab, object))
goto bad;
}
/* Success. Perform special debug activities for allocs */
trace(s, slab, object, 1);
set_orig_size(s, object, orig_size);
init_object(s, object, SLUB_RED_ACTIVE);
return true;
bad:
if (folio_test_slab(slab_folio(slab))) {
/*
* If this is a slab page then lets do the best we can
* to avoid issues in the future. Marking all objects
* as used avoids touching the remaining objects.
*/
slab_fix(s, "Marking all objects used");
slab->inuse = slab->objects;
slab->freelist = NULL;
}
return false;
}
static inline int free_consistency_checks(struct kmem_cache *s,
struct slab *slab, void *object, unsigned long addr)
{
if (!check_valid_pointer(s, slab, object)) {
slab_err(s, slab, "Invalid object pointer 0x%p", object);
return 0;
}
if (on_freelist(s, slab, object)) {
object_err(s, slab, object, "Object already free");
return 0;
}
if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
return 0;
if (unlikely(s != slab->slab_cache)) {
if (!folio_test_slab(slab_folio(slab))) {
slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
object);
} else if (!slab->slab_cache) {
pr_err("SLUB <none>: no slab for object 0x%p.\n",
object);
dump_stack();
} else
object_err(s, slab, object,
"page slab pointer corrupt.");
return 0;
}
return 1;
}
/*
* Parse a block of slab_debug options. Blocks are delimited by ';'
*
* @str: start of block
* @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
* @slabs: return start of list of slabs, or NULL when there's no list
* @init: assume this is initial parsing and not per-kmem-create parsing
*
* returns the start of next block if there's any, or NULL
*/
static char *
parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
{
bool higher_order_disable = false;
/* Skip any completely empty blocks */
while (*str && *str == ';')
str++;
if (*str == ',') {
/*
* No options but restriction on slabs. This means full
* debugging for slabs matching a pattern.
*/
*flags = DEBUG_DEFAULT_FLAGS;
goto check_slabs;
}
*flags = 0;
/* Determine which debug features should be switched on */
for (; *str && *str != ',' && *str != ';'; str++) {
switch (tolower(*str)) {
case '-':
*flags = 0;
break;
case 'f':
*flags |= SLAB_CONSISTENCY_CHECKS;
break;
case 'z':
*flags |= SLAB_RED_ZONE;
break;
case 'p':
*flags |= SLAB_POISON;
break;
case 'u':
*flags |= SLAB_STORE_USER;
break;
case 't':
*flags |= SLAB_TRACE;
break;
case 'a':
*flags |= SLAB_FAILSLAB;
break;
case 'o':
/*
* Avoid enabling debugging on caches if its minimum
* order would increase as a result.
*/
higher_order_disable = true;
break;
default:
if (init)
pr_err("slab_debug option '%c' unknown. skipped\n", *str);
}
}
check_slabs:
if (*str == ',')
*slabs = ++str;
else
*slabs = NULL;
/* Skip over the slab list */
while (*str && *str != ';')
str++;
/* Skip any completely empty blocks */
while (*str && *str == ';')
str++;
if (init && higher_order_disable)
disable_higher_order_debug = 1;
if (*str)
return str;
else
return NULL;
}
static int __init setup_slub_debug(char *str)
{
slab_flags_t flags;
slab_flags_t global_flags;
char *saved_str;
char *slab_list;
bool global_slub_debug_changed = false;
bool slab_list_specified = false;
global_flags = DEBUG_DEFAULT_FLAGS;
if (*str++ != '=' || !*str)
/*
* No options specified. Switch on full debugging.
*/
goto out;
saved_str = str;
while (str) {
str = parse_slub_debug_flags(str, &flags, &slab_list, true);
if (!slab_list) {
global_flags = flags;
global_slub_debug_changed = true;
} else {
slab_list_specified = true;
if (flags & SLAB_STORE_USER)
stack_depot_request_early_init();
}
}
/*
* For backwards compatibility, a single list of flags with list of
* slabs means debugging is only changed for those slabs, so the global
* slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
* on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
* long as there is no option specifying flags without a slab list.
*/
if (slab_list_specified) {
if (!global_slub_debug_changed)
global_flags = slub_debug;
slub_debug_string = saved_str;
}
out:
slub_debug = global_flags;
if (slub_debug & SLAB_STORE_USER)
stack_depot_request_early_init();
if (slub_debug != 0 || slub_debug_string)
static_branch_enable(&slub_debug_enabled);
else
static_branch_disable(&slub_debug_enabled);
if ((static_branch_unlikely(&init_on_alloc) ||
static_branch_unlikely(&init_on_free)) &&
(slub_debug & SLAB_POISON))
pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
return 1;
}
__setup("slab_debug", setup_slub_debug);
__setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
/*
* kmem_cache_flags - apply debugging options to the cache
* @flags: flags to set
* @name: name of the cache
*
* Debug option(s) are applied to @flags. In addition to the debug
* option(s), if a slab name (or multiple) is specified i.e.
* slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
* then only the select slabs will receive the debug option(s).
*/
slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
{
char *iter;
size_t len;
char *next_block;
slab_flags_t block_flags;
slab_flags_t slub_debug_local = slub_debug;
if (flags & SLAB_NO_USER_FLAGS)
return flags;
/*
* If the slab cache is for debugging (e.g. kmemleak) then
* don't store user (stack trace) information by default,
* but let the user enable it via the command line below.
*/
if (flags & SLAB_NOLEAKTRACE)
slub_debug_local &= ~SLAB_STORE_USER;
len = strlen(name);
next_block = slub_debug_string;
/* Go through all blocks of debug options, see if any matches our slab's name */
while (next_block) {
next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
if (!iter)
continue;
/* Found a block that has a slab list, search it */
while (*iter) {
char *end, *glob;
size_t cmplen;
end = strchrnul(iter, ',');
if (next_block && next_block < end)
end = next_block - 1;
glob = strnchr(iter, end - iter, '*');
if (glob)
cmplen = glob - iter;
else
cmplen = max_t(size_t, len, (end - iter));
if (!strncmp(name, iter, cmplen)) {
flags |= block_flags;
return flags;
}
if (!*end || *end == ';')
break;
iter = end + 1;
}
}
return flags | slub_debug_local;
}
#else /* !CONFIG_SLUB_DEBUG */
static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
static inline
void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
static inline bool alloc_debug_processing(struct kmem_cache *s,
struct slab *slab, void *object, int orig_size) { return true; }
static inline bool free_debug_processing(struct kmem_cache *s,
struct slab *slab, void *head, void *tail, int *bulk_cnt,
unsigned long addr, depot_stack_handle_t handle) { return true; }
static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
static inline int check_object(struct kmem_cache *s, struct slab *slab,
void *object, u8 val) { return 1; }
static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
static inline void set_track(struct kmem_cache *s, void *object,
enum track_item alloc, unsigned long addr) {}
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
struct slab *slab) {}
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
struct slab *slab) {}
slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
{
return flags;
}
#define slub_debug 0
#define disable_higher_order_debug 0
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{ return 0; }
static inline void inc_slabs_node(struct kmem_cache *s, int node,
int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
int objects) {}
#ifndef CONFIG_SLUB_TINY
static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
void **freelist, void *nextfree)
{
return false;
}
#endif
#endif /* CONFIG_SLUB_DEBUG */
#ifdef CONFIG_SLAB_OBJ_EXT
#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
{
struct slabobj_ext *slab_exts;
struct slab *obj_exts_slab;
obj_exts_slab = virt_to_slab(obj_exts);
slab_exts = slab_obj_exts(obj_exts_slab);
if (slab_exts) {
unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
obj_exts_slab, obj_exts);
/* codetag should be NULL */
WARN_ON(slab_exts[offs].ref.ct);
set_codetag_empty(&slab_exts[offs].ref);
}
}
static inline void mark_failed_objexts_alloc(struct slab *slab)
{
slab->obj_exts = OBJEXTS_ALLOC_FAIL;
}
static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
struct slabobj_ext *vec, unsigned int objects)
{
/*
* If vector previously failed to allocate then we have live
* objects with no tag reference. Mark all references in this
* vector as empty to avoid warnings later on.
*/
if (obj_exts & OBJEXTS_ALLOC_FAIL) {
unsigned int i;
for (i = 0; i < objects; i++)
set_codetag_empty(&vec[i].ref);
}
}
#else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
static inline void mark_failed_objexts_alloc(struct slab *slab) {}
static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
struct slabobj_ext *vec, unsigned int objects) {}
#endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
/*
* The allocated objcg pointers array is not accounted directly.
* Moreover, it should not come from DMA buffer and is not readily
* reclaimable. So those GFP bits should be masked off.
*/
#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
__GFP_ACCOUNT | __GFP_NOFAIL)
int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
gfp_t gfp, bool new_slab)
{
unsigned int objects = objs_per_slab(s, slab);
unsigned long new_exts;
unsigned long old_exts;
struct slabobj_ext *vec;
gfp &= ~OBJCGS_CLEAR_MASK;
/* Prevent recursive extension vector allocation */
gfp |= __GFP_NO_OBJ_EXT;
vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
slab_nid(slab));
if (!vec) {
/* Mark vectors which failed to allocate */
if (new_slab)
mark_failed_objexts_alloc(slab);
return -ENOMEM;
}
new_exts = (unsigned long)vec;
#ifdef CONFIG_MEMCG
new_exts |= MEMCG_DATA_OBJEXTS;
#endif
old_exts = READ_ONCE(slab->obj_exts);
handle_failed_objexts_alloc(old_exts, vec, objects);
if (new_slab) {
/*
* If the slab is brand new and nobody can yet access its
* obj_exts, no synchronization is required and obj_exts can
* be simply assigned.
*/
slab->obj_exts = new_exts;
} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
/*
* If the slab is already in use, somebody can allocate and
* assign slabobj_exts in parallel. In this case the existing
* objcg vector should be reused.
*/
mark_objexts_empty(vec);
kfree(vec);
return 0;
}
kmemleak_not_leak(vec);
return 0;
}
static inline void free_slab_obj_exts(struct slab *slab)
{
struct slabobj_ext *obj_exts;
obj_exts = slab_obj_exts(slab);
if (!obj_exts)
return;
/*
* obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
* corresponding extension will be NULL. alloc_tag_sub() will throw a
* warning if slab has extensions but the extension of an object is
* NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
* the extension for obj_exts is expected to be NULL.
*/
mark_objexts_empty(obj_exts);
kfree(obj_exts);
slab->obj_exts = 0;
}
static inline bool need_slab_obj_ext(void)
{
if (mem_alloc_profiling_enabled())
return true;
/*
* CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
* inside memcg_slab_post_alloc_hook. No other users for now.
*/
return false;
}
#else /* CONFIG_SLAB_OBJ_EXT */
static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
gfp_t gfp, bool new_slab)
{
return 0;
}
static inline void free_slab_obj_exts(struct slab *slab)
{
}
static inline bool need_slab_obj_ext(void)
{
return false;
}
#endif /* CONFIG_SLAB_OBJ_EXT */
#ifdef CONFIG_MEM_ALLOC_PROFILING
static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
{
struct slab *slab;
if (!p)
return NULL;
if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
return NULL;
if (flags & __GFP_NO_OBJ_EXT)
return NULL;
slab = virt_to_slab(p);
if (!slab_obj_exts(slab) &&
WARN(alloc_slab_obj_exts(slab, s, flags, false),
"%s, %s: Failed to create slab extension vector!\n",
__func__, s->name))
return NULL;
return slab_obj_exts(slab) + obj_to_index(s, slab, p);
}
static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
{
if (need_slab_obj_ext()) {
struct slabobj_ext *obj_exts;
obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
/*
* Currently obj_exts is used only for allocation profiling.
* If other users appear then mem_alloc_profiling_enabled()
* check should be added before alloc_tag_add().
*/
if (likely(obj_exts))
alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
}
}
static inline void
alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
int objects)
{
struct slabobj_ext *obj_exts;
int i;
if (!mem_alloc_profiling_enabled())
return;
obj_exts = slab_obj_exts(slab);
if (!obj_exts)
return;
for (i = 0; i < objects; i++) {
unsigned int off = obj_to_index(s, slab, p[i]);
alloc_tag_sub(&obj_exts[off].ref, s->size);
}
}
#else /* CONFIG_MEM_ALLOC_PROFILING */
static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
{
}
static inline void
alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
int objects)
{
}
#endif /* CONFIG_MEM_ALLOC_PROFILING */
#ifdef CONFIG_MEMCG
static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
static __fastpath_inline
bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
gfp_t flags, size_t size, void **p)
{
if (likely(!memcg_kmem_online()))
return true;
if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
return true;
if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
return true;
if (likely(size == 1)) {
memcg_alloc_abort_single(s, *p);
*p = NULL;
} else {
kmem_cache_free_bulk(s, size, p);
}
return false;
}
static __fastpath_inline
void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
int objects)
{
struct slabobj_ext *obj_exts;
if (!memcg_kmem_online())
return;
obj_exts = slab_obj_exts(slab);
if (likely(!obj_exts))
return;
__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
}
#else /* CONFIG_MEMCG */
static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
struct list_lru *lru,
gfp_t flags, size_t size,
void **p)
{
return true;
}
static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
void **p, int objects)
{
}
#endif /* CONFIG_MEMCG */
/*
* Hooks for other subsystems that check memory allocations. In a typical
* production configuration these hooks all should produce no code at all.
*
* Returns true if freeing of the object can proceed, false if its reuse
* was delayed by KASAN quarantine, or it was returned to KFENCE.
*/
static __always_inline
bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
{
kmemleak_free_recursive(x, s->flags);
kmsan_slab_free(s, x);
debug_check_no_locks_freed(x, s->object_size);
if (!(s->flags & SLAB_DEBUG_OBJECTS))
debug_check_no_obj_freed(x, s->object_size);
/* Use KCSAN to help debug racy use-after-free. */
if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
__kcsan_check_access(x, s->object_size,
KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
if (kfence_free(x))
return false;
/*
* As memory initialization might be integrated into KASAN,
* kasan_slab_free and initialization memset's must be
* kept together to avoid discrepancies in behavior.
*
* The initialization memset's clear the object and the metadata,
* but don't touch the SLAB redzone.
*
* The object's freepointer is also avoided if stored outside the
* object.
*/
if (unlikely(init)) {
int rsize;
unsigned int inuse;
inuse = get_info_end(s);
if (!kasan_has_integrated_init())
memset(kasan_reset_tag(x), 0, s->object_size);
rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
memset((char *)kasan_reset_tag(x) + inuse, 0,
s->size - inuse - rsize);
}
/* KASAN might put x into memory quarantine, delaying its reuse. */
return !kasan_slab_free(s, x, init);
}
static __fastpath_inline
bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
int *cnt)
{
void *object;
void *next = *head;
void *old_tail = *tail;
bool init;
if (is_kfence_address(next)) {
slab_free_hook(s, next, false);
return false;
}
/* Head and tail of the reconstructed freelist */
*head = NULL;
*tail = NULL;
init = slab_want_init_on_free(s);
do {
object = next;
next = get_freepointer(s, object);
/* If object's reuse doesn't have to be delayed */
if (likely(slab_free_hook(s, object, init))) {
/* Move object to the new freelist */
set_freepointer(s, object, *head);
*head = object;
if (!*tail)
*tail = object;
} else {
/*
* Adjust the reconstructed freelist depth
* accordingly if object's reuse is delayed.
