mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 04:02:20 +00:00
494c3dc467
After commit 0edb555a65
("platform: Make platform_driver::remove()
return void") .remove() is (again) the right callback to implement for
platform drivers.
Convert all platform drivers below drivers/spi to use .remove(), with
the eventual goal to drop struct platform_driver::remove_new(). As
.remove() and .remove_new() have the same prototypes, conversion is done
by just changing the structure member name in the driver initializer.
The change for the spi-npcm-fiu stands out in the diffstat because the
inconsistent formatting style of the platform_driver initializer is
fixed to match the other struct initializer in the file.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Link: https://patch.msgid.link/20240925113501.25208-2-u.kleine-koenig@baylibre.com
Signed-off-by: Mark Brown <broonie@kernel.org>
826 lines
21 KiB
C
826 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2012 - 2014 Allwinner Tech
|
|
* Pan Nan <pannan@allwinnertech.com>
|
|
*
|
|
* Copyright (C) 2014 Maxime Ripard
|
|
* Maxime Ripard <maxime.ripard@free-electrons.com>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/dmaengine.h>
|
|
|
|
#include <linux/spi/spi.h>
|
|
|
|
#define SUN6I_AUTOSUSPEND_TIMEOUT 2000
|
|
|
|
#define SUN6I_FIFO_DEPTH 128
|
|
#define SUN8I_FIFO_DEPTH 64
|
|
|
|
#define SUN6I_GBL_CTL_REG 0x04
|
|
#define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
|
|
#define SUN6I_GBL_CTL_MASTER BIT(1)
|
|
#define SUN6I_GBL_CTL_TP BIT(7)
|
|
#define SUN6I_GBL_CTL_RST BIT(31)
|
|
|
|
#define SUN6I_TFR_CTL_REG 0x08
|
|
#define SUN6I_TFR_CTL_CPHA BIT(0)
|
|
#define SUN6I_TFR_CTL_CPOL BIT(1)
|
|
#define SUN6I_TFR_CTL_SPOL BIT(2)
|
|
#define SUN6I_TFR_CTL_CS_MASK 0x30
|
|
#define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
|
|
#define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
|
|
#define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
|
|
#define SUN6I_TFR_CTL_DHB BIT(8)
|
|
#define SUN6I_TFR_CTL_SDC BIT(11)
|
|
#define SUN6I_TFR_CTL_FBS BIT(12)
|
|
#define SUN6I_TFR_CTL_SDM BIT(13)
|
|
#define SUN6I_TFR_CTL_XCH BIT(31)
|
|
|
|
#define SUN6I_INT_CTL_REG 0x10
|
|
#define SUN6I_INT_CTL_RF_RDY BIT(0)
|
|
#define SUN6I_INT_CTL_TF_ERQ BIT(4)
|
|
#define SUN6I_INT_CTL_RF_OVF BIT(8)
|
|
#define SUN6I_INT_CTL_TC BIT(12)
|
|
|
|
#define SUN6I_INT_STA_REG 0x14
|
|
|
|
#define SUN6I_FIFO_CTL_REG 0x18
|
|
#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff
|
|
#define SUN6I_FIFO_CTL_RF_DRQ_EN BIT(8)
|
|
#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0
|
|
#define SUN6I_FIFO_CTL_RF_RST BIT(15)
|
|
#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff
|
|
#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16
|
|
#define SUN6I_FIFO_CTL_TF_DRQ_EN BIT(24)
|
|
#define SUN6I_FIFO_CTL_TF_RST BIT(31)
|
|
|
|
#define SUN6I_FIFO_STA_REG 0x1c
|
|
#define SUN6I_FIFO_STA_RF_CNT_MASK GENMASK(7, 0)
|
|
#define SUN6I_FIFO_STA_TF_CNT_MASK GENMASK(23, 16)
|
|
|
|
#define SUN6I_CLK_CTL_REG 0x24
|
|
#define SUN6I_CLK_CTL_CDR2_MASK 0xff
|
|
#define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
|
|
#define SUN6I_CLK_CTL_CDR1_MASK 0xf
|
|
#define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
|
|
#define SUN6I_CLK_CTL_DRS BIT(12)
|
|
|
|
#define SUN6I_MAX_XFER_SIZE 0xffffff
|
|
|
|
#define SUN6I_BURST_CNT_REG 0x30
|
|
|
