linux/drivers/gpu/drm/xe/xe_mmio.c
Radhakrishna Sripada e81568a0cb drm/xe: Add reg read/write trace
This will help debug register read/writes and provides
a way to trace all the mmio transactions.

v2: Fix kunit error
v3: Print devid to help in multi-gpu setup
v3: rebase and use variable sized variant to display
    dev name(Gustavo)
v4: Pass single argument to __asign_str to fix kunit error
v5: Remove unrelated include xe_tile.h and remove cast in trace

Reviewed-by: Gustavo Sousa <gustavo.sousa@intel.com>
Signed-off-by: Radhakrishna Sripada <radhakrishna.sripada@intel.com>
Signed-off-by: Matt Roper <matthew.d.roper@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240607182943.3572524-7-radhakrishna.sripada@intel.com
2024-06-12 09:26:18 -07:00

375 lines
10 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2021-2023 Intel Corporation
*/
#include "xe_mmio.h"
#include <linux/delay.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/minmax.h>
#include <linux/pci.h>
#include <drm/drm_managed.h>
#include <drm/drm_print.h>
#include "regs/xe_bars.h"
#include "regs/xe_regs.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_gt_sriov_vf.h"
#include "xe_macros.h"
#include "xe_sriov.h"
#include "xe_trace.h"
static void tiles_fini(void *arg)
{
struct xe_device *xe = arg;
struct xe_tile *tile;
int id;
for_each_tile(tile, xe, id)
tile->mmio.regs = NULL;
}
int xe_mmio_probe_tiles(struct xe_device *xe)
{
size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
u8 id, tile_count = xe->info.tile_count;
struct xe_gt *gt = xe_root_mmio_gt(xe);
struct xe_tile *tile;
void __iomem *regs;
u32 mtcfg;
if (tile_count == 1)
goto add_mmio_ext;
if (!xe->info.skip_mtcfg) {
mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR);
tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
if (tile_count < xe->info.tile_count) {
drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
xe->info.tile_count, tile_count);
xe->info.tile_count = tile_count;
/*
* FIXME: Needs some work for standalone media, but should be impossible
* with multi-tile for now.
*/
xe->info.gt_count = xe->info.tile_count;
}
}
regs = xe->mmio.regs;
for_each_tile(tile, xe, id) {
tile->mmio.size = tile_mmio_size;
tile->mmio.regs = regs;
regs += tile_mmio_size;
}
add_mmio_ext:
/*
* By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile).
* When supported, there could be an additional contiguous multi-tile MMIO extension
* space ON TOP of it, and hence the necessity for distinguished MMIO spaces.
*/
if (xe->info.has_mmio_ext) {
regs = xe->mmio.regs + tile_mmio_size * tile_count;
for_each_tile(tile, xe, id) {
tile->mmio_ext.size = tile_mmio_ext_size;
tile->mmio_ext.regs = regs;
regs += tile_mmio_ext_size;
}
}
return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe);
}
static void mmio_fini(void *arg)
{
struct xe_device *xe = arg;
pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
xe->mmio.regs = NULL;
}
int xe_mmio_init(struct xe_device *xe)
{
struct xe_tile *root_tile = xe_device_get_root_tile(xe);
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
const int mmio_bar = 0;
/*
* Map the entire BAR.
* The first 16MB of the BAR, belong to the root tile, and include:
* registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
*/
xe->mmio.size = pci_resource_len(pdev, mmio_bar);
xe->mmio.regs = pci_iomap(pdev, mmio_bar, GTTMMADR_BAR);
if (xe->mmio.regs == NULL) {
drm_err(&xe->drm, "failed to map registers\n");
return -EIO;
}
/* Setup first tile; other tiles (if present) will be setup later. */
root_tile->mmio.size = SZ_16M;
root_tile->mmio.regs = xe->mmio.regs;
return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe);
}
u8 xe_mmio_read8(struct xe_gt *gt, struct xe_reg reg)
{
struct xe_tile *tile = gt_to_tile(gt);
u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
u8 val;
val = readb((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
trace_xe_reg_rw(gt, false, addr, val, sizeof(val));
return val;
}
u16 xe_mmio_read16(struct xe_gt *gt, struct xe_reg reg)
{
struct xe_tile *tile = gt_to_tile(gt);
u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
u16 val;
val = readw((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
trace_xe_reg_rw(gt, false, addr, val, sizeof(val));
return val;
}
void xe_mmio_write32(struct xe_gt *gt, struct xe_reg reg, u32 val)
{
struct xe_tile *tile = gt_to_tile(gt);
u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
trace_xe_reg_rw(gt, true, addr, val, sizeof(val));
writel(val, (reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
}
u32 xe_mmio_read32(struct xe_gt *gt, struct xe_reg reg)
{
struct xe_tile *tile = gt_to_tile(gt);
u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
u32 val;
if (!reg.vf && IS_SRIOV_VF(gt_to_xe(gt)))
val = xe_gt_sriov_vf_read32(gt, reg);
else
val = readl((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
trace_xe_reg_rw(gt, false, addr, val, sizeof(val));
return val;
}
u32 xe_mmio_rmw32(struct xe_gt *gt, struct xe_reg reg, u32 clr, u32 set)
{
u32 old, reg_val;
old = xe_mmio_read32(gt, reg);
reg_val = (old & ~clr) | set;
xe_mmio_write32(gt, reg, reg_val);
return old;
}
int xe_mmio_write32_and_verify(struct xe_gt *gt,
struct xe_reg reg, u32 val, u32 mask, u32 eval)
{