*/
--(*cnt);
}
} while (object != old_tail);
return *head != NULL;
}
static void *setup_object(struct kmem_cache *s, void *object)
{
setup_object_debug(s, object);
object = kasan_init_slab_obj(s, object);
if (unlikely(s->ctor)) {
kasan_unpoison_new_object(s, object);
s->ctor(object);
kasan_poison_new_object(s, object);
}
return object;
}
/*
* Slab allocation and freeing
*/
static inline struct slab *alloc_slab_page(gfp_t flags, int node,
struct kmem_cache_order_objects oo)
{
struct folio *folio;
struct slab *slab;
unsigned int order = oo_order(oo);
if (node == NUMA_NO_NODE)
folio = (struct folio *)alloc_pages(flags, order);
else
folio = (struct folio *)__alloc_pages_node(node, flags, order);
if (!folio)
return NULL;
slab = folio_slab(folio);
__folio_set_slab(folio);
/* Make the flag visible before any changes to folio->mapping */
smp_wmb();
if (folio_is_pfmemalloc(folio))
slab_set_pfmemalloc(slab);
return slab;
}
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
unsigned int count = oo_objects(s->oo);
int err;
/* Bailout if already initialised */
if (s->random_seq)
return 0;
err = cache_random_seq_create(s, count, GFP_KERNEL);
if (err) {
pr_err("SLUB: Unable to initialize free list for %s\n",
s->name);
return err;
}
/* Transform to an offset on the set of pages */
if (s->random_seq) {
unsigned int i;
for (i = 0; i < count; i++)
s->random_seq[i] *= s->size;
}
return 0;
}
/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
struct kmem_cache *s;
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list)
init_cache_random_seq(s);
mutex_unlock(&slab_mutex);
}
/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s,
unsigned long *pos, void *start,
unsigned long page_limit,
unsigned long freelist_count)
{
unsigned int idx;
/*
* If the target page allocation failed, the number of objects on the
* page might be smaller than the usual size defined by the cache.
*/
do {
idx = s->random_seq[*pos];
*pos += 1;
if (*pos >= freelist_count)
*pos = 0;
} while (unlikely(idx >= page_limit));
return (char *)start + idx;
}
/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
{
void *start;
void *cur;
void *next;
unsigned long idx, pos, page_limit, freelist_count;
if (slab->objects < 2 || !s->random_seq)
return false;
freelist_count = oo_objects(s->oo);
pos = get_random_u32_below(freelist_count);
page_limit = slab->objects * s->size;
start = fixup_red_left(s, slab_address(slab));
/* First entry is used as the base of the freelist */
cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
cur = setup_object(s, cur);
slab->freelist = cur;
for (idx = 1; idx < slab->objects; idx++) {
next = next_freelist_entry(s, &pos, start, page_limit,
freelist_count);
next = setup_object(s, next);
set_freepointer(s, cur, next);
cur = next;
}
set_freepointer(s, cur, NULL);
return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
{
return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
static __always_inline void account_slab(struct slab *slab, int order,
struct kmem_cache *s, gfp_t gfp)
{
if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
alloc_slab_obj_exts(slab, s, gfp, true);
mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
PAGE_SIZE << order);
}
static __always_inline void unaccount_slab(struct slab *slab, int order,
struct kmem_cache *s)
{
if (memcg_kmem_online() || need_slab_obj_ext())
free_slab_obj_exts(slab);
mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
-(PAGE_SIZE << order));
}
static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
struct slab *slab;
struct kmem_cache_order_objects oo = s->oo;
gfp_t alloc_gfp;
void *start, *p, *next;
int idx;
bool shuffle;
flags &= gfp_allowed_mask;
flags |= s->allocflags;
/*
* Let the initial higher-order allocation fail under memory pressure
* so we fall-back to the minimum order allocation.
*/
alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
slab = alloc_slab_page(alloc_gfp, node, oo);
if (unlikely(!slab)) {
oo = s->min;
alloc_gfp = flags;
/*
* Allocation may have failed due to fragmentation.
* Try a lower order alloc if possible
*/
slab = alloc_slab_page(alloc_gfp, node, oo);
if (unlikely(!slab))
return NULL;
stat(s, ORDER_FALLBACK);
}
slab->objects = oo_objects(oo);
slab->inuse = 0;
slab->frozen = 0;
account_slab(slab, oo_order(oo), s, flags);
slab->slab_cache = s;
kasan_poison_slab(slab);
start = slab_address(slab);
setup_slab_debug(s, slab, start);
shuffle = shuffle_freelist(s, slab);
if (!shuffle) {
start = fixup_red_left(s, start);
start = setup_object(s, start);
slab->freelist = start;
for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
next = p + s->size;
next = setup_object(s, next);
set_freepointer(s, p, next);
p = next;
}
set_freepointer(s, p, NULL);
}
return slab;
}
static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
if (unlikely(flags & GFP_SLAB_BUG_MASK))
flags = kmalloc_fix_flags(flags);
WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
return allocate_slab(s,
flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}
static void __free_slab(struct kmem_cache *s, struct slab *slab)
{
struct folio *folio = slab_folio(slab);
int order = folio_order(folio);
int pages = 1 << order;
__slab_clear_pfmemalloc(slab);
folio->mapping = NULL;
/* Make the mapping reset visible before clearing the flag */
smp_wmb();
__folio_clear_slab(folio);
mm_account_reclaimed_pages(pages);
unaccount_slab(slab, order, s);
__free_pages(&folio->page, order);
}
static void rcu_free_slab(struct rcu_head *h)
{
struct slab *slab = container_of(h, struct slab, rcu_head);
__free_slab(slab->slab_cache, slab);
}
static void free_slab(struct kmem_cache *s, struct slab *slab)
{
if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
void *p;
slab_pad_check(s, slab);
for_each_object(p, s, slab_address(slab), slab->objects)
check_object(s, slab, p, SLUB_RED_INACTIVE);
}
if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
call_rcu(&slab->rcu_head, rcu_free_slab);
else
__free_slab(s, slab);
}
static void discard_slab(struct kmem_cache *s, struct slab *slab)
{
dec_slabs_node(s, slab_nid(slab), slab->objects);
free_slab(s, slab);
}
/*
* SLUB reuses PG_workingset bit to keep track of whether it's on
* the per-node partial list.
*/
static inline bool slab_test_node_partial(const struct slab *slab)
{
return folio_test_workingset(slab_folio(slab));
}
static inline void slab_set_node_partial(struct slab *slab)
{
set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
}
static inline void slab_clear_node_partial(struct slab *slab)
{
clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
}
/*
* Management of partially allocated slabs.
*/
static inline void
__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
{
n->nr_partial++;
if (tail == DEACTIVATE_TO_TAIL)
list_add_tail(&slab->slab_list, &n->partial);
else
list_add(&slab->slab_list, &n->partial);
slab_set_node_partial(slab);
}
static inline void add_partial(struct kmem_cache_node *n,
struct slab *slab, int tail)
{
lockdep_assert_held(&n->list_lock);
__add_partial(n, slab, tail);
}
static inline void remove_partial(struct kmem_cache_node *n,
struct slab *slab)
{
lockdep_assert_held(&n->list_lock);
list_del(&slab->slab_list);
slab_clear_node_partial(slab);
n->nr_partial--;
}
/*
* Called only for kmem_cache_debug() caches instead of remove_partial(), with a
* slab from the n->partial list. Remove only a single object from the slab, do
* the alloc_debug_processing() checks and leave the slab on the list, or move
* it to full list if it was the last free object.
*/
static void *alloc_single_from_partial(struct kmem_cache *s,
struct kmem_cache_node *n, struct slab *slab, int orig_size)
{
void *object;
lockdep_assert_held(&n->list_lock);
object = slab->freelist;
slab->freelist = get_freepointer(s, object);
slab->inuse++;
if (!alloc_debug_processing(s, slab, object, orig_size)) {
remove_partial(n, slab);
return NULL;
}
if (slab->inuse == slab->objects) {
remove_partial(n, slab);
add_full(s, n, slab);
}
return object;
}
/*
* Called only for kmem_cache_debug() caches to allocate from a freshly
* allocated slab. Allocate a single object instead of whole freelist
* and put the slab to the partial (or full) list.
*/
static void *alloc_single_from_new_slab(struct kmem_cache *s,
struct slab *slab, int orig_size)
{
int nid = slab_nid(slab);
struct kmem_cache_node *n = get_node(s, nid);
unsigned long flags;
void *object;
object = slab->freelist;
slab->freelist = get_freepointer(s, object);
slab->inuse = 1;
if (!alloc_debug_processing(s, slab, object, orig_size))
/*
* It's not really expected that this would fail on a
* freshly allocated slab, but a concurrent memory
* corruption in theory could cause that.
*/
return NULL;
spin_lock_irqsave(&n->list_lock, flags);
if (slab->inuse == slab->objects)
add_full(s, n, slab);
else
add_partial(n, slab, DEACTIVATE_TO_HEAD);
inc_slabs_node(s, nid, slab->objects);
spin_unlock_irqrestore(&n->list_lock, flags);
return object;
}
#ifdef CONFIG_SLUB_CPU_PARTIAL
static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
#else
static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
int drain) { }
#endif
static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
/*
* Try to allocate a partial slab from a specific node.
*/
static struct slab *get_partial_node(struct kmem_cache *s,
struct kmem_cache_node *n,
struct partial_context *pc)
{
struct slab *slab, *slab2, *partial = NULL;
unsigned long flags;
unsigned int partial_slabs = 0;
/*
* Racy check. If we mistakenly see no partial slabs then we
* just allocate an empty slab. If we mistakenly try to get a
* partial slab and there is none available then get_partial()
* will return NULL.
*/
if (!n || !n->nr_partial)
return NULL;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
if (!pfmemalloc_match(slab, pc->flags))
continue;
if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
void *object = alloc_single_from_partial(s, n, slab,
pc->orig_size);
if (object) {
partial = slab;
pc->object = object;
break;
}
continue;
}
remove_partial(n, slab);
if (!partial) {
partial = slab;
stat(s, ALLOC_FROM_PARTIAL);
if ((slub_get_cpu_partial(s) == 0)) {
break;
}
} else {
put_cpu_partial(s, slab, 0);
stat(s, CPU_PARTIAL_NODE);
if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
break;
}
}
}
spin_unlock_irqrestore(&n->list_lock, flags);
return partial;
}
/*
* Get a slab from somewhere. Search in increasing NUMA distances.
*/
static struct slab *get_any_partial(struct kmem_cache *s,
struct partial_context *pc)
{
#ifdef CONFIG_NUMA
struct zonelist *zonelist;
struct zoneref *z;
struct zone *zone;
enum zone_type highest_zoneidx = gfp_zone(pc->flags);
struct slab *slab;
unsigned int cpuset_mems_cookie;
/*
* The defrag ratio allows a configuration of the tradeoffs between
* inter node defragmentation and node local allocations. A lower
* defrag_ratio increases the tendency to do local allocations
* instead of attempting to obtain partial slabs from other nodes.
*
* If the defrag_ratio is set to 0 then kmalloc() always
* returns node local objects. If the ratio is higher then kmalloc()
* may return off node objects because partial slabs are obtained
* from other nodes and filled up.
*
* If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
* (which makes defrag_ratio = 1000) then every (well almost)
* allocation will first attempt to defrag slab caches on other nodes.
* This means scanning over all nodes to look for partial slabs which
* may be expensive if we do it every time we are trying to find a slab
* with available objects.
*/
if (!s->remote_node_defrag_ratio ||
get_cycles() % 1024 > s->remote_node_defrag_ratio)
return NULL;
do {
cpuset_mems_cookie = read_mems_allowed_begin();
zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
struct kmem_cache_node *n;
n = get_node(s, zone_to_nid(zone));
if (n && cpuset_zone_allowed(zone, pc->flags) &&
n->nr_partial > s->min_partial) {
slab = get_partial_node(s, n, pc);
if (slab) {
/*
* Don't check read_mems_allowed_retry()
* here - if mems_allowed was updated in
* parallel, that was a harmless race
* between allocation and the cpuset
* update
*/
return slab;
}
}
}
} while (read_mems_allowed_retry(cpuset_mems_cookie));
#endif /* CONFIG_NUMA */
return NULL;
}
/*
* Get a partial slab, lock it and return it.
*/
static struct slab *get_partial(struct kmem_cache *s, int node,
struct partial_context *pc)
{
struct slab *slab;
int searchnode = node;
if (node == NUMA_NO_NODE)
searchnode = numa_mem_id();
slab = get_partial_node(s, get_node(s, searchnode), pc);
if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
return slab;
return get_any_partial(s, pc);
}
#ifndef CONFIG_SLUB_TINY
#ifdef CONFIG_PREEMPTION
/*
* Calculate the next globally unique transaction for disambiguation
* during cmpxchg. The transactions start with the cpu number and are then
* incremented by CONFIG_NR_CPUS.
*/
#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
* No preemption supported therefore also no need to check for
* different cpus.
*/
#define TID_STEP 1
#endif /* CONFIG_PREEMPTION */
static inline unsigned long next_tid(unsigned long tid)
{
return tid + TID_STEP;
}
#ifdef SLUB_DEBUG_CMPXCHG
static inline unsigned int tid_to_cpu(unsigned long tid)
{
return tid % TID_STEP;
}
static inline unsigned long tid_to_event(unsigned long tid)
{
return tid / TID_STEP;
}
#endif
static inline unsigned int init_tid(int cpu)
{
return cpu;
}
static inline void note_cmpxchg_failure(const char *n,
const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
pr_info("%s %s: cmpxchg redo ", n, s->name);
#ifdef CONFIG_PREEMPTION
if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
pr_warn("due to cpu change %d -> %d\n",
tid_to_cpu(tid), tid_to_cpu(actual_tid));
else
#endif
if (tid_to_event(tid) != tid_to_event(actual_tid))
pr_warn("due to cpu running other code. Event %ld->%ld\n",
tid_to_event(tid), tid_to_event(actual_tid));
else
pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
actual_tid, tid, next_tid(tid));
#endif
stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
}
static void init_kmem_cache_cpus(struct kmem_cache *s)
{
int cpu;
struct kmem_cache_cpu *c;
for_each_possible_cpu(cpu) {
c = per_cpu_ptr(s->cpu_slab, cpu);
local_lock_init(&c->lock);
c->tid = init_tid(cpu);
}
}
/*
* Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
* unfreezes the slabs and puts it on the proper list.
* Assumes the slab has been already safely taken away from kmem_cache_cpu
* by the caller.
*/
static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
void *freelist)
{
struct kmem_cache_node *n = get_node(s, slab_nid(slab));
int free_delta = 0;
void *nextfree, *freelist_iter, *freelist_tail;
int tail = DEACTIVATE_TO_HEAD;
unsigned long flags = 0;
struct slab new;
struct slab old;
if (READ_ONCE(slab->freelist)) {
stat(s, DEACTIVATE_REMOTE_FREES);
tail = DEACTIVATE_TO_TAIL;
}
/*
* Stage one: Count the objects on cpu's freelist as free_delta and
* remember the last object in freelist_tail for later splicing.
*/
freelist_tail = NULL;
freelist_iter = freelist;
while (freelist_iter) {
nextfree = get_freepointer(s, freelist_iter);
/*
* If 'nextfree' is invalid, it is possible that the object at
* 'freelist_iter' is already corrupted. So isolate all objects
* starting at 'freelist_iter' by skipping them.
*/
if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
break;
freelist_tail = freelist_iter;
free_delta++;
freelist_iter = nextfree;
}
/*
* Stage two: Unfreeze the slab while splicing the per-cpu
* freelist to the head of slab's freelist.
*/
do {
old.freelist = READ_ONCE(slab->freelist);
old.counters = READ_ONCE(slab->counters);
VM_BUG_ON(!old.frozen);
/* Determine target state of the slab */
new.counters = old.counters;
new.frozen = 0;
if (freelist_tail) {
new.inuse -= free_delta;
set_freepointer(s, freelist_tail, old.freelist);
new.freelist = freelist;
} else {
new.freelist = old.freelist;
}
} while (!slab_update_freelist(s, slab,
old.freelist, old.counters,
new.freelist, new.counters,
"unfreezing slab"));
/*
* Stage three: Manipulate the slab list based on the updated state.