|
#define SUN6I_XMIT_CNT_REG 0x34
|
|
|
|
#define SUN6I_BURST_CTL_CNT_REG 0x38
|
|
#define SUN6I_BURST_CTL_CNT_STC_MASK GENMASK(23, 0)
|
|
#define SUN6I_BURST_CTL_CNT_DRM BIT(28)
|
|
#define SUN6I_BURST_CTL_CNT_QUAD_EN BIT(29)
|
|
|
|
#define SUN6I_TXDATA_REG 0x200
|
|
#define SUN6I_RXDATA_REG 0x300
|
|
|
|
struct sun6i_spi_cfg {
|
|
unsigned long fifo_depth;
|
|
bool has_clk_ctl;
|
|
u32 mode_bits;
|
|
};
|
|
|
|
struct sun6i_spi {
|
|
struct spi_controller *host;
|
|
void __iomem *base_addr;
|
|
dma_addr_t dma_addr_rx;
|
|
dma_addr_t dma_addr_tx;
|
|
struct clk *hclk;
|
|
struct clk *mclk;
|
|
struct reset_control *rstc;
|
|
|
|
struct completion done;
|
|
struct completion dma_rx_done;
|
|
|
|
const u8 *tx_buf;
|
|
u8 *rx_buf;
|
|
int len;
|
|
const struct sun6i_spi_cfg *cfg;
|
|
};
|
|
|
|
static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
|
|
{
|
|
return readl(sspi->base_addr + reg);
|
|
}
|
|
|
|
static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
|
|
{
|
|
writel(value, sspi->base_addr + reg);
|
|
}
|
|
|
|
static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
|
|
{
|
|
u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
|
|
|
|
return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
|
|
}
|
|
|
|
static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
|
|
{
|
|
u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
|
|
|
|
return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
|
|
}
|
|
|
|
static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
|
|
{
|
|
u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
|
|
|
|
reg &= ~mask;
|
|
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
|
|
}
|
|
|
|
static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
|
|
{
|
|
u32 len;
|
|
u8 byte;
|
|
|
|
/* See how much data is available */
|
|
len = sun6i_spi_get_rx_fifo_count(sspi);
|
|
|
|
while (len--) {
|
|
byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
|
|
if (sspi->rx_buf)
|
|
*sspi->rx_buf++ = byte;
|
|
}
|
|
}
|
|
|
|
static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
|
|
{
|
|
u32 cnt;
|
|
int len;
|
|
u8 byte;
|
|
|
|
/* See how much data we can fit */
|
|
cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
|
|
|
|
len = min((int)cnt, sspi->len);
|
|
|
|
while (len--) {
|
|
byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
|
|
writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
|
|
sspi->len--;
|
|
}
|
|
}
|
|
|
|
static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
|
|
{
|
|
struct sun6i_spi *sspi = spi_controller_get_devdata(spi->controller);
|
|
u32 reg;
|
|
|
|
reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
|
|
reg &= ~SUN6I_TFR_CTL_CS_MASK;
|
|
reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
|
|
|
|
if (enable)
|
|
reg |= SUN6I_TFR_CTL_CS_LEVEL;
|
|
else
|
|
reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
|
|
|
|
sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
|
|
}
|
|
|
|
static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
|
|
{
|
|
return SUN6I_MAX_XFER_SIZE - 1;
|
|
}
|
|
|
|
static void sun6i_spi_dma_rx_cb(void *param)
|
|
{
|
|
struct sun6i_spi *sspi = param;
|
|
|
|
complete(&sspi->dma_rx_done);
|
|
}
|
|
|
|
static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
|
|
struct spi_transfer *tfr)
|
|
{
|
|
struct dma_async_tx_descriptor *rxdesc, *txdesc;
|
|
