mirror of
https://github.com/torvalds/linux.git
synced 2024-11-26 22:21:42 +00:00
944a45abfa
There are following issues in arm64 kdump: 1. We use crashkernel=X to reserve crashkernel in DMA zone, which will fail when there is not enough low memory. 2. If reserving crashkernel above DMA zone, in this case, crash dump kernel will fail to boot because there is no low memory available for allocation. To solve these issues, introduce crashkernel=X,[high,low]. The "crashkernel=X,high" is used to select a region above DMA zone, and the "crashkernel=Y,low" is used to allocate specified size low memory. Signed-off-by: Chen Zhou <chenzhou10@huawei.com> Co-developed-by: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Link: https://lore.kernel.org/r/20220506114402.365-4-thunder.leizhen@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
364 lines
9.3 KiB
C
364 lines
9.3 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* kexec for arm64
|
|
*
|
|
* Copyright (C) Linaro.
|
|
* Copyright (C) Huawei Futurewei Technologies.
|
|
*/
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpu_ops.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/page.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/trans_pgd.h>
|
|
|
|
/**
|
|
* kexec_image_info - For debugging output.
|
|
*/
|
|
#define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
|
|
static void _kexec_image_info(const char *func, int line,
|
|
const struct kimage *kimage)
|
|
{
|
|
unsigned long i;
|
|
|
|
pr_debug("%s:%d:\n", func, line);
|
|
pr_debug(" kexec kimage info:\n");
|
|
pr_debug(" type: %d\n", kimage->type);
|
|
pr_debug(" start: %lx\n", kimage->start);
|
|
pr_debug(" head: %lx\n", kimage->head);
|
|
pr_debug(" nr_segments: %lu\n", kimage->nr_segments);
|
|
pr_debug(" dtb_mem: %pa\n", &kimage->arch.dtb_mem);
|
|
pr_debug(" kern_reloc: %pa\n", &kimage->arch.kern_reloc);
|
|
pr_debug(" el2_vectors: %pa\n", &kimage->arch.el2_vectors);
|
|
|
|
for (i = 0; i < kimage->nr_segments; i++) {
|
|
pr_debug(" segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
|
|
i,
|
|
kimage->segment[i].mem,
|
|
kimage->segment[i].mem + kimage->segment[i].memsz,
|
|
kimage->segment[i].memsz,
|
|
kimage->segment[i].memsz / PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
void machine_kexec_cleanup(struct kimage *kimage)
|
|
{
|
|
/* Empty routine needed to avoid build errors. */
|
|
}
|
|
|
|
/**
|
|
* machine_kexec_prepare - Prepare for a kexec reboot.
|
|
*
|
|
* Called from the core kexec code when a kernel image is loaded.
|
|
* Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
|
|
* are stuck in the kernel. This avoids a panic once we hit machine_kexec().
|
|
*/
|
|
int machine_kexec_prepare(struct kimage *kimage)
|
|
{
|
|
if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
|
|
pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kexec_segment_flush - Helper to flush the kimage segments to PoC.
|
|
*/
|
|
static void kexec_segment_flush(const struct kimage *kimage)
|
|
{
|
|
unsigned long i;
|
|
|
|
pr_debug("%s:\n", __func__);
|
|
|
|
for (i = 0; i < kimage->nr_segments; i++) {
|
|
pr_debug(" segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
|
|
i,
|
|
kimage->segment[i].mem,
|
|
kimage->segment[i].mem + kimage->segment[i].memsz,
|
|
kimage->segment[i].memsz,
|
|
kimage->segment[i].memsz / PAGE_SIZE);
|
|
|
|
dcache_clean_inval_poc(
|
|
(unsigned long)phys_to_virt(kimage->segment[i].mem),
|
|
(unsigned long)phys_to_virt(kimage->segment[i].mem) +
|
|
kimage->segment[i].memsz);
|
|
}
|
|
}
|
|
|
|
/* Allocates pages for kexec page table */
|
|
static void *kexec_page_alloc(void *arg)
|
|
{
|
|
struct kimage *kimage = (struct kimage *)arg;
|
|
struct page *page = kimage_alloc_control_pages(kimage, 0);
|
|
void *vaddr = NULL;
|
|
|
|
if (!page)
|
|
return NULL;
|
|
|
|