*/
if (!new.inuse && n->nr_partial >= s->min_partial) {
stat(s, DEACTIVATE_EMPTY);
discard_slab(s, slab);
stat(s, FREE_SLAB);
} else if (new.freelist) {
spin_lock_irqsave(&n->list_lock, flags);
add_partial(n, slab, tail);
spin_unlock_irqrestore(&n->list_lock, flags);
stat(s, tail);
} else {
stat(s, DEACTIVATE_FULL);
}
}
#ifdef CONFIG_SLUB_CPU_PARTIAL
static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
{
struct kmem_cache_node *n = NULL, *n2 = NULL;
struct slab *slab, *slab_to_discard = NULL;
unsigned long flags = 0;
while (partial_slab) {
slab = partial_slab;
partial_slab = slab->next;
n2 = get_node(s, slab_nid(slab));
if (n != n2) {
if (n)
spin_unlock_irqrestore(&n->list_lock, flags);
n = n2;
spin_lock_irqsave(&n->list_lock, flags);
}
if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
slab->next = slab_to_discard;
slab_to_discard = slab;
} else {
add_partial(n, slab, DEACTIVATE_TO_TAIL);
stat(s, FREE_ADD_PARTIAL);
}
}
if (n)
spin_unlock_irqrestore(&n->list_lock, flags);
while (slab_to_discard) {
slab = slab_to_discard;
slab_to_discard = slab_to_discard->next;
stat(s, DEACTIVATE_EMPTY);
discard_slab(s, slab);
stat(s, FREE_SLAB);
}
}
/*
* Put all the cpu partial slabs to the node partial list.
*/
static void put_partials(struct kmem_cache *s)
{
struct slab *partial_slab;
unsigned long flags;
local_lock_irqsave(&s->cpu_slab->lock, flags);
partial_slab = this_cpu_read(s->cpu_slab->partial);
this_cpu_write(s->cpu_slab->partial, NULL);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
if (partial_slab)
__put_partials(s, partial_slab);
}
static void put_partials_cpu(struct kmem_cache *s,
struct kmem_cache_cpu *c)
{
struct slab *partial_slab;
partial_slab = slub_percpu_partial(c);
c->partial = NULL;
if (partial_slab)
__put_partials(s, partial_slab);
}
/*
* Put a slab into a partial slab slot if available.
*
* If we did not find a slot then simply move all the partials to the
* per node partial list.
*/
static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
{
struct slab *oldslab;
struct slab *slab_to_put = NULL;
unsigned long flags;
int slabs = 0;
local_lock_irqsave(&s->cpu_slab->lock, flags);
oldslab = this_cpu_read(s->cpu_slab->partial);
if (oldslab) {
if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
/*
* Partial array is full. Move the existing set to the
* per node partial list. Postpone the actual unfreezing
* outside of the critical section.
*/
slab_to_put = oldslab;
oldslab = NULL;
} else {
slabs = oldslab->slabs;
}
}
slabs++;
slab->slabs = slabs;
slab->next = oldslab;
this_cpu_write(s->cpu_slab->partial, slab);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
if (slab_to_put) {
__put_partials(s, slab_to_put);
stat(s, CPU_PARTIAL_DRAIN);
}
}
#else /* CONFIG_SLUB_CPU_PARTIAL */
static inline void put_partials(struct kmem_cache *s) { }
static inline void put_partials_cpu(struct kmem_cache *s,
struct kmem_cache_cpu *c) { }
#endif /* CONFIG_SLUB_CPU_PARTIAL */
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
unsigned long flags;
struct slab *slab;
void *freelist;
local_lock_irqsave(&s->cpu_slab->lock, flags);
slab = c->slab;
freelist = c->freelist;
c->slab = NULL;
c->freelist = NULL;
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
if (slab) {
deactivate_slab(s, slab, freelist);
stat(s, CPUSLAB_FLUSH);
}
}
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
void *freelist = c->freelist;
struct slab *slab = c->slab;
c->slab = NULL;
c->freelist = NULL;
c->tid = next_tid(c->tid);
if (slab) {
deactivate_slab(s, slab, freelist);
stat(s, CPUSLAB_FLUSH);
}
put_partials_cpu(s, c);
}
struct slub_flush_work {
struct work_struct work;
struct kmem_cache *s;
bool skip;
};
/*
* Flush cpu slab.
*
* Called from CPU work handler with migration disabled.
*/
static void flush_cpu_slab(struct work_struct *w)
{
struct kmem_cache *s;
struct kmem_cache_cpu *c;
struct slub_flush_work *sfw;
sfw = container_of(w, struct slub_flush_work, work);
s = sfw->s;
c = this_cpu_ptr(s->cpu_slab);
if (c->slab)
flush_slab(s, c);
put_partials(s);
}
static bool has_cpu_slab(int cpu, struct kmem_cache *s)
{
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
return c->slab || slub_percpu_partial(c);
}
static DEFINE_MUTEX(flush_lock);
static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
static void flush_all_cpus_locked(struct kmem_cache *s)
{
struct slub_flush_work *sfw;
unsigned int cpu;
lockdep_assert_cpus_held();
mutex_lock(&flush_lock);
for_each_online_cpu(cpu) {
sfw = &per_cpu(slub_flush, cpu);
if (!has_cpu_slab(cpu, s)) {
sfw->skip = true;
continue;
}
INIT_WORK(&sfw->work, flush_cpu_slab);
sfw->skip = false;
sfw->s = s;
queue_work_on(cpu, flushwq, &sfw->work);
}
for_each_online_cpu(cpu) {
sfw = &per_cpu(slub_flush, cpu);
if (sfw->skip)
continue;
flush_work(&sfw->work);
}
mutex_unlock(&flush_lock);
}
static void flush_all(struct kmem_cache *s)
{
cpus_read_lock();
flush_all_cpus_locked(s);
cpus_read_unlock();
}
/*
* Use the cpu notifier to insure that the cpu slabs are flushed when
* necessary.
*/
static int slub_cpu_dead(unsigned int cpu)
{
struct kmem_cache *s;
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list)
__flush_cpu_slab(s, cpu);
mutex_unlock(&slab_mutex);
return 0;
}
#else /* CONFIG_SLUB_TINY */
static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
static inline void flush_all(struct kmem_cache *s) { }
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
#endif /* CONFIG_SLUB_TINY */
/*
* Check if the objects in a per cpu structure fit numa
* locality expectations.
*/
static inline int node_match(struct slab *slab, int node)
{
#ifdef CONFIG_NUMA
if (node != NUMA_NO_NODE && slab_nid(slab) != node)
return 0;
#endif
return 1;
}
#ifdef CONFIG_SLUB_DEBUG
static int count_free(struct slab *slab)
{
return slab->objects - slab->inuse;
}
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
return atomic_long_read(&n->total_objects);
}
/* Supports checking bulk free of a constructed freelist */
static inline bool free_debug_processing(struct kmem_cache *s,
struct slab *slab, void *head, void *tail, int *bulk_cnt,
unsigned long addr, depot_stack_handle_t handle)
{
bool checks_ok = false;
void *object = head;
int cnt = 0;
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
if (!check_slab(s, slab))
goto out;
}
if (slab->inuse < *bulk_cnt) {
slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
slab->inuse, *bulk_cnt);
goto out;
}
next_object:
if (++cnt > *bulk_cnt)
goto out_cnt;
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
if (!free_consistency_checks(s, slab, object, addr))
goto out;
}
if (s->flags & SLAB_STORE_USER)
set_track_update(s, object, TRACK_FREE, addr, handle);
trace(s, slab, object, 0);
/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
init_object(s, object, SLUB_RED_INACTIVE);
/* Reached end of constructed freelist yet? */
if (object != tail) {
object = get_freepointer(s, object);
goto next_object;
}
checks_ok = true;
out_cnt:
if (cnt != *bulk_cnt) {
slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
*bulk_cnt, cnt);
*bulk_cnt = cnt;
}
out:
if (!checks_ok)
slab_fix(s, "Object at 0x%p not freed", object);
return checks_ok;
}
#endif /* CONFIG_SLUB_DEBUG */
#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
static unsigned long count_partial(struct kmem_cache_node *n,
int (*get_count)(struct slab *))
{
unsigned long flags;
unsigned long x = 0;
struct slab *slab;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(slab, &n->partial, slab_list)
x += get_count(slab);
spin_unlock_irqrestore(&n->list_lock, flags);
return x;
}
#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
#ifdef CONFIG_SLUB_DEBUG
#define MAX_PARTIAL_TO_SCAN 10000
static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
{
unsigned long flags;
unsigned long x = 0;
struct slab *slab;
spin_lock_irqsave(&n->list_lock, flags);
if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
list_for_each_entry(slab, &n->partial, slab_list)
x += slab->objects - slab->inuse;
} else {
/*
* For a long list, approximate the total count of objects in
* it to meet the limit on the number of slabs to scan.
* Scan from both the list's head and tail for better accuracy.
*/
unsigned long scanned = 0;
list_for_each_entry(slab, &n->partial, slab_list) {
x += slab->objects - slab->inuse;
if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
break;
}
list_for_each_entry_reverse(slab, &n->partial, slab_list) {
x += slab->objects - slab->inuse;
if (++scanned == MAX_PARTIAL_TO_SCAN)
break;
}
x = mult_frac(x, n->nr_partial, scanned);
x = min(x, node_nr_objs(n));
}
spin_unlock_irqrestore(&n->list_lock, flags);
return x;
}
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
int cpu = raw_smp_processor_id();
int node;
struct kmem_cache_node *n;
if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
return;
pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
s->name, s->object_size, s->size, oo_order(s->oo),
oo_order(s->min));
if (oo_order(s->min) > get_order(s->object_size))
pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
s->name);
for_each_kmem_cache_node(s, node, n) {
unsigned long nr_slabs;
unsigned long nr_objs;
unsigned long nr_free;
nr_free = count_partial_free_approx(n);
nr_slabs = node_nr_slabs(n);
nr_objs = node_nr_objs(n);
pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
node, nr_slabs, nr_objs, nr_free);
}
}
#else /* CONFIG_SLUB_DEBUG */
static inline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
#endif
static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
{
if (unlikely(slab_test_pfmemalloc(slab)))
return gfp_pfmemalloc_allowed(gfpflags);
return true;
}
#ifndef CONFIG_SLUB_TINY
static inline bool
__update_cpu_freelist_fast(struct kmem_cache *s,
void *freelist_old, void *freelist_new,
unsigned long tid)
{
freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
&old.full, new.full);
}
/*
* Check the slab->freelist and either transfer the freelist to the
* per cpu freelist or deactivate the slab.
*
* The slab is still frozen if the return value is not NULL.
*
* If this function returns NULL then the slab has been unfrozen.
*/
static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
{
struct slab new;
unsigned long counters;
void *freelist;
lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
do {
freelist = slab->freelist;
counters = slab->counters;
new.counters = counters;
new.inuse = slab->objects;
new.frozen = freelist != NULL;
} while (!__slab_update_freelist(s, slab,
freelist, counters,
NULL, new.counters,
"get_freelist"));
return freelist;
}
/*
* Freeze the partial slab and return the pointer to the freelist.
*/
static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
{
struct slab new;
unsigned long counters;
void *freelist;
do {
freelist = slab->freelist;
counters = slab->counters;
new.counters = counters;
VM_BUG_ON(new.frozen);
new.inuse = slab->objects;
new.frozen = 1;
} while (!slab_update_freelist(s, slab,
freelist, counters,
NULL, new.counters,
"freeze_slab"));
return freelist;
}
/*
* Slow path. The lockless freelist is empty or we need to perform
* debugging duties.
*
* Processing is still very fast if new objects have been freed to the
* regular freelist. In that case we simply take over the regular freelist
* as the lockless freelist and zap the regular freelist.
*
* If that is not working then we fall back to the partial lists. We take the
* first element of the freelist as the object to allocate now and move the
* rest of the freelist to the lockless freelist.
*
* And if we were unable to get a new slab from the partial slab lists then
* we need to allocate a new slab. This is the slowest path since it involves
* a call to the page allocator and the setup of a new slab.
*
* Version of __slab_alloc to use when we know that preemption is
* already disabled (which is the case for bulk allocation).
*/
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
{
void *freelist;
struct slab *slab;
unsigned long flags;
struct partial_context pc;
bool try_thisnode = true;
stat(s, ALLOC_SLOWPATH);
reread_slab:
slab = READ_ONCE(c->slab);
if (!slab) {
/*
* if the node is not online or has no normal memory, just
* ignore the node constraint
*/
if (unlikely(node != NUMA_NO_NODE &&
!node_isset(node, slab_nodes)))
node = NUMA_NO_NODE;
goto new_slab;
}
if (unlikely(!node_match(slab, node))) {
/*
* same as above but node_match() being false already
* implies node != NUMA_NO_NODE
*/
if (!node_isset(node, slab_nodes)) {
node = NUMA_NO_NODE;
} else {
stat(s, ALLOC_NODE_MISMATCH);
goto deactivate_slab;
}
}
/*
* By rights, we should be searching for a slab page that was
* PFMEMALLOC but right now, we are losing the pfmemalloc
* information when the page leaves the per-cpu allocator
*/
if (unlikely(!pfmemalloc_match(slab, gfpflags)))
goto deactivate_slab;
/* must check again c->slab in case we got preempted and it changed */
local_lock_irqsave(&s->cpu_slab->lock, flags);
if (unlikely(slab != c->slab)) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
goto reread_slab;
}
freelist = c->freelist;
if (freelist)
goto load_freelist;
freelist = get_freelist(s, slab);
if (!freelist) {
c->slab = NULL;
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
stat(s, DEACTIVATE_BYPASS);
goto new_slab;
}
stat(s, ALLOC_REFILL);
load_freelist:
lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
/*
* freelist is pointing to the list of objects to be used.
* slab is pointing to the slab from which the objects are obtained.
* That slab must be frozen for per cpu allocations to work.
*/
VM_BUG_ON(!c->slab->frozen);
c->freelist = get_freepointer(s, freelist);
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
return freelist;
deactivate_slab:
local_lock_irqsave(&s->cpu_slab->lock, flags);
if (slab != c->slab) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
goto reread_slab;
}
freelist = c->freelist;
c->slab = NULL;
c->freelist = NULL;
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
deactivate_slab(s, slab, freelist);
new_slab:
#ifdef CONFIG_SLUB_CPU_PARTIAL
while (slub_percpu_partial(c)) {
local_lock_irqsave(&s->cpu_slab->lock, flags);
if (unlikely(c->slab)) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
goto reread_slab;
}
if (unlikely(!slub_percpu_partial(c))) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
/* we were preempted and partial list got empty */
goto new_objects;
}
slab = slub_percpu_partial(c);
slub_set_percpu_partial(c, slab);
if (likely(node_match(slab, node) &&
pfmemalloc_match(slab, gfpflags))) {
c->slab = slab;
freelist = get_freelist(s, slab);
VM_BUG_ON(!freelist);
stat(s, CPU_PARTIAL_ALLOC);
goto load_freelist;
}
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
slab->next = NULL;
__put_partials(s, slab);
}
#endif
new_objects:
pc.flags = gfpflags;
/*
* When a preferred node is indicated but no __GFP_THISNODE
*
* 1) try to get a partial slab from target node only by having
* __GFP_THISNODE in pc.flags for get_partial()
* 2) if 1) failed, try to allocate a new slab from target node with
* GPF_NOWAIT | __GFP_THISNODE opportunistically
* 3) if 2) failed, retry with original gfpflags which will allow
* get_partial() try partial lists of other nodes before potentially
* allocating new page from other nodes
*/
if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
&& try_thisnode))
pc.flags = GFP_NOWAIT | __GFP_THISNODE;
pc.orig_size = orig_size;
slab = get_partial(s, node, &pc);
if (slab) {
if (kmem_cache_debug(s)) {
freelist = pc.object;
/*
* For debug caches here we had to go through
* alloc_single_from_partial() so just store the
* tracking info and return the object.