struct spi_controller *host = sspi->host;
|
|
|
|
rxdesc = NULL;
|
|
if (tfr->rx_buf) {
|
|
struct dma_slave_config rxconf = {
|
|
.direction = DMA_DEV_TO_MEM,
|
|
.src_addr = sspi->dma_addr_rx,
|
|
.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
|
|
.src_maxburst = 8,
|
|
};
|
|
|
|
dmaengine_slave_config(host->dma_rx, &rxconf);
|
|
|
|
rxdesc = dmaengine_prep_slave_sg(host->dma_rx,
|
|
tfr->rx_sg.sgl,
|
|
tfr->rx_sg.nents,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT);
|
|
if (!rxdesc)
|
|
return -EINVAL;
|
|
rxdesc->callback_param = sspi;
|
|
rxdesc->callback = sun6i_spi_dma_rx_cb;
|
|
}
|
|
|
|
txdesc = NULL;
|
|
if (tfr->tx_buf) {
|
|
struct dma_slave_config txconf = {
|
|
.direction = DMA_MEM_TO_DEV,
|
|
.dst_addr = sspi->dma_addr_tx,
|
|
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
|
|
.dst_maxburst = 8,
|
|
};
|
|
|
|
dmaengine_slave_config(host->dma_tx, &txconf);
|
|
|
|
txdesc = dmaengine_prep_slave_sg(host->dma_tx,
|
|
tfr->tx_sg.sgl,
|
|
tfr->tx_sg.nents,
|
|
DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT);
|
|
if (!txdesc) {
|
|
if (rxdesc)
|
|
dmaengine_terminate_sync(host->dma_rx);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (tfr->rx_buf) {
|
|
dmaengine_submit(rxdesc);
|
|
dma_async_issue_pending(host->dma_rx);
|
|
}
|
|
|
|
if (tfr->tx_buf) {
|
|
dmaengine_submit(txdesc);
|
|
dma_async_issue_pending(host->dma_tx);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sun6i_spi_transfer_one(struct spi_controller *host,
|
|
struct spi_device *spi,
|
|
struct spi_transfer *tfr)
|
|
{
|
|
struct sun6i_spi *sspi = spi_controller_get_devdata(host);
|
|
unsigned int div, div_cdr1, div_cdr2;
|
|
unsigned long time_left;
|
|
unsigned int start, end, tx_time;
|
|
unsigned int trig_level;
|
|
unsigned int tx_len = 0, rx_len = 0, nbits = 0;
|
|
bool use_dma;
|
|
int ret = 0;
|
|
u32 reg;
|
|
|
|
if (tfr->len > SUN6I_MAX_XFER_SIZE)
|
|
return -EINVAL;
|
|
|
|
reinit_completion(&sspi->done);
|
|
reinit_completion(&sspi->dma_rx_done);
|
|
sspi->tx_buf = tfr->tx_buf;
|
|
sspi->rx_buf = tfr->rx_buf;
|
|
sspi->len = tfr->len;
|
|
use_dma = host->can_dma ? host->can_dma(host, spi, tfr) : false;
|
|
|
|
/* Clear pending interrupts */
|
|
sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
|
|
|
|
/* Reset FIFO */
|
|
sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
|
|
SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
|
|
|
|
reg = 0;
|
|
|
|
if (!use_dma) {
|
|
/*
|
|
* Setup FIFO interrupt trigger level
|
|
* Here we choose 3/4 of the full fifo depth, as it's
|
|
* the hardcoded value used in old generation of Allwinner
|
|
* SPI controller. (See spi-sun4i.c)
|
|
*/
|
|
trig_level = sspi->cfg->fifo_depth / 4 * 3;
|
|
} else {
|
|
/*
|
|
* Setup FIFO DMA request trigger level
|
|
* We choose 1/2 of the full fifo depth, that value will
|
|
* be used as DMA burst length.
|
|
*/
|
|
trig_level = sspi->cfg->fifo_depth / 2;
|
|
|
|
if (tfr->tx_buf)
|
|
reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
|
|
if (tfr->rx_buf)
|
|
reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
|
|
}
|
|
|
|
reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
|
|
(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
|
|
|
|
sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
|
|
|
|
/*
|
|
* Setup the transfer control register: Chip Select,
|
|
* polarities, etc.