u32 reg_val;
xe_mmio_write32(gt, reg, val);
reg_val = xe_mmio_read32(gt, reg);
return (reg_val & mask) != eval ? -EINVAL : 0;
}
bool xe_mmio_in_range(const struct xe_gt *gt,
const struct xe_mmio_range *range,
struct xe_reg reg)
{
u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
return range && addr >= range->start && addr <= range->end;
}
/**
* xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
* @gt: MMIO target GT
* @reg: register to read value from
*
* Although Intel GPUs have some 64-bit registers, the hardware officially
* only supports GTTMMADR register reads of 32 bits or smaller. Even if
* a readq operation may return a reasonable value, that violation of the
* spec shouldn't be relied upon and all 64-bit register reads should be
* performed as two 32-bit reads of the upper and lower dwords.
*
* When reading registers that may be changing (such as
* counters), a rollover of the lower dword between the two 32-bit reads
* can be problematic. This function attempts to ensure the upper dword has
* stabilized before returning the 64-bit value.
*
* Note that because this function may re-read the register multiple times
* while waiting for the value to stabilize it should not be used to read
* any registers where read operations have side effects.
*
* Returns the value of the 64-bit register.
*/
u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg)
{
struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
u32 ldw, udw, oldudw, retries;
reg.addr = xe_mmio_adjusted_addr(gt, reg.addr);
reg_udw.addr = xe_mmio_adjusted_addr(gt, reg_udw.addr);
/* we shouldn't adjust just one register address */
xe_gt_assert(gt, reg_udw.addr == reg.addr + 0x4);
oldudw = xe_mmio_read32(gt, reg_udw);
for (retries = 5; retries; --retries) {
ldw = xe_mmio_read32(gt, reg);
udw = xe_mmio_read32(gt, reg_udw);
if (udw == oldudw)
break;
oldudw = udw;
}
xe_gt_WARN(gt, retries == 0,
"64-bit read of %#x did not stabilize\n", reg.addr);
return (u64)udw << 32 | ldw;
}
/**
* xe_mmio_wait32() - Wait for a register to match the desired masked value
* @gt: MMIO target GT
* @reg: register to read value from
* @mask: mask to be applied to the value read from the register
* @val: desired value after applying the mask
* @timeout_us: time out after this period of time. Wait logic tries to be
* smart, applying an exponential backoff until @timeout_us is reached.
* @out_val: if not NULL, points where to store the last unmasked value
* @atomic: needs to be true if calling from an atomic context
*
* This function polls for the desired masked value and returns zero on success
* or -ETIMEDOUT if timed out.
*
* Note that @timeout_us represents the minimum amount of time to wait before
* giving up. The actual time taken by this function can be a little more than
* @timeout_us for different reasons, specially in non-atomic contexts. Thus,
* it is possible that this function succeeds even after @timeout_us has passed.
*/
int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
u32 *out_val, bool atomic)
{
ktime_t cur = ktime_get_raw();
const ktime_t end = ktime_add_us(cur, timeout_us);
int ret = -ETIMEDOUT;
s64 wait = 10;
u32 read;
for (;;) {
read = xe_mmio_read32(gt, reg);
if ((read & mask) == val) {
ret = 0;
break;
}
cur = ktime_get_raw();
if (!ktime_before(cur, end))
break;
if (ktime_after(ktime_add_us(cur, wait), end))
wait = ktime_us_delta(end, cur);
if (atomic)
udelay(wait);
else
usleep_range(wait, wait << 1);
wait <<= 1;
}
if (ret != 0) {
read = xe_mmio_read32(gt, reg);
if ((read & mask) == val)
ret = 0;
}
if (out_val)
*out_val = read;
return ret;
}
/**
* xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value
* @gt: MMIO target GT
* @reg: register to read value from
* @mask: mask to be applied to the value read from the register
* @val: value to match after applying the mask
* @timeout_us: time out after this period of time. Wait logic tries to be
* smart, applying an exponential backoff until @timeout_us is reached.
* @out_val: if not NULL, points where to store the last unmasked value
* @atomic: needs to be true if calling from an atomic context
*
* This function polls for a masked value to change from a given value and
* returns zero on success or -ETIMEDOUT if timed out.
*
* Note that @timeout_us represents the minimum amount of time to wait before
* giving up. The actual time taken by this function can be a little more than
* @timeout_us for different reasons, specially in non-atomic contexts. Thus,
* it is possible that this function succeeds even after @timeout_us has passed.
*/
int xe_mmio_wait32_not(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
u32 *out_val, bool atomic)
{
ktime_t cur = ktime_get_raw();
const ktime_t end = ktime_add_us(cur, timeout_us);
int ret = -ETIMEDOUT;
s64 wait = 10;
u32 read;
for (;;) {
read = xe_mmio_read32(gt, reg);
if ((read & mask) != val) {
ret = 0;
break;
}
cur = ktime_get_raw();
if (!ktime_before(cur, end))
break;
if (ktime_after(ktime_add_us(cur, wait), end))
wait = ktime_us_delta(end, cur);
if (atomic)
udelay(wait);
else
usleep_range(wait, wait << 1);
wait <<= 1;
}
if (ret != 0) {
read = xe_mmio_read32(gt, reg);
if ((read & mask) != val)
ret = 0;
}
if (out_val)
*out_val = read;
return ret;
}