*/
if (s->flags & SLAB_STORE_USER)
set_track(s, freelist, TRACK_ALLOC, addr);
return freelist;
}
freelist = freeze_slab(s, slab);
goto retry_load_slab;
}
slub_put_cpu_ptr(s->cpu_slab);
slab = new_slab(s, pc.flags, node);
c = slub_get_cpu_ptr(s->cpu_slab);
if (unlikely(!slab)) {
if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
&& try_thisnode) {
try_thisnode = false;
goto new_objects;
}
slab_out_of_memory(s, gfpflags, node);
return NULL;
}
stat(s, ALLOC_SLAB);
if (kmem_cache_debug(s)) {
freelist = alloc_single_from_new_slab(s, slab, orig_size);
if (unlikely(!freelist))
goto new_objects;
if (s->flags & SLAB_STORE_USER)
set_track(s, freelist, TRACK_ALLOC, addr);
return freelist;
}
/*
* No other reference to the slab yet so we can
* muck around with it freely without cmpxchg
*/
freelist = slab->freelist;
slab->freelist = NULL;
slab->inuse = slab->objects;
slab->frozen = 1;
inc_slabs_node(s, slab_nid(slab), slab->objects);
if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
/*
* For !pfmemalloc_match() case we don't load freelist so that
* we don't make further mismatched allocations easier.
*/
deactivate_slab(s, slab, get_freepointer(s, freelist));
return freelist;
}
retry_load_slab:
local_lock_irqsave(&s->cpu_slab->lock, flags);
if (unlikely(c->slab)) {
void *flush_freelist = c->freelist;
struct slab *flush_slab = c->slab;
c->slab = NULL;
c->freelist = NULL;
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
deactivate_slab(s, flush_slab, flush_freelist);
stat(s, CPUSLAB_FLUSH);
goto retry_load_slab;
}
c->slab = slab;
goto load_freelist;
}
/*
* A wrapper for ___slab_alloc() for contexts where preemption is not yet
* disabled. Compensates for possible cpu changes by refetching the per cpu area
* pointer.
*/
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
{
void *p;
#ifdef CONFIG_PREEMPT_COUNT
/*
* We may have been preempted and rescheduled on a different
* cpu before disabling preemption. Need to reload cpu area
* pointer.
*/
c = slub_get_cpu_ptr(s->cpu_slab);
#endif
p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
#ifdef CONFIG_PREEMPT_COUNT
slub_put_cpu_ptr(s->cpu_slab);
#endif
return p;
}
static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
{
struct kmem_cache_cpu *c;
struct slab *slab;
unsigned long tid;
void *object;
redo:
/*
* Must read kmem_cache cpu data via this cpu ptr. Preemption is
* enabled. We may switch back and forth between cpus while
* reading from one cpu area. That does not matter as long
* as we end up on the original cpu again when doing the cmpxchg.
*
* We must guarantee that tid and kmem_cache_cpu are retrieved on the
* same cpu. We read first the kmem_cache_cpu pointer and use it to read
* the tid. If we are preempted and switched to another cpu between the
* two reads, it's OK as the two are still associated with the same cpu
* and cmpxchg later will validate the cpu.
*/
c = raw_cpu_ptr(s->cpu_slab);
tid = READ_ONCE(c->tid);
/*
* Irqless object alloc/free algorithm used here depends on sequence
* of fetching cpu_slab's data. tid should be fetched before anything
* on c to guarantee that object and slab associated with previous tid
* won't be used with current tid. If we fetch tid first, object and
* slab could be one associated with next tid and our alloc/free
* request will be failed. In this case, we will retry. So, no problem.
*/
barrier();
/*
* The transaction ids are globally unique per cpu and per operation on
* a per cpu queue. Thus they can be guarantee that the cmpxchg_double
* occurs on the right processor and that there was no operation on the
* linked list in between.
*/
object = c->freelist;
slab = c->slab;
if (!USE_LOCKLESS_FAST_PATH() ||
unlikely(!object || !slab || !node_match(slab, node))) {
object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
} else {
void *next_object = get_freepointer_safe(s, object);
/*
* The cmpxchg will only match if there was no additional
* operation and if we are on the right processor.
*
* The cmpxchg does the following atomically (without lock
* semantics!)
* 1. Relocate first pointer to the current per cpu area.
* 2. Verify that tid and freelist have not been changed
* 3. If they were not changed replace tid and freelist
*
* Since this is without lock semantics the protection is only
* against code executing on this cpu *not* from access by
* other cpus.
*/
if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
note_cmpxchg_failure("slab_alloc", s, tid);
goto redo;
}
prefetch_freepointer(s, next_object);
stat(s, ALLOC_FASTPATH);
}
return object;
}
#else /* CONFIG_SLUB_TINY */
static void *__slab_alloc_node(struct kmem_cache *s,
gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
{
struct partial_context pc;
struct slab *slab;
void *object;
pc.flags = gfpflags;
pc.orig_size = orig_size;
slab = get_partial(s, node, &pc);
if (slab)
return pc.object;
slab = new_slab(s, gfpflags, node);
if (unlikely(!slab)) {
slab_out_of_memory(s, gfpflags, node);
return NULL;
}
object = alloc_single_from_new_slab(s, slab, orig_size);
return object;
}
#endif /* CONFIG_SLUB_TINY */
/*
* If the object has been wiped upon free, make sure it's fully initialized by
* zeroing out freelist pointer.
*/
static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
void *obj)
{
if (unlikely(slab_want_init_on_free(s)) && obj &&
!freeptr_outside_object(s))
memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
0, sizeof(void *));
}
static __fastpath_inline
struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
flags &= gfp_allowed_mask;
might_alloc(flags);
if (unlikely(should_failslab(s, flags)))
return NULL;
return s;
}
static __fastpath_inline
bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
gfp_t flags, size_t size, void **p, bool init,
unsigned int orig_size)
{
unsigned int zero_size = s->object_size;
bool kasan_init = init;
size_t i;
gfp_t init_flags = flags & gfp_allowed_mask;
/*
* For kmalloc object, the allocated memory size(object_size) is likely
* larger than the requested size(orig_size). If redzone check is
* enabled for the extra space, don't zero it, as it will be redzoned
* soon. The redzone operation for this extra space could be seen as a
* replacement of current poisoning under certain debug option, and
* won't break other sanity checks.
*/
if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
(s->flags & SLAB_KMALLOC))
zero_size = orig_size;
/*
* When slab_debug is enabled, avoid memory initialization integrated
* into KASAN and instead zero out the memory via the memset below with
* the proper size. Otherwise, KASAN might overwrite SLUB redzones and
* cause false-positive reports. This does not lead to a performance
* penalty on production builds, as slab_debug is not intended to be
* enabled there.
*/
if (__slub_debug_enabled())
kasan_init = false;
/*
* As memory initialization might be integrated into KASAN,
* kasan_slab_alloc and initialization memset must be
* kept together to avoid discrepancies in behavior.
*
* As p[i] might get tagged, memset and kmemleak hook come after KASAN.
*/
for (i = 0; i < size; i++) {
p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
if (p[i] && init && (!kasan_init ||
!kasan_has_integrated_init()))
memset(p[i], 0, zero_size);
kmemleak_alloc_recursive(p[i], s->object_size, 1,
s->flags, init_flags);
kmsan_slab_alloc(s, p[i], init_flags);
alloc_tagging_slab_alloc_hook(s, p[i], flags);
}
return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
}
/*
* Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
* have the fastpath folded into their functions. So no function call
* overhead for requests that can be satisfied on the fastpath.
*
* The fastpath works by first checking if the lockless freelist can be used.
* If not then __slab_alloc is called for slow processing.
*
* Otherwise we can simply pick the next object from the lockless free list.
*/
static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
{
void *object;
bool init = false;
s = slab_pre_alloc_hook(s, gfpflags);
if (unlikely(!s))
return NULL;
object = kfence_alloc(s, orig_size, gfpflags);
if (unlikely(object))
goto out;
object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
maybe_wipe_obj_freeptr(s, object);
init = slab_want_init_on_alloc(gfpflags, s);
out:
/*
* When init equals 'true', like for kzalloc() family, only
* @orig_size bytes might be zeroed instead of s->object_size
* In case this fails due to memcg_slab_post_alloc_hook(),
* object is set to NULL
*/
slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
return object;
}
void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
{
void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
s->object_size);
trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_noprof);
void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
gfp_t gfpflags)
{
void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
s->object_size);
trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
/**
* kmem_cache_alloc_node - Allocate an object on the specified node
* @s: The cache to allocate from.
* @gfpflags: See kmalloc().
* @node: node number of the target node.
*
* Identical to kmem_cache_alloc but it will allocate memory on the given
* node, which can improve the performance for cpu bound structures.
*
* Fallback to other node is possible if __GFP_THISNODE is not set.
*
* Return: pointer to the new object or %NULL in case of error
*/
void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
{
void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
/*
* To avoid unnecessary overhead, we pass through large allocation requests
* directly to the page allocator. We use __GFP_COMP, because we will need to
* know the allocation order to free the pages properly in kfree.
*/
static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
{
struct folio *folio;
void *ptr = NULL;
unsigned int order = get_order(size);
if (unlikely(flags & GFP_SLAB_BUG_MASK))
flags = kmalloc_fix_flags(flags);
flags |= __GFP_COMP;
folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
if (folio) {
ptr = folio_address(folio);
lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
PAGE_SIZE << order);
}
ptr = kasan_kmalloc_large(ptr, size, flags);
/* As ptr might get tagged, call kmemleak hook after KASAN. */
kmemleak_alloc(ptr, size, 1, flags);
kmsan_kmalloc_large(ptr, size, flags);
return ptr;
}
void *__kmalloc_large_noprof(size_t size, gfp_t flags)
{
void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
flags, NUMA_NO_NODE);
return ret;
}
EXPORT_SYMBOL(__kmalloc_large_noprof);
void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
{
void *ret = ___kmalloc_large_node(size, flags, node);
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
flags, node);
return ret;
}
EXPORT_SYMBOL(__kmalloc_large_node_noprof);
static __always_inline
void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
unsigned long caller)
{
struct kmem_cache *s;
void *ret;
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
ret = __kmalloc_large_node_noprof(size, flags, node);
trace_kmalloc(caller, ret, size,
PAGE_SIZE << get_order(size), flags, node);
return ret;
}
if (unlikely(!size))
return ZERO_SIZE_PTR;
s = kmalloc_slab(size, b, flags, caller);
ret = slab_alloc_node(s, NULL, flags, node, caller, size);
ret = kasan_kmalloc(s, ret, size, flags);
trace_kmalloc(caller, ret, size, s->size, flags, node);
return ret;
}
void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
{
return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node_noprof);
void *__kmalloc_noprof(size_t size, gfp_t flags)
{
return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_noprof);
void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
int node, unsigned long caller)
{
return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
_RET_IP_, size);
trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
ret = kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
EXPORT_SYMBOL(__kmalloc_cache_noprof);
void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
int node, size_t size)
{
void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
ret = kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
static noinline void free_to_partial_list(
struct kmem_cache *s, struct slab *slab,
void *head, void *tail, int bulk_cnt,
unsigned long addr)
{
struct kmem_cache_node *n = get_node(s, slab_nid(slab));
struct slab *slab_free = NULL;
int cnt = bulk_cnt;
unsigned long flags;
depot_stack_handle_t handle = 0;
if (s->flags & SLAB_STORE_USER)
handle = set_track_prepare();
spin_lock_irqsave(&n->list_lock, flags);
if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
void *prior = slab->freelist;
/* Perform the actual freeing while we still hold the locks */
slab->inuse -= cnt;
set_freepointer(s, tail, prior);
slab->freelist = head;
/*
* If the slab is empty, and node's partial list is full,
* it should be discarded anyway no matter it's on full or
* partial list.
*/
if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
slab_free = slab;
if (!prior) {
/* was on full list */
remove_full(s, n, slab);
if (!slab_free) {
add_partial(n, slab, DEACTIVATE_TO_TAIL);
stat(s, FREE_ADD_PARTIAL);
}
} else if (slab_free) {
remove_partial(n, slab);
stat(s, FREE_REMOVE_PARTIAL);
}
}
if (slab_free) {
/*
* Update the counters while still holding n->list_lock to
* prevent spurious validation warnings
*/
dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
}
spin_unlock_irqrestore(&n->list_lock, flags);
if (slab_free) {
stat(s, FREE_SLAB);
free_slab(s, slab_free);
}
}
/*
* Slow path handling. This may still be called frequently since objects
* have a longer lifetime than the cpu slabs in most processing loads.
*
* So we still attempt to reduce cache line usage. Just take the slab
* lock and free the item. If there is no additional partial slab
* handling required then we can return immediately.
*/
static void __slab_free(struct kmem_cache *s, struct slab *slab,
void *head, void *tail, int cnt,
unsigned long addr)
{
void *prior;
int was_frozen;
struct slab new;
unsigned long counters;
struct kmem_cache_node *n = NULL;
unsigned long flags;
bool on_node_partial;
stat(s, FREE_SLOWPATH);
if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
free_to_partial_list(s, slab, head, tail, cnt, addr);
return;
}
do {
if (unlikely(n)) {
spin_unlock_irqrestore(&n->list_lock, flags);
n = NULL;
}
prior = slab->freelist;
counters = slab->counters;
set_freepointer(s, tail, prior);
new.counters = counters;
was_frozen = new.frozen;
new.inuse -= cnt;
if ((!new.inuse || !prior) && !was_frozen) {
/* Needs to be taken off a list */
if (!kmem_cache_has_cpu_partial(s) || prior) {
n = get_node(s, slab_nid(slab));
/*
* Speculatively acquire the list_lock.
* If the cmpxchg does not succeed then we may
* drop the list_lock without any processing.
*
* Otherwise the list_lock will synchronize with
* other processors updating the list of slabs.
*/
spin_lock_irqsave(&n->list_lock, flags);
on_node_partial = slab_test_node_partial(slab);
}
}
} while (!slab_update_freelist(s, slab,
prior, counters,
head, new.counters,
"__slab_free"));
if (likely(!n)) {
if (likely(was_frozen)) {
/*
* The list lock was not taken therefore no list
* activity can be necessary.
*/
stat(s, FREE_FROZEN);
} else if (kmem_cache_has_cpu_partial(s) && !prior) {
/*
* If we started with a full slab then put it onto the
* per cpu partial list.
*/
put_cpu_partial(s, slab, 1);
stat(s, CPU_PARTIAL_FREE);
}
return;
}
/*
* This slab was partially empty but not on the per-node partial list,
* in which case we shouldn't manipulate its list, just return.
*/
if (prior && !on_node_partial) {
spin_unlock_irqrestore(&n->list_lock, flags);
return;
}
if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
goto slab_empty;
/*
* Objects left in the slab. If it was not on the partial list before
* then add it.
*/
if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
add_partial(n, slab, DEACTIVATE_TO_TAIL);
stat(s, FREE_ADD_PARTIAL);
}
spin_unlock_irqrestore(&n->list_lock, flags);
return;
slab_empty:
if (prior) {
/*
* Slab on the partial list.
*/
remove_partial(n, slab);
stat(s, FREE_REMOVE_PARTIAL);
}
spin_unlock_irqrestore(&n->list_lock, flags);
stat(s, FREE_SLAB);
discard_slab(s, slab);
}
#ifndef CONFIG_SLUB_TINY
/*
* Fastpath with forced inlining to produce a kfree and kmem_cache_free that
* can perform fastpath freeing without additional function calls.
*
* The fastpath is only possible if we are freeing to the current cpu slab
* of this processor. This typically the case if we have just allocated
* the item before.
*
* If fastpath is not possible then fall back to __slab_free where we deal
* with all sorts of special processing.
*
* Bulk free of a freelist with several objects (all pointing to the
* same slab) possible by specifying head and tail ptr, plus objects
* count (cnt). Bulk free indicated by tail pointer being set.