|
|
*/
|
|
reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
|
|
|
|
if (spi->mode & SPI_CPOL)
|
|
reg |= SUN6I_TFR_CTL_CPOL;
|
|
else
|
|
reg &= ~SUN6I_TFR_CTL_CPOL;
|
|
|
|
if (spi->mode & SPI_CPHA)
|
|
reg |= SUN6I_TFR_CTL_CPHA;
|
|
else
|
|
reg &= ~SUN6I_TFR_CTL_CPHA;
|
|
|
|
if (spi->mode & SPI_LSB_FIRST)
|
|
reg |= SUN6I_TFR_CTL_FBS;
|
|
else
|
|
reg &= ~SUN6I_TFR_CTL_FBS;
|
|
|
|
/*
|
|
* If it's a TX only transfer, we don't want to fill the RX
|
|
* FIFO with bogus data
|
|
*/
|
|
if (sspi->rx_buf) {
|
|
reg &= ~SUN6I_TFR_CTL_DHB;
|
|
rx_len = tfr->len;
|
|
} else {
|
|
reg |= SUN6I_TFR_CTL_DHB;
|
|
}
|
|
|
|
/* We want to control the chip select manually */
|
|
reg |= SUN6I_TFR_CTL_CS_MANUAL;
|
|
|
|
sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
|
|
|
|
if (sspi->cfg->has_clk_ctl) {
|
|
unsigned int mclk_rate = clk_get_rate(sspi->mclk);
|
|
|
|
/* Ensure that we have a parent clock fast enough */
|
|
if (mclk_rate < (2 * tfr->speed_hz)) {
|
|
clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
|
|
mclk_rate = clk_get_rate(sspi->mclk);
|
|
}
|
|
|
|
/*
|
|
* Setup clock divider.
|
|
*
|
|
* We have two choices there. Either we can use the clock
|
|
* divide rate 1, which is calculated thanks to this formula:
|
|
* SPI_CLK = MOD_CLK / (2 ^ cdr)
|
|
* Or we can use CDR2, which is calculated with the formula:
|
|
* SPI_CLK = MOD_CLK / (2 * (cdr + 1))
|
|
* Wether we use the former or the latter is set through the
|
|
* DRS bit.
|
|
*
|
|
* First try CDR2, and if we can't reach the expected
|
|
* frequency, fall back to CDR1.
|
|
*/
|
|
div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
|
|
div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
|
|
if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
|
|
reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
|
|
tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
|
|
} else {
|
|
div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
|
|
reg = SUN6I_CLK_CTL_CDR1(div);
|
|
tfr->effective_speed_hz = mclk_rate / (1 << div);
|
|
}
|
|
|
|
sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
|
|
} else {
|
|
clk_set_rate(sspi->mclk, tfr->speed_hz);
|
|
tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
|
|
|
|
/*
|
|
* Configure work mode.
|
|
*
|
|
* There are three work modes depending on the controller clock
|
|
* frequency:
|
|
* - normal sample mode : CLK <= 24MHz SDM=1 SDC=0
|
|
* - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
|
|
* - delay one-cycle sample mode : CLK >= 80MHz SDM=0 SDC=1
|
|
*/
|
|
reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
|
|
reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
|
|
|
|
if (tfr->effective_speed_hz <= 24000000)
|
|
reg |= SUN6I_TFR_CTL_SDM;
|
|
else if (tfr->effective_speed_hz >= 80000000)
|
|
reg |= SUN6I_TFR_CTL_SDC;
|
|
|
|
sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
|
|
}
|
|
|
|
/* Finally enable the bus - doing so before might raise SCK to HIGH */
|
|
reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
|
|
reg |= SUN6I_GBL_CTL_BUS_ENABLE;
|
|
sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
|
|
|
|
/* Setup the transfer now... */
|
|
if (sspi->tx_buf) {
|
|
tx_len = tfr->len;
|
|
nbits = tfr->tx_nbits;
|
|
} else if (tfr->rx_buf) {
|
|
nbits = tfr->rx_nbits;
|
|
}
|
|
|
|
switch (nbits) {
|
|
case SPI_NBITS_DUAL:
|
|
reg = SUN6I_BURST_CTL_CNT_DRM;
|
|
break;
|
|
case SPI_NBITS_QUAD:
|
|
reg = SUN6I_BURST_CTL_CNT_QUAD_EN;
|
|
break;
|
|