vaddr = page_address(page);
|
|
memset(vaddr, 0, PAGE_SIZE);
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
int machine_kexec_post_load(struct kimage *kimage)
|
|
{
|
|
int rc;
|
|
pgd_t *trans_pgd;
|
|
void *reloc_code = page_to_virt(kimage->control_code_page);
|
|
long reloc_size;
|
|
struct trans_pgd_info info = {
|
|
.trans_alloc_page = kexec_page_alloc,
|
|
.trans_alloc_arg = kimage,
|
|
};
|
|
|
|
/* If in place, relocation is not used, only flush next kernel */
|
|
if (kimage->head & IND_DONE) {
|
|
kexec_segment_flush(kimage);
|
|
kexec_image_info(kimage);
|
|
return 0;
|
|
}
|
|
|
|
kimage->arch.el2_vectors = 0;
|
|
if (is_hyp_nvhe()) {
|
|
rc = trans_pgd_copy_el2_vectors(&info,
|
|
&kimage->arch.el2_vectors);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
/* Create a copy of the linear map */
|
|
trans_pgd = kexec_page_alloc(kimage);
|
|
if (!trans_pgd)
|
|
return -ENOMEM;
|
|
rc = trans_pgd_create_copy(&info, &trans_pgd, PAGE_OFFSET, PAGE_END);
|
|
if (rc)
|
|
return rc;
|
|
kimage->arch.ttbr1 = __pa(trans_pgd);
|
|
kimage->arch.zero_page = __pa_symbol(empty_zero_page);
|
|
|
|
reloc_size = __relocate_new_kernel_end - __relocate_new_kernel_start;
|
|
memcpy(reloc_code, __relocate_new_kernel_start, reloc_size);
|
|
kimage->arch.kern_reloc = __pa(reloc_code);
|
|
rc = trans_pgd_idmap_page(&info, &kimage->arch.ttbr0,
|
|
&kimage->arch.t0sz, reloc_code);
|
|
if (rc)
|
|
return rc;
|
|
kimage->arch.phys_offset = virt_to_phys(kimage) - (long)kimage;
|
|
|
|
/* Flush the reloc_code in preparation for its execution. */
|
|
dcache_clean_inval_poc((unsigned long)reloc_code,
|
|
(unsigned long)reloc_code + reloc_size);
|
|
icache_inval_pou((uintptr_t)reloc_code,
|
|
(uintptr_t)reloc_code + reloc_size);
|
|
kexec_image_info(kimage);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* machine_kexec - Do the kexec reboot.
|
|
*
|
|
* Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
|
|
*/
|
|
void machine_kexec(struct kimage *kimage)
|
|
{
|
|
bool in_kexec_crash = (kimage == kexec_crash_image);
|
|
bool stuck_cpus = cpus_are_stuck_in_kernel();
|
|
|
|
/*
|
|
* New cpus may have become stuck_in_kernel after we loaded the image.
|
|
*/
|
|
BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1)));
|
|
WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()),
|
|
"Some CPUs may be stale, kdump will be unreliable.\n");
|
|
|
|
pr_info("Bye!\n");
|
|
|
|
local_daif_mask();
|
|
|
|
/*
|
|
* Both restart and kernel_reloc will shutdown the MMU, disable data
|
|
* caches. However, restart will start new kernel or purgatory directly,
|
|
* kernel_reloc contains the body of arm64_relocate_new_kernel
|
|
* In kexec case, kimage->start points to purgatory assuming that
|
|
* kernel entry and dtb address are embedded in purgatory by
|
|
* userspace (kexec-tools).
|
|
* In kexec_file case, the kernel starts directly without purgatory.
|
|
*/
|
|
if (kimage->head & IND_DONE) {
|
|
typeof(cpu_soft_restart) *restart;
|
|
|
|
cpu_install_idmap();
|
|
restart = (void *)__pa_symbol(function_nocfi(cpu_soft_restart));
|
|
restart(is_hyp_nvhe(), kimage->start, kimage->arch.dtb_mem,
|
|
0, 0);
|
|
} else {
|
|
void (*kernel_reloc)(struct kimage *kimage);
|
|
|
|
if (is_hyp_nvhe())
|
|
__hyp_set_vectors(kimage->arch.el2_vectors);
|
|
cpu_install_ttbr0(kimage->arch.ttbr0, kimage->arch.t0sz);
|
|
kernel_reloc = (void *)kimage->arch.kern_reloc;
|
|
kernel_reloc(kimage);
|
|
}
|
|
|
|
BUG(); /* Should never get here. */
|
|
}
|
|
|
|
static void machine_kexec_mask_interrupts(void)
|
|
{
|
|
unsigned int i;
|
|
struct irq_desc *desc;
|
|
|
|
for_each_irq_desc(i, desc) {
|
|
struct irq_chip *chip;
|
|
int ret;
|
|
|
|
chip = irq_desc_get_chip(desc);
|
|
if (!chip)
|
|
continue;
|
|
|
|
/*
|
|
* First try to remove the active state. If this
|
|
* fails, try to EOI the interrupt.