*/
static __always_inline void do_slab_free(struct kmem_cache *s,
struct slab *slab, void *head, void *tail,
int cnt, unsigned long addr)
{
struct kmem_cache_cpu *c;
unsigned long tid;
void **freelist;
redo:
/*
* Determine the currently cpus per cpu slab.
* The cpu may change afterward. However that does not matter since
* data is retrieved via this pointer. If we are on the same cpu
* during the cmpxchg then the free will succeed.
*/
c = raw_cpu_ptr(s->cpu_slab);
tid = READ_ONCE(c->tid);
/* Same with comment on barrier() in __slab_alloc_node() */
barrier();
if (unlikely(slab != c->slab)) {
__slab_free(s, slab, head, tail, cnt, addr);
return;
}
if (USE_LOCKLESS_FAST_PATH()) {
freelist = READ_ONCE(c->freelist);
set_freepointer(s, tail, freelist);
if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
note_cmpxchg_failure("slab_free", s, tid);
goto redo;
}
} else {
/* Update the free list under the local lock */
local_lock(&s->cpu_slab->lock);
c = this_cpu_ptr(s->cpu_slab);
if (unlikely(slab != c->slab)) {
local_unlock(&s->cpu_slab->lock);
goto redo;
}
tid = c->tid;
freelist = c->freelist;
set_freepointer(s, tail, freelist);
c->freelist = head;
c->tid = next_tid(tid);
local_unlock(&s->cpu_slab->lock);
}
stat_add(s, FREE_FASTPATH, cnt);
}
#else /* CONFIG_SLUB_TINY */
static void do_slab_free(struct kmem_cache *s,
struct slab *slab, void *head, void *tail,
int cnt, unsigned long addr)
{
__slab_free(s, slab, head, tail, cnt, addr);
}
#endif /* CONFIG_SLUB_TINY */
static __fastpath_inline
void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
unsigned long addr)
{
memcg_slab_free_hook(s, slab, &object, 1);
alloc_tagging_slab_free_hook(s, slab, &object, 1);
if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
do_slab_free(s, slab, object, object, 1, addr);
}
#ifdef CONFIG_MEMCG
/* Do not inline the rare memcg charging failed path into the allocation path */
static noinline
void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
{
if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
}
#endif
static __fastpath_inline
void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
void *tail, void **p, int cnt, unsigned long addr)
{
memcg_slab_free_hook(s, slab, p, cnt);
alloc_tagging_slab_free_hook(s, slab, p, cnt);
/*
* With KASAN enabled slab_free_freelist_hook modifies the freelist
* to remove objects, whose reuse must be delayed.
*/
if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
do_slab_free(s, slab, head, tail, cnt, addr);
}
#ifdef CONFIG_KASAN_GENERIC
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
}
#endif
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
struct slab *slab;
slab = virt_to_slab(obj);
if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
return NULL;
return slab->slab_cache;
}
static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
struct kmem_cache *cachep;
if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
!kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
return s;
cachep = virt_to_cache(x);
if (WARN(cachep && cachep != s,
"%s: Wrong slab cache. %s but object is from %s\n",
__func__, s->name, cachep->name))
print_tracking(cachep, x);
return cachep;
}
/**
* kmem_cache_free - Deallocate an object
* @s: The cache the allocation was from.
* @x: The previously allocated object.
*
* Free an object which was previously allocated from this
* cache.
*/
void kmem_cache_free(struct kmem_cache *s, void *x)
{
s = cache_from_obj(s, x);
if (!s)
return;
trace_kmem_cache_free(_RET_IP_, x, s);
slab_free(s, virt_to_slab(x), x, _RET_IP_);
}
EXPORT_SYMBOL(kmem_cache_free);
static void free_large_kmalloc(struct folio *folio, void *object)
{
unsigned int order = folio_order(folio);
if (WARN_ON_ONCE(order == 0))
pr_warn_once("object pointer: 0x%p\n", object);
kmemleak_free(object);
kasan_kfree_large(object);
kmsan_kfree_large(object);
lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
-(PAGE_SIZE << order));
folio_put(folio);
}
/**
* kfree - free previously allocated memory
* @object: pointer returned by kmalloc() or kmem_cache_alloc()
*
* If @object is NULL, no operation is performed.
*/
void kfree(const void *object)
{
struct folio *folio;
struct slab *slab;
struct kmem_cache *s;
void *x = (void *)object;
trace_kfree(_RET_IP_, object);
if (unlikely(ZERO_OR_NULL_PTR(object)))
return;
folio = virt_to_folio(object);
if (unlikely(!folio_test_slab(folio))) {
free_large_kmalloc(folio, (void *)object);
return;
}
slab = folio_slab(folio);
s = slab->slab_cache;
slab_free(s, slab, x, _RET_IP_);
}
EXPORT_SYMBOL(kfree);
struct detached_freelist {
struct slab *slab;
void *tail;
void *freelist;
int cnt;
struct kmem_cache *s;
};
/*
* This function progressively scans the array with free objects (with
* a limited look ahead) and extract objects belonging to the same
* slab. It builds a detached freelist directly within the given
* slab/objects. This can happen without any need for
* synchronization, because the objects are owned by running process.
* The freelist is build up as a single linked list in the objects.
* The idea is, that this detached freelist can then be bulk
* transferred to the real freelist(s), but only requiring a single
* synchronization primitive. Look ahead in the array is limited due
* to performance reasons.
*/
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
void **p, struct detached_freelist *df)
{
int lookahead = 3;
void *object;
struct folio *folio;
size_t same;
object = p[--size];
folio = virt_to_folio(object);
if (!s) {
/* Handle kalloc'ed objects */
if (unlikely(!folio_test_slab(folio))) {
free_large_kmalloc(folio, object);
df->slab = NULL;
return size;
}
/* Derive kmem_cache from object */
df->slab = folio_slab(folio);
df->s = df->slab->slab_cache;
} else {
df->slab = folio_slab(folio);
df->s = cache_from_obj(s, object); /* Support for memcg */
}
/* Start new detached freelist */
df->tail = object;
df->freelist = object;
df->cnt = 1;
if (is_kfence_address(object))
return size;
set_freepointer(df->s, object, NULL);
same = size;
while (size) {
object = p[--size];
/* df->slab is always set at this point */
if (df->slab == virt_to_slab(object)) {
/* Opportunity build freelist */
set_freepointer(df->s, object, df->freelist);
df->freelist = object;
df->cnt++;
same--;
if (size != same)
swap(p[size], p[same]);
continue;
}
/* Limit look ahead search */
if (!--lookahead)
break;
}
return same;
}
/*
* Internal bulk free of objects that were not initialised by the post alloc
* hooks and thus should not be processed by the free hooks
*/
static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
if (!size)
return;
do {
struct detached_freelist df;
size = build_detached_freelist(s, size, p, &df);
if (!df.slab)
continue;
if (kfence_free(df.freelist))
continue;
do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
_RET_IP_);
} while (likely(size));
}
/* Note that interrupts must be enabled when calling this function. */
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
if (!size)
return;
do {
struct detached_freelist df;
size = build_detached_freelist(s, size, p, &df);
if (!df.slab)
continue;
slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
df.cnt, _RET_IP_);
} while (likely(size));
}
EXPORT_SYMBOL(kmem_cache_free_bulk);
#ifndef CONFIG_SLUB_TINY
static inline
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
void **p)
{
struct kmem_cache_cpu *c;
unsigned long irqflags;
int i;
/*
* Drain objects in the per cpu slab, while disabling local
* IRQs, which protects against PREEMPT and interrupts
* handlers invoking normal fastpath.
*/
c = slub_get_cpu_ptr(s->cpu_slab);
local_lock_irqsave(&s->cpu_slab->lock, irqflags);
for (i = 0; i < size; i++) {
void *object = kfence_alloc(s, s->object_size, flags);
if (unlikely(object)) {
p[i] = object;
continue;
}
object = c->freelist;
if (unlikely(!object)) {
/*
* We may have removed an object from c->freelist using
* the fastpath in the previous iteration; in that case,
* c->tid has not been bumped yet.
* Since ___slab_alloc() may reenable interrupts while
* allocating memory, we should bump c->tid now.
*/
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
/*
* Invoking slow path likely have side-effect
* of re-populating per CPU c->freelist
*/
p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
_RET_IP_, c, s->object_size);
if (unlikely(!p[i]))
goto error;
c = this_cpu_ptr(s->cpu_slab);
maybe_wipe_obj_freeptr(s, p[i]);
local_lock_irqsave(&s->cpu_slab->lock, irqflags);
continue; /* goto for-loop */
}
c->freelist = get_freepointer(s, object);
p[i] = object;
maybe_wipe_obj_freeptr(s, p[i]);
stat(s, ALLOC_FASTPATH);
}
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
slub_put_cpu_ptr(s->cpu_slab);
return i;
error:
slub_put_cpu_ptr(s->cpu_slab);
__kmem_cache_free_bulk(s, i, p);
return 0;
}
#else /* CONFIG_SLUB_TINY */
static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
size_t size, void **p)
{
int i;
for (i = 0; i < size; i++) {
void *object = kfence_alloc(s, s->object_size, flags);
if (unlikely(object)) {
p[i] = object;
continue;
}
p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
_RET_IP_, s->object_size);
if (unlikely(!p[i]))
goto error;
maybe_wipe_obj_freeptr(s, p[i]);
}
return i;
error:
__kmem_cache_free_bulk(s, i, p);
return 0;
}
#endif /* CONFIG_SLUB_TINY */
/* Note that interrupts must be enabled when calling this function. */
int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
void **p)
{
int i;
if (!size)
return 0;
s = slab_pre_alloc_hook(s, flags);
if (unlikely(!s))
return 0;
i = __kmem_cache_alloc_bulk(s, flags, size, p);
if (unlikely(i == 0))
return 0;
/*
* memcg and kmem_cache debug support and memory initialization.
* Done outside of the IRQ disabled fastpath loop.
*/
if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
slab_want_init_on_alloc(flags, s), s->object_size))) {
return 0;
}
return i;
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
/*
* Object placement in a slab is made very easy because we always start at
* offset 0. If we tune the size of the object to the alignment then we can
* get the required alignment by putting one properly sized object after
* another.
*
* Notice that the allocation order determines the sizes of the per cpu
* caches. Each processor has always one slab available for allocations.
* Increasing the allocation order reduces the number of times that slabs
* must be moved on and off the partial lists and is therefore a factor in
* locking overhead.
*/
/*
* Minimum / Maximum order of slab pages. This influences locking overhead
* and slab fragmentation. A higher order reduces the number of partial slabs
* and increases the number of allocations possible without having to
* take the list_lock.
*/
static unsigned int slub_min_order;
static unsigned int slub_max_order =
IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
static unsigned int slub_min_objects;
/*
* Calculate the order of allocation given an slab object size.
*
* The order of allocation has significant impact on performance and other
* system components. Generally order 0 allocations should be preferred since
* order 0 does not cause fragmentation in the page allocator. Larger objects
* be problematic to put into order 0 slabs because there may be too much
* unused space left. We go to a higher order if more than 1/16th of the slab
* would be wasted.
*
* In order to reach satisfactory performance we must ensure that a minimum
* number of objects is in one slab. Otherwise we may generate too much
* activity on the partial lists which requires taking the list_lock. This is
* less a concern for large slabs though which are rarely used.
*
* slab_max_order specifies the order where we begin to stop considering the
* number of objects in a slab as critical. If we reach slab_max_order then
* we try to keep the page order as low as possible. So we accept more waste
* of space in favor of a small page order.
*
* Higher order allocations also allow the placement of more objects in a
* slab and thereby reduce object handling overhead. If the user has
* requested a higher minimum order then we start with that one instead of
* the smallest order which will fit the object.
*/
static inline unsigned int calc_slab_order(unsigned int size,
unsigned int min_order, unsigned int max_order,
unsigned int fract_leftover)
{
unsigned int order;
for (order = min_order; order <= max_order; order++) {
unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
unsigned int rem;
rem = slab_size % size;
if (rem <= slab_size / fract_leftover)
break;
}
return order;
}
static inline int calculate_order(unsigned int size)
{
unsigned int order;
unsigned int min_objects;
unsigned int max_objects;
unsigned int min_order;
min_objects = slub_min_objects;
if (!min_objects) {
/*
* Some architectures will only update present cpus when
* onlining them, so don't trust the number if it's just 1. But
* we also don't want to use nr_cpu_ids always, as on some other
* architectures, there can be many possible cpus, but never
* onlined. Here we compromise between trying to avoid too high
* order on systems that appear larger than they are, and too
* low order on systems that appear smaller than they are.
*/
unsigned int nr_cpus = num_present_cpus();
if (nr_cpus <= 1)
nr_cpus = nr_cpu_ids;
min_objects = 4 * (fls(nr_cpus) + 1);
}
/* min_objects can't be 0 because get_order(0) is undefined */
max_objects = max(order_objects(slub_max_order, size), 1U);
min_objects = min(min_objects, max_objects);
min_order = max_t(unsigned int, slub_min_order,
get_order(min_objects * size));
if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
return get_order(size * MAX_OBJS_PER_PAGE) - 1;
/*
* Attempt to find best configuration for a slab. This works by first
* attempting to generate a layout with the best possible configuration
* and backing off gradually.
*
* We start with accepting at most 1/16 waste and try to find the
* smallest order from min_objects-derived/slab_min_order up to
* slab_max_order that will satisfy the constraint. Note that increasing
* the order can only result in same or less fractional waste, not more.
*
* If that fails, we increase the acceptable fraction of waste and try
* again. The last iteration with fraction of 1/2 would effectively
* accept any waste and give us the order determined by min_objects, as
* long as at least single object fits within slab_max_order.
*/
for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
order = calc_slab_order(size, min_order, slub_max_order,
fraction);
if (order <= slub_max_order)
return order;
}
/*
* Doh this slab cannot be placed using slab_max_order.
*/
order = get_order(size);
if (order <= MAX_PAGE_ORDER)
return order;
return -ENOSYS;
}
static void
init_kmem_cache_node(struct kmem_cache_node *n)
{
n->nr_partial = 0;
spin_lock_init(&n->list_lock);
INIT_LIST_HEAD(&n->partial);
#ifdef CONFIG_SLUB_DEBUG
atomic_long_set(&n->nr_slabs, 0);
atomic_long_set(&n->total_objects, 0);
INIT_LIST_HEAD(&n->full);
#endif
}
#ifndef CONFIG_SLUB_TINY
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
{
BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
sizeof(struct kmem_cache_cpu));
/*
* Must align to double word boundary for the double cmpxchg
* instructions to work; see __pcpu_double_call_return_bool().
*/
s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2 * sizeof(void *));
if (!s->cpu_slab)
return 0;
init_kmem_cache_cpus(s);
return 1;
}
#else
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
{
return 1;
}
#endif /* CONFIG_SLUB_TINY */
static struct kmem_cache *kmem_cache_node;
/*
* No kmalloc_node yet so do it by hand. We know that this is the first
* slab on the node for this slabcache. There are no concurrent accesses
* possible.
*
* Note that this function only works on the kmem_cache_node
* when allocating for the kmem_cache_node. This is used for bootstrapping
* memory on a fresh node that has no slab structures yet.
*/
static void early_kmem_cache_node_alloc(int node)
{
struct slab *slab;
struct kmem_cache_node *n;
BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
BUG_ON(!slab);
if (slab_nid(slab) != node) {
pr_err("SLUB: Unable to allocate memory from node %d\n", node);
pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
}
n = slab->freelist;
BUG_ON(!n);
#ifdef CONFIG_SLUB_DEBUG
init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
#endif
n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
slab->freelist = get_freepointer(kmem_cache_node, n);
slab->inuse = 1;
kmem_cache_node->node[node] = n;
init_kmem_cache_node(n);
inc_slabs_node(kmem_cache_node, node, slab->objects);
/*
* No locks need to be taken here as it has just been
* initialized and there is no concurrent access.