case SPI_NBITS_SINGLE:
|
|
default:
|
|
reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len);
|
|
}
|
|
|
|
/* Setup the counters */
|
|
sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg);
|
|
sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
|
|
sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
|
|
|
|
if (!use_dma) {
|
|
/* Fill the TX FIFO */
|
|
sun6i_spi_fill_fifo(sspi);
|
|
} else {
|
|
ret = sun6i_spi_prepare_dma(sspi, tfr);
|
|
if (ret) {
|
|
dev_warn(&host->dev,
|
|
"%s: prepare DMA failed, ret=%d",
|
|
dev_name(&spi->dev), ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Enable the interrupts */
|
|
reg = SUN6I_INT_CTL_TC;
|
|
|
|
if (!use_dma) {
|
|
if (rx_len > sspi->cfg->fifo_depth)
|
|
reg |= SUN6I_INT_CTL_RF_RDY;
|
|
if (tx_len > sspi->cfg->fifo_depth)
|
|
reg |= SUN6I_INT_CTL_TF_ERQ;
|
|
}
|
|
|
|
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
|
|
|
|
/* Start the transfer */
|
|
reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
|
|
sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
|
|
|
|
tx_time = spi_controller_xfer_timeout(host, tfr);
|
|
start = jiffies;
|
|
time_left = wait_for_completion_timeout(&sspi->done,
|
|
msecs_to_jiffies(tx_time));
|
|
|
|
if (!use_dma) {
|
|
sun6i_spi_drain_fifo(sspi);
|
|
} else {
|
|
if (time_left && rx_len) {
|
|
/*
|
|
* Even though RX on the peripheral side has finished
|
|
* RX DMA might still be in flight
|
|
*/
|
|
time_left = wait_for_completion_timeout(&sspi->dma_rx_done,
|
|
time_left);
|
|
if (!time_left)
|
|
dev_warn(&host->dev, "RX DMA timeout\n");
|
|
}
|
|
}
|
|
|
|
end = jiffies;
|
|
if (!time_left) {
|
|
dev_warn(&host->dev,
|
|
"%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
|
|
dev_name(&spi->dev), tfr->len, tfr->speed_hz,
|
|
jiffies_to_msecs(end - start), tx_time);
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
|
|
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
|
|
|
|
if (ret && use_dma) {
|
|
dmaengine_terminate_sync(host->dma_rx);
|
|
dmaengine_terminate_sync(host->dma_tx);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
|
|
{
|
|
struct sun6i_spi *sspi = dev_id;
|
|
u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
|
|
|
|
/* Transfer complete */
|
|
if (status & SUN6I_INT_CTL_TC) {
|
|
sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
|
|
complete(&sspi->done);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Receive FIFO 3/4 full */
|
|
if (status & SUN6I_INT_CTL_RF_RDY) {
|
|
sun6i_spi_drain_fifo(sspi);
|
|
/* Only clear the interrupt _after_ draining the FIFO */
|
|
sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Transmit FIFO 3/4 empty */
|
|
if (status & SUN6I_INT_CTL_TF_ERQ) {
|
|
sun6i_spi_fill_fifo(sspi);
|
|
|
|
if (!sspi->len)
|
|
/* nothing left to transmit */
|
|
sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
|
|
|
|
/* Only clear the interrupt _after_ re-seeding the FIFO */
|
|
sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static int sun6i_spi_runtime_resume(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
struct sun6i_spi *sspi = spi_controller_get_devdata(host);
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(sspi->hclk);
|
|
if (ret) {
|
|
dev_err(dev, "Couldn't enable AHB clock\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = clk_prepare_enable(sspi->mclk);
|
|
if (ret) {
|
|
dev_err(dev, "Couldn't enable module clock\n");
|
|
goto err;
|
|
}
|
|
|
|
ret = reset_control_deassert(sspi->rstc);
|
|
if (ret) {
|