|
|
*/
|
|
ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false);
|
|
|
|
if (ret && irqd_irq_inprogress(&desc->irq_data) &&
|
|
chip->irq_eoi)
|
|
chip->irq_eoi(&desc->irq_data);
|
|
|
|
if (chip->irq_mask)
|
|
chip->irq_mask(&desc->irq_data);
|
|
|
|
if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data))
|
|
chip->irq_disable(&desc->irq_data);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* machine_crash_shutdown - shutdown non-crashing cpus and save registers
|
|
*/
|
|
void machine_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
local_irq_disable();
|
|
|
|
/* shutdown non-crashing cpus */
|
|
crash_smp_send_stop();
|
|
|
|
/* for crashing cpu */
|
|
crash_save_cpu(regs, smp_processor_id());
|
|
machine_kexec_mask_interrupts();
|
|
|
|
pr_info("Starting crashdump kernel...\n");
|
|
}
|
|
|
|
void arch_kexec_protect_crashkres(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < kexec_crash_image->nr_segments; i++)
|
|
set_memory_valid(
|
|
__phys_to_virt(kexec_crash_image->segment[i].mem),
|
|
kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 0);
|
|
}
|
|
|
|
void arch_kexec_unprotect_crashkres(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < kexec_crash_image->nr_segments; i++)
|
|
set_memory_valid(
|
|
__phys_to_virt(kexec_crash_image->segment[i].mem),
|
|
kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 1);
|
|
}
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
/*
|
|
* To preserve the crash dump kernel image, the relevant memory segments
|
|
* should be mapped again around the hibernation.
|
|
*/
|
|
void crash_prepare_suspend(void)
|
|
{
|
|
if (kexec_crash_image)
|
|
arch_kexec_unprotect_crashkres();
|
|
}
|
|
|
|
void crash_post_resume(void)
|
|
{
|
|
if (kexec_crash_image)
|
|
arch_kexec_protect_crashkres();
|
|
}
|
|
|
|
/*
|
|
* crash_is_nosave
|
|
*
|
|
* Return true only if a page is part of reserved memory for crash dump kernel,
|
|
* but does not hold any data of loaded kernel image.
|
|
*
|
|
* Note that all the pages in crash dump kernel memory have been initially
|
|
* marked as Reserved as memory was allocated via memblock_reserve().
|
|
*
|
|
* In hibernation, the pages which are Reserved and yet "nosave" are excluded
|
|
* from the hibernation iamge. crash_is_nosave() does thich check for crash
|
|
* dump kernel and will reduce the total size of hibernation image.
|
|
*/
|
|
|
|
bool crash_is_nosave(unsigned long pfn)
|
|
{
|
|
int i;
|
|
phys_addr_t addr;
|
|
|
|
if (!crashk_res.end)
|
|
return false;
|
|
|
|
/* in reserved memory? */
|
|
addr = __pfn_to_phys(pfn);
|
|
if ((addr < crashk_res.start) || (crashk_res.end < addr)) {
|
|
if (!crashk_low_res.end)
|
|
return false;
|
|
|
|
if ((addr < crashk_low_res.start) || (crashk_low_res.end < addr))
|
|
return false;
|
|
}
|
|
|
|
if (!kexec_crash_image)
|
|
return true;
|
|
|
|
/* not part of loaded kernel image? */
|
|
for (i = 0; i < kexec_crash_image->nr_segments; i++)
|
|
if (addr >= kexec_crash_image->segment[i].mem &&
|
|
addr < (kexec_crash_image->segment[i].mem +
|
|
kexec_crash_image->segment[i].memsz))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
struct page *page;
|
|
|
|
for (addr = begin; addr < end; addr += PAGE_SIZE) {
|
|
page = phys_to_page(addr);
|
|
free_reserved_page(page);
|
|
}
|
|
}
|
|
#endif /* CONFIG_HIBERNATION */
|