*/
__add_partial(n, slab, DEACTIVATE_TO_HEAD);
}
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
int node;
struct kmem_cache_node *n;
for_each_kmem_cache_node(s, node, n) {
s->node[node] = NULL;
kmem_cache_free(kmem_cache_node, n);
}
}
void __kmem_cache_release(struct kmem_cache *s)
{
cache_random_seq_destroy(s);
#ifndef CONFIG_SLUB_TINY
free_percpu(s->cpu_slab);
#endif
free_kmem_cache_nodes(s);
}
static int init_kmem_cache_nodes(struct kmem_cache *s)
{
int node;
for_each_node_mask(node, slab_nodes) {
struct kmem_cache_node *n;
if (slab_state == DOWN) {
early_kmem_cache_node_alloc(node);
continue;
}
n = kmem_cache_alloc_node(kmem_cache_node,
GFP_KERNEL, node);
if (!n) {
free_kmem_cache_nodes(s);
return 0;
}
init_kmem_cache_node(n);
s->node[node] = n;
}
return 1;
}
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
unsigned int nr_objects;
/*
* cpu_partial determined the maximum number of objects kept in the
* per cpu partial lists of a processor.
*
* Per cpu partial lists mainly contain slabs that just have one
* object freed. If they are used for allocation then they can be
* filled up again with minimal effort. The slab will never hit the
* per node partial lists and therefore no locking will be required.
*
* For backwards compatibility reasons, this is determined as number
* of objects, even though we now limit maximum number of pages, see
* slub_set_cpu_partial()
*/
if (!kmem_cache_has_cpu_partial(s))
nr_objects = 0;
else if (s->size >= PAGE_SIZE)
nr_objects = 6;
else if (s->size >= 1024)
nr_objects = 24;
else if (s->size >= 256)
nr_objects = 52;
else
nr_objects = 120;
slub_set_cpu_partial(s, nr_objects);
#endif
}
/*
* calculate_sizes() determines the order and the distribution of data within
* a slab object.
*/
static int calculate_sizes(struct kmem_cache *s)
{
slab_flags_t flags = s->flags;
unsigned int size = s->object_size;
unsigned int order;
/*
* Round up object size to the next word boundary. We can only
* place the free pointer at word boundaries and this determines
* the possible location of the free pointer.
*/
size = ALIGN(size, sizeof(void *));
#ifdef CONFIG_SLUB_DEBUG
/*
* Determine if we can poison the object itself. If the user of
* the slab may touch the object after free or before allocation
* then we should never poison the object itself.
*/
if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
!s->ctor)
s->flags |= __OBJECT_POISON;
else
s->flags &= ~__OBJECT_POISON;
/*
* If we are Redzoning then check if there is some space between the
* end of the object and the free pointer. If not then add an
* additional word to have some bytes to store Redzone information.
*/
if ((flags & SLAB_RED_ZONE) && size == s->object_size)
size += sizeof(void *);
#endif
/*
* With that we have determined the number of bytes in actual use
* by the object and redzoning.
*/
s->inuse = size;
if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor ||
((flags & SLAB_RED_ZONE) &&
(s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
/*
* Relocate free pointer after the object if it is not
* permitted to overwrite the first word of the object on
* kmem_cache_free.
*
* This is the case if we do RCU, have a constructor or
* destructor, are poisoning the objects, or are
* redzoning an object smaller than sizeof(void *) or are
* redzoning an object with slub_debug_orig_size() enabled,
* in which case the right redzone may be extended.
*
* The assumption that s->offset >= s->inuse means free
* pointer is outside of the object is used in the
* freeptr_outside_object() function. If that is no
* longer true, the function needs to be modified.
*/
s->offset = size;
size += sizeof(void *);
} else {
/*
* Store freelist pointer near middle of object to keep
* it away from the edges of the object to avoid small
* sized over/underflows from neighboring allocations.
*/
s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
}
#ifdef CONFIG_SLUB_DEBUG
if (flags & SLAB_STORE_USER) {
/*
* Need to store information about allocs and frees after
* the object.
*/
size += 2 * sizeof(struct track);
/* Save the original kmalloc request size */
if (flags & SLAB_KMALLOC)
size += sizeof(unsigned int);
}
#endif
kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
if (flags & SLAB_RED_ZONE) {
/*
* Add some empty padding so that we can catch
* overwrites from earlier objects rather than let
* tracking information or the free pointer be
* corrupted if a user writes before the start
* of the object.
*/
size += sizeof(void *);
s->red_left_pad = sizeof(void *);
s->red_left_pad = ALIGN(s->red_left_pad, s->align);
size += s->red_left_pad;
}
#endif
/*
* SLUB stores one object immediately after another beginning from
* offset 0. In order to align the objects we have to simply size
* each object to conform to the alignment.
*/
size = ALIGN(size, s->align);
s->size = size;
s->reciprocal_size = reciprocal_value(size);
order = calculate_order(size);
if ((int)order < 0)
return 0;
s->allocflags = __GFP_COMP;
if (s->flags & SLAB_CACHE_DMA)
s->allocflags |= GFP_DMA;
if (s->flags & SLAB_CACHE_DMA32)
s->allocflags |= GFP_DMA32;
if (s->flags & SLAB_RECLAIM_ACCOUNT)
s->allocflags |= __GFP_RECLAIMABLE;
/*
* Determine the number of objects per slab
*/
s->oo = oo_make(order, size);
s->min = oo_make(get_order(size), size);
return !!oo_objects(s->oo);
}
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
{
s->flags = kmem_cache_flags(flags, s->name);
#ifdef CONFIG_SLAB_FREELIST_HARDENED
s->random = get_random_long();
#endif
if (!calculate_sizes(s))
goto error;
if (disable_higher_order_debug) {
/*
* Disable debugging flags that store metadata if the min slab
* order increased.
*/
if (get_order(s->size) > get_order(s->object_size)) {
s->flags &= ~DEBUG_METADATA_FLAGS;
s->offset = 0;
if (!calculate_sizes(s))
goto error;
}
}
#ifdef system_has_freelist_aba
if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
/* Enable fast mode */
s->flags |= __CMPXCHG_DOUBLE;
}
#endif
/*
* The larger the object size is, the more slabs we want on the partial
* list to avoid pounding the page allocator excessively.
*/
s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
set_cpu_partial(s);
#ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 1000;
#endif
/* Initialize the pre-computed randomized freelist if slab is up */
if (slab_state >= UP) {
if (init_cache_random_seq(s))
goto error;
}
if (!init_kmem_cache_nodes(s))
goto error;
if (alloc_kmem_cache_cpus(s))
return 0;
error:
__kmem_cache_release(s);
return -EINVAL;
}
static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
void *addr = slab_address(slab);
void *p;
slab_err(s, slab, text, s->name);
spin_lock(&object_map_lock);
__fill_map(object_map, s, slab);
for_each_object(p, s, addr, slab->objects) {
if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
print_tracking(s, p);
}
}
spin_unlock(&object_map_lock);
#endif
}
/*
* Attempt to free all partial slabs on a node.
* This is called from __kmem_cache_shutdown(). We must take list_lock
* because sysfs file might still access partial list after the shutdowning.
*/
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
{
LIST_HEAD(discard);
struct slab *slab, *h;
BUG_ON(irqs_disabled());
spin_lock_irq(&n->list_lock);
list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
if (!slab->inuse) {
remove_partial(n, slab);
list_add(&slab->slab_list, &discard);
} else {
list_slab_objects(s, slab,
"Objects remaining in %s on __kmem_cache_shutdown()");
}
}
spin_unlock_irq(&n->list_lock);
list_for_each_entry_safe(slab, h, &discard, slab_list)
discard_slab(s, slab);
}
bool __kmem_cache_empty(struct kmem_cache *s)
{
int node;
struct kmem_cache_node *n;
for_each_kmem_cache_node(s, node, n)
if (n->nr_partial || node_nr_slabs(n))
return false;
return true;
}
/*
* Release all resources used by a slab cache.
*/
int __kmem_cache_shutdown(struct kmem_cache *s)
{
int node;
struct kmem_cache_node *n;
flush_all_cpus_locked(s);
/* Attempt to free all objects */
for_each_kmem_cache_node(s, node, n) {
free_partial(s, n);
if (n->nr_partial || node_nr_slabs(n))
return 1;
}
return 0;
}
#ifdef CONFIG_PRINTK
void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
{
void *base;
int __maybe_unused i;
unsigned int objnr;
void *objp;
void *objp0;
struct kmem_cache *s = slab->slab_cache;
struct track __maybe_unused *trackp;
kpp->kp_ptr = object;
kpp->kp_slab = slab;
kpp->kp_slab_cache = s;
base = slab_address(slab);
objp0 = kasan_reset_tag(object);
#ifdef CONFIG_SLUB_DEBUG
objp = restore_red_left(s, objp0);
#else
objp = objp0;
#endif
objnr = obj_to_index(s, slab, objp);
kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
objp = base + s->size * objnr;
kpp->kp_objp = objp;
if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
|| (objp - base) % s->size) ||
!(s->flags & SLAB_STORE_USER))
return;
#ifdef CONFIG_SLUB_DEBUG
objp = fixup_red_left(s, objp);
trackp = get_track(s, objp, TRACK_ALLOC);
kpp->kp_ret = (void *)trackp->addr;
#ifdef CONFIG_STACKDEPOT
{
depot_stack_handle_t handle;
unsigned long *entries;
unsigned int nr_entries;
handle = READ_ONCE(trackp->handle);
if (handle) {
nr_entries = stack_depot_fetch(handle, &entries);
for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
kpp->kp_stack[i] = (void *)entries[i];
}
trackp = get_track(s, objp, TRACK_FREE);
handle = READ_ONCE(trackp->handle);
if (handle) {
nr_entries = stack_depot_fetch(handle, &entries);
for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
kpp->kp_free_stack[i] = (void *)entries[i];
}
}
#endif
#endif
}
#endif
/********************************************************************
* Kmalloc subsystem
*******************************************************************/
static int __init setup_slub_min_order(char *str)
{
get_option(&str, (int *)&slub_min_order);
if (slub_min_order > slub_max_order)
slub_max_order = slub_min_order;
return 1;
}
__setup("slab_min_order=", setup_slub_min_order);
__setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
static int __init setup_slub_max_order(char *str)
{
get_option(&str, (int *)&slub_max_order);
slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
if (slub_min_order > slub_max_order)
slub_min_order = slub_max_order;
return 1;
}
__setup("slab_max_order=", setup_slub_max_order);
__setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
static int __init setup_slub_min_objects(char *str)
{
get_option(&str, (int *)&slub_min_objects);
return 1;
}
__setup("slab_min_objects=", setup_slub_min_objects);
__setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
#ifdef CONFIG_HARDENED_USERCOPY
/*
* Rejects incorrectly sized objects and objects that are to be copied
* to/from userspace but do not fall entirely within the containing slab
* cache's usercopy region.
*
* Returns NULL if check passes, otherwise const char * to name of cache
* to indicate an error.
*/
void __check_heap_object(const void *ptr, unsigned long n,
const struct slab *slab, bool to_user)
{
struct kmem_cache *s;
unsigned int offset;
bool is_kfence = is_kfence_address(ptr);
ptr = kasan_reset_tag(ptr);
/* Find object and usable object size. */
s = slab->slab_cache;
/* Reject impossible pointers. */
if (ptr < slab_address(slab))
usercopy_abort("SLUB object not in SLUB page?!", NULL,
to_user, 0, n);
/* Find offset within object. */
if (is_kfence)
offset = ptr - kfence_object_start(ptr);
else
offset = (ptr - slab_address(slab)) % s->size;
/* Adjust for redzone and reject if within the redzone. */
if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
if (offset < s->red_left_pad)
usercopy_abort("SLUB object in left red zone",
s->name, to_user, offset, n);
offset -= s->red_left_pad;
}
/* Allow address range falling entirely within usercopy region. */
if (offset >= s->useroffset &&
offset - s->useroffset <= s->usersize &&
n <= s->useroffset - offset + s->usersize)
return;
usercopy_abort("SLUB object", s->name, to_user, offset, n);
}
#endif /* CONFIG_HARDENED_USERCOPY */
#define SHRINK_PROMOTE_MAX 32
/*
* kmem_cache_shrink discards empty slabs and promotes the slabs filled
* up most to the head of the partial lists. New allocations will then
* fill those up and thus they can be removed from the partial lists.
*
* The slabs with the least items are placed last. This results in them
* being allocated from last increasing the chance that the last objects
* are freed in them.
*/
static int __kmem_cache_do_shrink(struct kmem_cache *s)
{
int node;
int i;
struct kmem_cache_node *n;
struct slab *slab;
struct slab *t;
struct list_head discard;
struct list_head promote[SHRINK_PROMOTE_MAX];
unsigned long flags;
int ret = 0;
for_each_kmem_cache_node(s, node, n) {
INIT_LIST_HEAD(&discard);
for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
INIT_LIST_HEAD(promote + i);
spin_lock_irqsave(&n->list_lock, flags);
/*
* Build lists of slabs to discard or promote.
*
* Note that concurrent frees may occur while we hold the
* list_lock. slab->inuse here is the upper limit.
*/
list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
int free = slab->objects - slab->inuse;
/* Do not reread slab->inuse */
barrier();
/* We do not keep full slabs on the list */
BUG_ON(free <= 0);
if (free == slab->objects) {
list_move(&slab->slab_list, &discard);
slab_clear_node_partial(slab);
n->nr_partial--;
dec_slabs_node(s, node, slab->objects);
} else if (free <= SHRINK_PROMOTE_MAX)
list_move(&slab->slab_list, promote + free - 1);
}
/*
* Promote the slabs filled up most to the head of the
* partial list.
*/
for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
list_splice(promote + i, &n->partial);
spin_unlock_irqrestore(&n->list_lock, flags);
/* Release empty slabs */
list_for_each_entry_safe(slab, t, &discard, slab_list)
free_slab(s, slab);
if (node_nr_slabs(n))
ret = 1;
}
return ret;
}
int __kmem_cache_shrink(struct kmem_cache *s)
{
flush_all(s);
return __kmem_cache_do_shrink(s);
}
static int slab_mem_going_offline_callback(void *arg)
{
struct kmem_cache *s;
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
flush_all_cpus_locked(s);
__kmem_cache_do_shrink(s);
}
mutex_unlock(&slab_mutex);
return 0;
}
static void slab_mem_offline_callback(void *arg)
{
struct memory_notify *marg = arg;
int offline_node;
offline_node = marg->status_change_nid_normal;
/*
* If the node still has available memory. we need kmem_cache_node
* for it yet.
*/
if (offline_node < 0)
return;
mutex_lock(&slab_mutex);
node_clear(offline_node, slab_nodes);
/*
* We no longer free kmem_cache_node structures here, as it would be
* racy with all get_node() users, and infeasible to protect them with
* slab_mutex.
*/
mutex_unlock(&slab_mutex);
}
static int slab_mem_going_online_callback(void *arg)
{
struct kmem_cache_node *n;
struct kmem_cache *s;
struct memory_notify *marg = arg;
int nid = marg->status_change_nid_normal;
int ret = 0;
/*
* If the node's memory is already available, then kmem_cache_node is
* already created. Nothing to do.
*/
if (nid < 0)
return 0;
/*
* We are bringing a node online. No memory is available yet. We must
* allocate a kmem_cache_node structure in order to bring the node
* online.
*/
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
/*
* The structure may already exist if the node was previously
* onlined and offlined.
*/
if (get_node(s, nid))
continue;
/*
* XXX: kmem_cache_alloc_node will fallback to other nodes
* since memory is not yet available from the node that
* is brought up.
*/
n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
if (!n) {
ret = -ENOMEM;
goto out;
}
init_kmem_cache_node(n);
s->node[nid] = n;
}
/*
* Any cache created after this point will also have kmem_cache_node
* initialized for the new node.