|
dev_err(dev, "Couldn't deassert the device from reset\n");
|
|
goto err2;
|
|
}
|
|
|
|
sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
|
|
SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
|
|
|
|
return 0;
|
|
|
|
err2:
|
|
clk_disable_unprepare(sspi->mclk);
|
|
err:
|
|
clk_disable_unprepare(sspi->hclk);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int sun6i_spi_runtime_suspend(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
struct sun6i_spi *sspi = spi_controller_get_devdata(host);
|
|
|
|
reset_control_assert(sspi->rstc);
|
|
clk_disable_unprepare(sspi->mclk);
|
|
clk_disable_unprepare(sspi->hclk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool sun6i_spi_can_dma(struct spi_controller *host,
|
|
struct spi_device *spi,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct sun6i_spi *sspi = spi_controller_get_devdata(host);
|
|
|
|
/*
|
|
* If the number of spi words to transfer is less or equal than
|
|
* the fifo length we can just fill the fifo and wait for a single
|
|
* irq, so don't bother setting up dma
|
|
*/
|
|
return xfer->len > sspi->cfg->fifo_depth;
|
|
}
|
|
|
|
static int sun6i_spi_probe(struct platform_device *pdev)
|
|
{
|
|
struct spi_controller *host;
|
|
struct sun6i_spi *sspi;
|
|
struct resource *mem;
|
|
int ret = 0, irq;
|
|
|
|
host = spi_alloc_host(&pdev->dev, sizeof(struct sun6i_spi));
|
|
if (!host) {
|
|
dev_err(&pdev->dev, "Unable to allocate SPI Host\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, host);
|
|
sspi = spi_controller_get_devdata(host);
|
|
|
|
sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
|
|
if (IS_ERR(sspi->base_addr)) {
|
|
ret = PTR_ERR(sspi->base_addr);
|
|
goto err_free_host;
|
|
}
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0) {
|
|
ret = -ENXIO;
|
|
goto err_free_host;
|
|
}
|
|
|
|
ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
|
|
0, "sun6i-spi", sspi);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Cannot request IRQ\n");
|
|
goto err_free_host;
|
|
}
|
|
|
|
sspi->host = host;
|
|
sspi->cfg = of_device_get_match_data(&pdev->dev);
|
|
|
|
host->max_speed_hz = 100 * 1000 * 1000;
|
|
host->min_speed_hz = 3 * 1000;
|
|
host->use_gpio_descriptors = true;
|
|
host->set_cs = sun6i_spi_set_cs;
|
|
host->transfer_one = sun6i_spi_transfer_one;
|
|
host->num_chipselect = 4;
|
|
host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
|
|
sspi->cfg->mode_bits;
|
|
host->bits_per_word_mask = SPI_BPW_MASK(8);
|
|
host->dev.of_node = pdev->dev.of_node;
|
|
host->auto_runtime_pm = true;
|
|
host->max_transfer_size = sun6i_spi_max_transfer_size;
|
|
|
|
sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
|
|
if (IS_ERR(sspi->hclk)) {
|
|
dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
|
|
ret = PTR_ERR(sspi->hclk);
|
|
goto err_free_host;
|
|
}
|
|
|
|
sspi->mclk = devm_clk_get(&pdev->dev, "mod");
|
|
if (IS_ERR(sspi->mclk)) {
|
|
dev_err(&pdev->dev, "Unable to acquire module clock\n");
|
|
ret = PTR_ERR(sspi->mclk);
|
|
goto err_free_host;
|
|
}
|
|
|
|
init_completion(&sspi->done);
|
|
init_completion(&sspi->dma_rx_done);
|
|
|
|
sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
|
|
if (IS_ERR(sspi->rstc)) {
|
|
dev_err(&pdev->dev, "Couldn't get reset controller\n");
|
|
ret = PTR_ERR(sspi->rstc);
|
|
goto err_free_host;
|
|
}
|
|
|
|
host->dma_tx = dma_request_chan(&pdev->dev, "tx");
|
|
if (IS_ERR(host->dma_tx)) {
|
|
/* Check tx to see if we need defer probing driver */
|
|