*/
node_set(nid, slab_nodes);
out:
mutex_unlock(&slab_mutex);
return ret;
}
static int slab_memory_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
int ret = 0;
switch (action) {
case MEM_GOING_ONLINE:
ret = slab_mem_going_online_callback(arg);
break;
case MEM_GOING_OFFLINE:
ret = slab_mem_going_offline_callback(arg);
break;
case MEM_OFFLINE:
case MEM_CANCEL_ONLINE:
slab_mem_offline_callback(arg);
break;
case MEM_ONLINE:
case MEM_CANCEL_OFFLINE:
break;
}
if (ret)
ret = notifier_from_errno(ret);
else
ret = NOTIFY_OK;
return ret;
}
/********************************************************************
* Basic setup of slabs
*******************************************************************/
/*
* Used for early kmem_cache structures that were allocated using
* the page allocator. Allocate them properly then fix up the pointers
* that may be pointing to the wrong kmem_cache structure.
*/
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
{
int node;
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
struct kmem_cache_node *n;
memcpy(s, static_cache, kmem_cache->object_size);
/*
* This runs very early, and only the boot processor is supposed to be
* up. Even if it weren't true, IRQs are not up so we couldn't fire
* IPIs around.
*/
__flush_cpu_slab(s, smp_processor_id());
for_each_kmem_cache_node(s, node, n) {
struct slab *p;
list_for_each_entry(p, &n->partial, slab_list)
p->slab_cache = s;
#ifdef CONFIG_SLUB_DEBUG
list_for_each_entry(p, &n->full, slab_list)
p->slab_cache = s;
#endif
}
list_add(&s->list, &slab_caches);
return s;
}
void __init kmem_cache_init(void)
{
static __initdata struct kmem_cache boot_kmem_cache,
boot_kmem_cache_node;
int node;
if (debug_guardpage_minorder())
slub_max_order = 0;
/* Print slub debugging pointers without hashing */
if (__slub_debug_enabled())
no_hash_pointers_enable(NULL);
kmem_cache_node = &boot_kmem_cache_node;
kmem_cache = &boot_kmem_cache;
/*
* Initialize the nodemask for which we will allocate per node
* structures. Here we don't need taking slab_mutex yet.
*/
for_each_node_state(node, N_NORMAL_MEMORY)
node_set(node, slab_nodes);
create_boot_cache(kmem_cache_node, "kmem_cache_node",
sizeof(struct kmem_cache_node),
SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
/* Able to allocate the per node structures */
slab_state = PARTIAL;
create_boot_cache(kmem_cache, "kmem_cache",
offsetof(struct kmem_cache, node) +
nr_node_ids * sizeof(struct kmem_cache_node *),
SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
kmem_cache = bootstrap(&boot_kmem_cache);
kmem_cache_node = bootstrap(&boot_kmem_cache_node);
/* Now we can use the kmem_cache to allocate kmalloc slabs */
setup_kmalloc_cache_index_table();
create_kmalloc_caches();
/* Setup random freelists for each cache */
init_freelist_randomization();
cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
slub_cpu_dead);
pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
cache_line_size(),
slub_min_order, slub_max_order, slub_min_objects,
nr_cpu_ids, nr_node_ids);
}
void __init kmem_cache_init_late(void)
{
#ifndef CONFIG_SLUB_TINY
flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
WARN_ON(!flushwq);
#endif
}
struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *))
{
struct kmem_cache *s;
s = find_mergeable(size, align, flags, name, ctor);
if (s) {
if (sysfs_slab_alias(s, name))
return NULL;
s->refcount++;
/*
* Adjust the object sizes so that we clear
* the complete object on kzalloc.
*/
s->object_size = max(s->object_size, size);
s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
}
return s;
}
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
{
int err;
err = kmem_cache_open(s, flags);
if (err)
return err;
/* Mutex is not taken during early boot */
if (slab_state <= UP)
return 0;
err = sysfs_slab_add(s);
if (err) {
__kmem_cache_release(s);
return err;
}
if (s->flags & SLAB_STORE_USER)
debugfs_slab_add(s);
return 0;
}
#ifdef SLAB_SUPPORTS_SYSFS
static int count_inuse(struct slab *slab)
{
return slab->inuse;
}
static int count_total(struct slab *slab)
{
return slab->objects;
}
#endif
#ifdef CONFIG_SLUB_DEBUG
static void validate_slab(struct kmem_cache *s, struct slab *slab,
unsigned long *obj_map)
{
void *p;
void *addr = slab_address(slab);
if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
return;
/* Now we know that a valid freelist exists */
__fill_map(obj_map, s, slab);
for_each_object(p, s, addr, slab->objects) {
u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
if (!check_object(s, slab, p, val))
break;
}
}
static int validate_slab_node(struct kmem_cache *s,
struct kmem_cache_node *n, unsigned long *obj_map)
{
unsigned long count = 0;
struct slab *slab;
unsigned long flags;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(slab, &n->partial, slab_list) {
validate_slab(s, slab, obj_map);
count++;
}
if (count != n->nr_partial) {
pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
s->name, count, n->nr_partial);
slab_add_kunit_errors();
}
if (!(s->flags & SLAB_STORE_USER))
goto out;
list_for_each_entry(slab, &n->full, slab_list) {
validate_slab(s, slab, obj_map);
count++;
}
if (count != node_nr_slabs(n)) {
pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
s->name, count, node_nr_slabs(n));
slab_add_kunit_errors();
}
out:
spin_unlock_irqrestore(&n->list_lock, flags);
return count;
}
long validate_slab_cache(struct kmem_cache *s)
{
int node;
unsigned long count = 0;
struct kmem_cache_node *n;
unsigned long *obj_map;
obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
if (!obj_map)
return -ENOMEM;
flush_all(s);
for_each_kmem_cache_node(s, node, n)
count += validate_slab_node(s, n, obj_map);
bitmap_free(obj_map);
return count;
}
EXPORT_SYMBOL(validate_slab_cache);
#ifdef CONFIG_DEBUG_FS
/*
* Generate lists of code addresses where slabcache objects are allocated
* and freed.
*/
struct location {
depot_stack_handle_t handle;
unsigned long count;
unsigned long addr;
unsigned long waste;
long long sum_time;
long min_time;
long max_time;
long min_pid;
long max_pid;
DECLARE_BITMAP(cpus, NR_CPUS);
nodemask_t nodes;
};
struct loc_track {
unsigned long max;
unsigned long count;
struct location *loc;
loff_t idx;
};
static struct dentry *slab_debugfs_root;
static void free_loc_track(struct loc_track *t)
{
if (t->max)
free_pages((unsigned long)t->loc,
get_order(sizeof(struct location) * t->max));
}
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
{
struct location *l;
int order;
order = get_order(sizeof(struct location) * max);
l = (void *)__get_free_pages(flags, order);
if (!l)
return 0;
if (t->count) {
memcpy(l, t->loc, sizeof(struct location) * t->count);
free_loc_track(t);
}
t->max = max;
t->loc = l;
return 1;
}
static int add_location(struct loc_track *t, struct kmem_cache *s,
const struct track *track,
unsigned int orig_size)
{
long start, end, pos;
struct location *l;
unsigned long caddr, chandle, cwaste;
unsigned long age = jiffies - track->when;
depot_stack_handle_t handle = 0;
unsigned int waste = s->object_size - orig_size;
#ifdef CONFIG_STACKDEPOT
handle = READ_ONCE(track->handle);
#endif
start = -1;
end = t->count;
for ( ; ; ) {
pos = start + (end - start + 1) / 2;
/*
* There is nothing at "end". If we end up there
* we need to add something to before end.
*/
if (pos == end)
break;
l = &t->loc[pos];
caddr = l->addr;
chandle = l->handle;
cwaste = l->waste;
if ((track->addr == caddr) && (handle == chandle) &&
(waste == cwaste)) {
l->count++;
if (track->when) {
l->sum_time += age;
if (age < l->min_time)
l->min_time = age;
if (age > l->max_time)
l->max_time = age;
if (track->pid < l->min_pid)
l->min_pid = track->pid;
if (track->pid > l->max_pid)
l->max_pid = track->pid;
cpumask_set_cpu(track->cpu,
to_cpumask(l->cpus));
}
node_set(page_to_nid(virt_to_page(track)), l->nodes);
return 1;
}
if (track->addr < caddr)
end = pos;
else if (track->addr == caddr && handle < chandle)
end = pos;
else if (track->addr == caddr && handle == chandle &&
waste < cwaste)
end = pos;
else
start = pos;
}
/*
* Not found. Insert new tracking element.
*/
if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
return 0;
l = t->loc + pos;
if (pos < t->count)
memmove(l + 1, l,
(t->count - pos) * sizeof(struct location));
t->count++;
l->count = 1;
l->addr = track->addr;
l->sum_time = age;
l->min_time = age;
l->max_time = age;
l->min_pid = track->pid;
l->max_pid = track->pid;
l->handle = handle;
l->waste = waste;
cpumask_clear(to_cpumask(l->cpus));
cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
nodes_clear(l->nodes);
node_set(page_to_nid(virt_to_page(track)), l->nodes);
return 1;
}
static void process_slab(struct loc_track *t, struct kmem_cache *s,
struct slab *slab, enum track_item alloc,
unsigned long *obj_map)
{
void *addr = slab_address(slab);
bool is_alloc = (alloc == TRACK_ALLOC);
void *p;
__fill_map(obj_map, s, slab);
for_each_object(p, s, addr, slab->objects)
if (!test_bit(__obj_to_index(s, addr, p), obj_map))
add_location(t, s, get_track(s, p, alloc),
is_alloc ? get_orig_size(s, p) :
s->object_size);
}
#endif /* CONFIG_DEBUG_FS */
#endif /* CONFIG_SLUB_DEBUG */
#ifdef SLAB_SUPPORTS_SYSFS
enum slab_stat_type {
SL_ALL, /* All slabs */
SL_PARTIAL, /* Only partially allocated slabs */
SL_CPU, /* Only slabs used for cpu caches */
SL_OBJECTS, /* Determine allocated objects not slabs */
SL_TOTAL /* Determine object capacity not slabs */
};
#define SO_ALL (1 << SL_ALL)
#define SO_PARTIAL (1 << SL_PARTIAL)
#define SO_CPU (1 << SL_CPU)
#define SO_OBJECTS (1 << SL_OBJECTS)
#define SO_TOTAL (1 << SL_TOTAL)
static ssize_t show_slab_objects(struct kmem_cache *s,
char *buf, unsigned long flags)
{
unsigned long total = 0;
int node;
int x;
unsigned long *nodes;
int len = 0;
nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
if (!nodes)
return -ENOMEM;
if (flags & SO_CPU) {
int cpu;
for_each_possible_cpu(cpu) {
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
cpu);
int node;
struct slab *slab;
slab = READ_ONCE(c->slab);
if (!slab)
continue;
node = slab_nid(slab);
if (flags & SO_TOTAL)
x = slab->objects;
else if (flags & SO_OBJECTS)
x = slab->inuse;
else
x = 1;
total += x;
nodes[node] += x;
#ifdef CONFIG_SLUB_CPU_PARTIAL
slab = slub_percpu_partial_read_once(c);
if (slab) {
node = slab_nid(slab);
if (flags & SO_TOTAL)
WARN_ON_ONCE(1);
else if (flags & SO_OBJECTS)
WARN_ON_ONCE(1);
else
x = data_race(slab->slabs);
total += x;
nodes[node] += x;
}
#endif
}
}
/*
* It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
* already held which will conflict with an existing lock order:
*
* mem_hotplug_lock->slab_mutex->kernfs_mutex
*
* We don't really need mem_hotplug_lock (to hold off
* slab_mem_going_offline_callback) here because slab's memory hot
* unplug code doesn't destroy the kmem_cache->node[] data.