if (PTR_ERR(host->dma_tx) == -EPROBE_DEFER) {
|
|
ret = -EPROBE_DEFER;
|
|
goto err_free_host;
|
|
}
|
|
dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
|
|
host->dma_tx = NULL;
|
|
}
|
|
|
|
host->dma_rx = dma_request_chan(&pdev->dev, "rx");
|
|
if (IS_ERR(host->dma_rx)) {
|
|
if (PTR_ERR(host->dma_rx) == -EPROBE_DEFER) {
|
|
ret = -EPROBE_DEFER;
|
|
goto err_free_dma_tx;
|
|
}
|
|
dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
|
|
host->dma_rx = NULL;
|
|
}
|
|
|
|
if (host->dma_tx && host->dma_rx) {
|
|
sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
|
|
sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
|
|
host->can_dma = sun6i_spi_can_dma;
|
|
}
|
|
|
|
/*
|
|
* This wake-up/shutdown pattern is to be able to have the
|
|
* device woken up, even if runtime_pm is disabled
|
|
*/
|
|
ret = sun6i_spi_runtime_resume(&pdev->dev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Couldn't resume the device\n");
|
|
goto err_free_dma_rx;
|
|
}
|
|
|
|
pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
|
|
pm_runtime_use_autosuspend(&pdev->dev);
|
|
pm_runtime_set_active(&pdev->dev);
|
|
pm_runtime_enable(&pdev->dev);
|
|
|
|
ret = devm_spi_register_controller(&pdev->dev, host);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "cannot register SPI host\n");
|
|
goto err_pm_disable;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_pm_disable:
|
|
pm_runtime_disable(&pdev->dev);
|
|
sun6i_spi_runtime_suspend(&pdev->dev);
|
|
err_free_dma_rx:
|
|
if (host->dma_rx)
|
|
dma_release_channel(host->dma_rx);
|
|
err_free_dma_tx:
|
|
if (host->dma_tx)
|
|
dma_release_channel(host->dma_tx);
|
|
err_free_host:
|
|
spi_controller_put(host);
|
|
return ret;
|
|
}
|
|
|
|
static void sun6i_spi_remove(struct platform_device *pdev)
|
|
{
|
|
struct spi_controller *host = platform_get_drvdata(pdev);
|
|
|
|
pm_runtime_force_suspend(&pdev->dev);
|
|
|
|
if (host->dma_tx)
|
|
dma_release_channel(host->dma_tx);
|
|
if (host->dma_rx)
|
|
dma_release_channel(host->dma_rx);
|
|
}
|
|
|
|
static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
|
|
.fifo_depth = SUN6I_FIFO_DEPTH,
|
|
.has_clk_ctl = true,
|
|
};
|
|
|
|
static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
|
|
.fifo_depth = SUN8I_FIFO_DEPTH,
|
|
.has_clk_ctl = true,
|
|
};
|
|
|
|
static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
|
|
.fifo_depth = SUN8I_FIFO_DEPTH,
|
|
.mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD,
|
|
};
|
|
|
|
static const struct of_device_id sun6i_spi_match[] = {
|
|
{ .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
|
|
{ .compatible = "allwinner,sun8i-h3-spi", .data = &sun8i_h3_spi_cfg },
|
|
{
|
|
.compatible = "allwinner,sun50i-r329-spi",
|
|
.data = &sun50i_r329_spi_cfg
|
|
},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, sun6i_spi_match);
|
|
|
|
static const struct dev_pm_ops sun6i_spi_pm_ops = {
|
|
.runtime_resume = sun6i_spi_runtime_resume,
|
|
.runtime_suspend = sun6i_spi_runtime_suspend,
|
|
};
|
|
|
|
static struct platform_driver sun6i_spi_driver = {
|
|
.probe = sun6i_spi_probe,
|
|
.remove = sun6i_spi_remove,
|
|
.driver = {
|
|
.name = "sun6i-spi",
|
|
.of_match_table = sun6i_spi_match,
|
|
.pm = &sun6i_spi_pm_ops,
|
|
},
|
|
};
|
|
module_platform_driver(sun6i_spi_driver);
|
|
|
|
MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
|
|
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
|
|
MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
|
|
MODULE_LICENSE("GPL");
|