*/
#ifdef CONFIG_SLUB_DEBUG
if (flags & SO_ALL) {
struct kmem_cache_node *n;
for_each_kmem_cache_node(s, node, n) {
if (flags & SO_TOTAL)
x = node_nr_objs(n);
else if (flags & SO_OBJECTS)
x = node_nr_objs(n) - count_partial(n, count_free);
else
x = node_nr_slabs(n);
total += x;
nodes[node] += x;
}
} else
#endif
if (flags & SO_PARTIAL) {
struct kmem_cache_node *n;
for_each_kmem_cache_node(s, node, n) {
if (flags & SO_TOTAL)
x = count_partial(n, count_total);
else if (flags & SO_OBJECTS)
x = count_partial(n, count_inuse);
else
x = n->nr_partial;
total += x;
nodes[node] += x;
}
}
len += sysfs_emit_at(buf, len, "%lu", total);
#ifdef CONFIG_NUMA
for (node = 0; node < nr_node_ids; node++) {
if (nodes[node])
len += sysfs_emit_at(buf, len, " N%d=%lu",
node, nodes[node]);
}
#endif
len += sysfs_emit_at(buf, len, "\n");
kfree(nodes);
return len;
}
#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
struct slab_attribute {
struct attribute attr;
ssize_t (*show)(struct kmem_cache *s, char *buf);
ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};
#define SLAB_ATTR_RO(_name) \
static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
#define SLAB_ATTR(_name) \
static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", s->size);
}
SLAB_ATTR_RO(slab_size);
static ssize_t align_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", s->align);
}
SLAB_ATTR_RO(align);
static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", s->object_size);
}
SLAB_ATTR_RO(object_size);
static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
}
SLAB_ATTR_RO(objs_per_slab);
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", oo_order(s->oo));
}
SLAB_ATTR_RO(order);
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%lu\n", s->min_partial);
}
static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
size_t length)
{
unsigned long min;
int err;
err = kstrtoul(buf, 10, &min);
if (err)
return err;
s->min_partial = min;
return length;
}
SLAB_ATTR(min_partial);
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
unsigned int nr_partial = 0;
#ifdef CONFIG_SLUB_CPU_PARTIAL
nr_partial = s->cpu_partial;
#endif
return sysfs_emit(buf, "%u\n", nr_partial);
}
static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
size_t length)
{
unsigned int objects;
int err;
err = kstrtouint(buf, 10, &objects);
if (err)
return err;
if (objects && !kmem_cache_has_cpu_partial(s))
return -EINVAL;
slub_set_cpu_partial(s, objects);
flush_all(s);
return length;
}
SLAB_ATTR(cpu_partial);
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
if (!s->ctor)
return 0;
return sysfs_emit(buf, "%pS\n", s->ctor);
}
SLAB_ATTR_RO(ctor);
static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
}
SLAB_ATTR_RO(aliases);
static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);
static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
int objects = 0;
int slabs = 0;
int cpu __maybe_unused;
int len = 0;
#ifdef CONFIG_SLUB_CPU_PARTIAL
for_each_online_cpu(cpu) {
struct slab *slab;
slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
if (slab)
slabs += data_race(slab->slabs);
}
#endif
/* Approximate half-full slabs, see slub_set_cpu_partial() */
objects = (slabs * oo_objects(s->oo)) / 2;
len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
#ifdef CONFIG_SLUB_CPU_PARTIAL
for_each_online_cpu(cpu) {
struct slab *slab;
slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
if (slab) {
slabs = data_race(slab->slabs);
objects = (slabs * oo_objects(s->oo)) / 2;
len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
cpu, objects, slabs);
}
}
#endif
len += sysfs_emit_at(buf, len, "\n");
return len;
}
SLAB_ATTR_RO(slabs_cpu_partial);
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}
SLAB_ATTR_RO(reclaim_account);
static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);
#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif
#ifdef CONFIG_HARDENED_USERCOPY
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", s->usersize);
}
SLAB_ATTR_RO(usersize);
#endif
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);
#ifdef CONFIG_SLUB_DEBUG
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);
static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
}
SLAB_ATTR_RO(sanity_checks);
static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}
SLAB_ATTR_RO(trace);
static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}
SLAB_ATTR_RO(red_zone);
static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
}
SLAB_ATTR_RO(poison);
static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}
SLAB_ATTR_RO(store_user);
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
return 0;
}
static ssize_t validate_store(struct kmem_cache *s,
const char *buf, size_t length)
{
int ret = -EINVAL;
if (buf[0] == '1' && kmem_cache_debug(s)) {
ret = validate_slab_cache(s);
if (ret >= 0)
ret = length;
}
return ret;
}
SLAB_ATTR(validate);
#endif /* CONFIG_SLUB_DEBUG */
#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}
static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
size_t length)
{
if (s->refcount > 1)
return -EINVAL;
if (buf[0] == '1')
WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
else
WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
return length;
}
SLAB_ATTR(failslab);
#endif
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
return 0;
}
static ssize_t shrink_store(struct kmem_cache *s,
const char *buf, size_t length)
{
if (buf[0] == '1')
kmem_cache_shrink(s);
else
return -EINVAL;
return length;
}
SLAB_ATTR(shrink);
#ifdef CONFIG_NUMA
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
}
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
const char *buf, size_t length)
{
unsigned int ratio;
int err;
err = kstrtouint(buf, 10, &ratio);
if (err)
return err;
if (ratio > 100)
return -ERANGE;
s->remote_node_defrag_ratio = ratio * 10;
return length;
}
SLAB_ATTR(remote_node_defrag_ratio);
#endif
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
unsigned long sum = 0;
int cpu;
int len = 0;
int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
if (!data)
return -ENOMEM;
for_each_online_cpu(cpu) {
unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
data[cpu] = x;
sum += x;
}
len += sysfs_emit_at(buf, len, "%lu", sum);
#ifdef CONFIG_SMP
for_each_online_cpu(cpu) {
if (data[cpu])
len += sysfs_emit_at(buf, len, " C%d=%u",
cpu, data[cpu]);
}
#endif
kfree(data);
len += sysfs_emit_at(buf, len, "\n");
return len;
}
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
int cpu;
for_each_online_cpu(cpu)
per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
}
#define STAT_ATTR(si, text) \
static ssize_t text##_show(struct kmem_cache *s, char *buf) \
{ \
return show_stat(s, buf, si); \
} \
static ssize_t text##_store(struct kmem_cache *s, \
const char *buf, size_t length) \
{ \
if (buf[0] != '0') \
return -EINVAL; \
clear_stat(s, si); \
return length; \
} \
SLAB_ATTR(text); \
STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
STAT_ATTR(ORDER_FALLBACK, order_fallback);
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
#endif /* CONFIG_SLUB_STATS */
#ifdef CONFIG_KFENCE
static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
}
static ssize_t skip_kfence_store(struct kmem_cache *s,
const char *buf, size_t length)
{
int ret = length;
if (buf[0] == '0')
s->flags &= ~SLAB_SKIP_KFENCE;
else if (buf[0] == '1')
s->flags |= SLAB_SKIP_KFENCE;
else
ret = -EINVAL;
return ret;
}
SLAB_ATTR(skip_kfence);
#endif
static struct attribute *slab_attrs[] = {
&slab_size_attr.attr,
&object_size_attr.attr,
&objs_per_slab_attr.attr,
&order_attr.attr,
&min_partial_attr.attr,
&cpu_partial_attr.attr,
&objects_partial_attr.attr,
&partial_attr.attr,
&cpu_slabs_attr.attr,
&ctor_attr.attr,
&aliases_attr.attr,
&align_attr.attr,
&hwcache_align_attr.attr,
&reclaim_account_attr.attr,
&destroy_by_rcu_attr.attr,
&shrink_attr.attr,
&slabs_cpu_partial_attr.attr,
#ifdef CONFIG_SLUB_DEBUG
&total_objects_attr.attr,
&objects_attr.attr,
&slabs_attr.attr,
&sanity_checks_attr.attr,
&trace_attr.attr,
&red_zone_attr.attr,
&poison_attr.attr,
&store_user_attr.attr,
&validate_attr.attr,
#endif
#ifdef CONFIG_ZONE_DMA
&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
&remote_node_defrag_ratio_attr.attr,
#endif
#ifdef CONFIG_SLUB_STATS
&alloc_fastpath_attr.attr,
&alloc_slowpath_attr.attr,
&free_fastpath_attr.attr,
&free_slowpath_attr.attr,
&free_frozen_attr.attr,
&free_add_partial_attr.attr,
&free_remove_partial_attr.attr,
&alloc_from_partial_attr.attr,
&alloc_slab_attr.attr,
&alloc_refill_attr.attr,
&alloc_node_mismatch_attr.attr,
&free_slab_attr.attr,
&cpuslab_flush_attr.attr,
&deactivate_full_attr.attr,
&deactivate_empty_attr.attr,
&deactivate_to_head_attr.attr,
&deactivate_to_tail_attr.attr,
&deactivate_remote_frees_attr.attr,
&deactivate_bypass_attr.attr,
&order_fallback_attr.attr,
&cmpxchg_double_fail_attr.attr,
&cmpxchg_double_cpu_fail_attr.attr,
&cpu_partial_alloc_attr.attr,
&cpu_partial_free_attr.attr,
&cpu_partial_node_attr.attr,
&cpu_partial_drain_attr.attr,
#endif
#ifdef CONFIG_FAILSLAB
&failslab_attr.attr,
#endif
#ifdef CONFIG_HARDENED_USERCOPY
&usersize_attr.attr,
#endif
#ifdef CONFIG_KFENCE
&skip_kfence_attr.attr,
#endif
NULL
};
static const struct attribute_group slab_attr_group = {
.attrs = slab_attrs,
};
static ssize_t slab_attr_show(struct kobject *kobj,
struct attribute *attr,
char *buf)
{
struct slab_attribute *attribute;
struct kmem_cache *s;
attribute = to_slab_attr(attr);
s = to_slab(kobj);
if (!attribute->show)
return -EIO;
return attribute->show(s, buf);
}
static ssize_t slab_attr_store(struct kobject *kobj,
struct attribute *attr,
const char *buf, size_t len)
{
struct slab_attribute *attribute;
struct kmem_cache *s;
attribute = to_slab_attr(attr);
s = to_slab(kobj);
if (!attribute->store)
return -EIO;
return attribute->store(s, buf, len);
}
static void kmem_cache_release(struct kobject *k)
{
slab_kmem_cache_release(to_slab(k));
}
static const struct sysfs_ops slab_sysfs_ops = {
.show = slab_attr_show,
.store = slab_attr_store,
};
static const struct kobj_type slab_ktype = {
.sysfs_ops = &slab_sysfs_ops,
.release = kmem_cache_release,
};
static struct kset *slab_kset;
static inline struct kset *cache_kset(struct kmem_cache *s)
{
return slab_kset;
}
#define ID_STR_LENGTH 32
/* Create a unique string id for a slab cache:
*
* Format :[flags-]size
*/
static char *create_unique_id(struct kmem_cache *s)
{
char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
char *p = name;
if (!name)
return ERR_PTR(-ENOMEM);
*p++ = ':';
/*
* First flags affecting slabcache operations. We will only
* get here for aliasable slabs so we do not need to support
* too many flags. The flags here must cover all flags that
* are matched during merging to guarantee that the id is
* unique.
*/
if (s->flags & SLAB_CACHE_DMA)
*p++ = 'd';
if (s->flags & SLAB_CACHE_DMA32)
*p++ = 'D';
if (s->flags & SLAB_RECLAIM_ACCOUNT)
*p++ = 'a';
if (s->flags & SLAB_CONSISTENCY_CHECKS)
*p++ = 'F';
if (s->flags & SLAB_ACCOUNT)
*p++ = 'A';
if (p != name + 1)
*p++ = '-';
p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
kfree(name);
return ERR_PTR(-EINVAL);
}
kmsan_unpoison_memory(name, p - name);
return name;
}
static int sysfs_slab_add(struct kmem_cache *s)
{
int err;
const char *name;
struct kset *kset = cache_kset(s);
int unmergeable = slab_unmergeable(s);
if (!unmergeable && disable_higher_order_debug &&
(slub_debug & DEBUG_METADATA_FLAGS))
unmergeable = 1;
if (unmergeable) {
/*
* Slabcache can never be merged so we can use the name proper.
* This is typically the case for debug situations. In that
* case we can catch duplicate names easily.
*/
sysfs_remove_link(&slab_kset->kobj, s->name);
name = s->name;
} else {
/*
* Create a unique name for the slab as a target
* for the symlinks.
*/
name = create_unique_id(s);
if (IS_ERR(name))
return PTR_ERR(name);
}
s->kobj.kset = kset;
err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
if (err)
goto out;
err = sysfs_create_group(&s->kobj, &slab_attr_group);
if (err)
goto out_del_kobj;
if (!unmergeable) {
/* Setup first alias */
sysfs_slab_alias(s, s->name);
}
out:
if (!unmergeable)
kfree(name);
return err;
out_del_kobj:
kobject_del(&s->kobj);
goto out;
}
void sysfs_slab_unlink(struct kmem_cache *s)
{
kobject_del(&s->kobj);
}
void sysfs_slab_release(struct kmem_cache *s)
{
kobject_put(&s->kobj);
}
/*
* Need to buffer aliases during bootup until sysfs becomes
* available lest we lose that information.
*/
struct saved_alias {
struct kmem_cache *s;
const char *name;
struct saved_alias *next;
};
static struct saved_alias *alias_list;
static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
struct saved_alias *al;
if (slab_state == FULL) {
/*
* If we have a leftover link then remove it.
*/
sysfs_remove_link(&slab_kset->kobj, name);
return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
}
al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
if (!al)
return -ENOMEM;
al->s = s;
al->name = name;
al->next = alias_list;
alias_list = al;
kmsan_unpoison_memory(al, sizeof(*al));
return 0;
}
static int __init slab_sysfs_init(void)
{
struct kmem_cache *s;
int err;
mutex_lock(&slab_mutex);
slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
if (!slab_kset) {
mutex_unlock(&slab_mutex);
pr_err("Cannot register slab subsystem.\n");
return -ENOMEM;
}
slab_state = FULL;
list_for_each_entry(s, &slab_caches, list) {
err = sysfs_slab_add(s);
if (err)
pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
s->name);
}
while (alias_list) {
struct saved_alias *al = alias_list;
alias_list = alias_list->next;
err = sysfs_slab_alias(al->s, al->name);
if (err)
pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
al->name);
kfree(al);
}
mutex_unlock(&slab_mutex);
return 0;
}
late_initcall(slab_sysfs_init);
#endif /* SLAB_SUPPORTS_SYSFS */
#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
static int slab_debugfs_show(struct seq_file *seq, void *v)
{
struct loc_track *t = seq->private;
struct location *l;
unsigned long idx;
idx = (unsigned long) t->idx;
if (idx < t->count) {
l = &t->loc[idx];
seq_printf(seq, "%7ld ", l->count);
if (l->addr)
seq_printf(seq, "%pS", (void *)l->addr);
else
seq_puts(seq, "<not-available>");
if (l->waste)
seq_printf(seq, " waste=%lu/%lu",
l->count * l->waste, l->waste);
if (l->sum_time != l->min_time) {
seq_printf(seq, " age=%ld/%llu/%ld",
l->min_time, div_u64(l->sum_time, l->count),
l->max_time);
} else
seq_printf(seq, " age=%ld", l->min_time);
if (l->min_pid != l->max_pid)
seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
else
seq_printf(seq, " pid=%ld",
l->min_pid);
if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
seq_printf(seq, " cpus=%*pbl",
cpumask_pr_args(to_cpumask(l->cpus)));
if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
seq_printf(seq, " nodes=%*pbl",
nodemask_pr_args(&l->nodes));
#ifdef CONFIG_STACKDEPOT
{
depot_stack_handle_t handle;
unsigned long *entries;
unsigned int nr_entries, j;
handle = READ_ONCE(l->handle);
if (handle) {
nr_entries = stack_depot_fetch(handle, &entries);
seq_puts(seq, "\n");
for (j = 0; j < nr_entries; j++)
seq_printf(seq, " %pS\n", (void *)entries[j]);
}
}
#endif
seq_puts(seq, "\n");
}
if (!idx && !t->count)
seq_puts(seq, "No data\n");
return 0;
}
static void slab_debugfs_stop(struct seq_file *seq, void *v)
{
}
static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
{
struct loc_track *t = seq->private;
t->idx = ++(*ppos);
if (*ppos <= t->count)
return ppos;
return NULL;
}
static int cmp_loc_by_count(const void *a, const void *b, const void *data)
{
struct location *loc1 = (struct location *)a;
struct location *loc2 = (struct location *)b;
if (loc1->count > loc2->count)
return -1;
else
return 1;
}
static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
{
struct loc_track *t = seq->private;
t->idx = *ppos;
return ppos;
}
static const struct seq_operations slab_debugfs_sops = {
.start = slab_debugfs_start,
.next = slab_debugfs_next,
.stop = slab_debugfs_stop,
.show = slab_debugfs_show,
};
static int slab_debug_trace_open(struct inode *inode, struct file *filep)
{
struct kmem_cache_node *n;
enum track_item alloc;
int node;
struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
sizeof(struct loc_track));
struct kmem_cache *s = file_inode(filep)->i_private;
unsigned long *obj_map;
if (!t)
return -ENOMEM;
obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
if (!obj_map) {
seq_release_private(inode, filep);
return -ENOMEM;
}
if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
alloc = TRACK_ALLOC;
else
alloc = TRACK_FREE;
if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
bitmap_free(obj_map);
seq_release_private(inode, filep);
return -ENOMEM;
}
for_each_kmem_cache_node(s, node, n) {
unsigned long flags;
struct slab *slab;
if (!node_nr_slabs(n))
continue;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(slab, &n->partial, slab_list)
process_slab(t, s, slab, alloc, obj_map);
list_for_each_entry(slab, &n->full, slab_list)
process_slab(t, s, slab, alloc, obj_map);
spin_unlock_irqrestore(&n->list_lock, flags);
}
/* Sort locations by count */
sort_r(t->loc, t->count, sizeof(struct location),
cmp_loc_by_count, NULL, NULL);
bitmap_free(obj_map);
return 0;
}
static int slab_debug_trace_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
struct loc_track *t = seq->private;
free_loc_track(t);
return seq_release_private(inode, file);
}
static const struct file_operations slab_debugfs_fops = {
.open = slab_debug_trace_open,
.read = seq_read,
.llseek = seq_lseek,
.release = slab_debug_trace_release,
};
static void debugfs_slab_add(struct kmem_cache *s)
{
struct dentry *slab_cache_dir;
if (unlikely(!slab_debugfs_root))
return;
slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
debugfs_create_file("alloc_traces", 0400,
slab_cache_dir, s, &slab_debugfs_fops);
debugfs_create_file("free_traces", 0400,
slab_cache_dir, s, &slab_debugfs_fops);
}
void debugfs_slab_release(struct kmem_cache *s)
{
debugfs_lookup_and_remove(s->name, slab_debugfs_root);
}
static int __init slab_debugfs_init(void)
{
struct kmem_cache *s;
slab_debugfs_root = debugfs_create_dir("slab", NULL);
list_for_each_entry(s, &slab_caches, list)
if (s->flags & SLAB_STORE_USER)
debugfs_slab_add(s);
return 0;
}
__initcall(slab_debugfs_init);
#endif
/*
* The /proc/slabinfo ABI
*/
#ifdef CONFIG_SLUB_DEBUG
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
{
unsigned long nr_slabs = 0;
unsigned long nr_objs = 0;
unsigned long nr_free = 0;
int node;
struct kmem_cache_node *n;
for_each_kmem_cache_node(s, node, n) {
nr_slabs += node_nr_slabs(n);
nr_objs += node_nr_objs(n);
nr_free += count_partial_free_approx(n);
}
sinfo->active_objs = nr_objs - nr_free;
sinfo->num_objs = nr_objs;
sinfo->active_slabs = nr_slabs;
sinfo->num_slabs = nr_slabs;
sinfo->objects_per_slab = oo_objects(s->oo);
sinfo->cache_order = oo_order(s->oo);
}
#endif /* CONFIG_SLUB_DEBUG */