mirror of
https://github.com/torvalds/linux.git
synced 2024-12-04 10:01:41 +00:00
e81568a0cb
This will help debug register read/writes and provides a way to trace all the mmio transactions. v2: Fix kunit error v3: Print devid to help in multi-gpu setup v3: rebase and use variable sized variant to display dev name(Gustavo) v4: Pass single argument to __asign_str to fix kunit error v5: Remove unrelated include xe_tile.h and remove cast in trace Reviewed-by: Gustavo Sousa <gustavo.sousa@intel.com> Signed-off-by: Radhakrishna Sripada <radhakrishna.sripada@intel.com> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20240607182943.3572524-7-radhakrishna.sripada@intel.com
375 lines
10 KiB
C
375 lines
10 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2021-2023 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_mmio.h"
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
#include <linux/minmax.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include <drm/drm_managed.h>
|
|
#include <drm/drm_print.h>
|
|
|
|
#include "regs/xe_bars.h"
|
|
#include "regs/xe_regs.h"
|
|
#include "xe_device.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_gt_printk.h"
|
|
#include "xe_gt_sriov_vf.h"
|
|
#include "xe_macros.h"
|
|
#include "xe_sriov.h"
|
|
#include "xe_trace.h"
|
|
|
|
static void tiles_fini(void *arg)
|
|
{
|
|
struct xe_device *xe = arg;
|
|
struct xe_tile *tile;
|
|
int id;
|
|
|
|
for_each_tile(tile, xe, id)
|
|
tile->mmio.regs = NULL;
|
|
}
|
|
|
|
int xe_mmio_probe_tiles(struct xe_device *xe)
|
|
{
|
|
size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
|
|
u8 id, tile_count = xe->info.tile_count;
|
|
struct xe_gt *gt = xe_root_mmio_gt(xe);
|
|
struct xe_tile *tile;
|
|
void __iomem *regs;
|
|
u32 mtcfg;
|
|
|
|
if (tile_count == 1)
|
|
goto add_mmio_ext;
|
|
|
|
if (!xe->info.skip_mtcfg) {
|
|
mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR);
|
|
tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
|
|
if (tile_count < xe->info.tile_count) {
|
|
drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
|
|
xe->info.tile_count, tile_count);
|
|
xe->info.tile_count = tile_count;
|
|
|
|
/*
|
|
* FIXME: Needs some work for standalone media, but should be impossible
|
|
* with multi-tile for now.
|
|
*/
|
|
xe->info.gt_count = xe->info.tile_count;
|
|
}
|
|
}
|
|
|
|
regs = xe->mmio.regs;
|
|
for_each_tile(tile, xe, id) {
|
|
tile->mmio.size = tile_mmio_size;
|
|
tile->mmio.regs = regs;
|
|
regs += tile_mmio_size;
|
|
}
|
|
|
|
add_mmio_ext:
|
|
/*
|
|
* By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile).
|
|
* When supported, there could be an additional contiguous multi-tile MMIO extension
|
|
* space ON TOP of it, and hence the necessity for distinguished MMIO spaces.
|
|
*/
|
|
if (xe->info.has_mmio_ext) {
|
|
regs = xe->mmio.regs + tile_mmio_size * tile_count;
|
|
|
|
for_each_tile(tile, xe, id) {
|
|
tile->mmio_ext.size = tile_mmio_ext_size;
|
|
tile->mmio_ext.regs = regs;
|
|
|
|
regs += tile_mmio_ext_size;
|
|
}
|
|
}
|
|
|
|
return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe);
|
|
}
|
|
|
|
static void mmio_fini(void *arg)
|
|
{
|
|
struct xe_device *xe = arg;
|
|
|
|
pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
|
|
xe->mmio.regs = NULL;
|
|
}
|
|
|
|
int xe_mmio_init(struct xe_device *xe)
|
|
{
|
|
struct xe_tile *root_tile = xe_device_get_root_tile(xe);
|
|
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
|
|
const int mmio_bar = 0;
|
|
|
|
/*
|
|
* Map the entire BAR.
|
|
* The first 16MB of the BAR, belong to the root tile, and include:
|
|
* registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
|
|
*/
|
|
xe->mmio.size = pci_resource_len(pdev, mmio_bar);
|
|
xe->mmio.regs = pci_iomap(pdev, mmio_bar, GTTMMADR_BAR);
|
|
if (xe->mmio.regs == NULL) {
|
|
drm_err(&xe->drm, "failed to map registers\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Setup first tile; other tiles (if present) will be setup later. */
|
|
root_tile->mmio.size = SZ_16M;
|
|
root_tile->mmio.regs = xe->mmio.regs;
|
|
|
|
return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe);
|
|
}
|
|
|
|
u8 xe_mmio_read8(struct xe_gt *gt, struct xe_reg reg)
|
|
{
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
|
|
u8 val;
|
|
|
|
val = readb((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
|
|
trace_xe_reg_rw(gt, false, addr, val, sizeof(val));
|
|
|
|
return val;
|
|
}
|
|
|
|
u16 xe_mmio_read16(struct xe_gt *gt, struct xe_reg reg)
|
|
{
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
|
|
u16 val;
|
|
|
|
val = readw((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
|
|
trace_xe_reg_rw(gt, false, addr, val, sizeof(val));
|
|
|
|
return val;
|
|
}
|
|
|
|
void xe_mmio_write32(struct xe_gt *gt, struct xe_reg reg, u32 val)
|
|
{
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
|
|
|
|
trace_xe_reg_rw(gt, true, addr, val, sizeof(val));
|
|
writel(val, (reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
|
|
}
|
|
|
|
u32 xe_mmio_read32(struct xe_gt *gt, struct xe_reg reg)
|
|
{
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
|
|
u32 val;
|
|
|
|
if (!reg.vf && IS_SRIOV_VF(gt_to_xe(gt)))
|
|
val = xe_gt_sriov_vf_read32(gt, reg);
|
|
else
|
|
val = readl((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
|
|
|
|
trace_xe_reg_rw(gt, false, addr, val, sizeof(val));
|
|
|
|
return val;
|
|
}
|
|
|
|
u32 xe_mmio_rmw32(struct xe_gt *gt, struct xe_reg reg, u32 clr, u32 set)
|
|
{
|
|
u32 old, reg_val;
|
|
|
|
old = xe_mmio_read32(gt, reg);
|
|
reg_val = (old & ~clr) | set;
|
|
xe_mmio_write32(gt, reg, reg_val);
|
|
|
|
return old;
|
|
}
|
|
|
|
int xe_mmio_write32_and_verify(struct xe_gt *gt,
|
|
struct xe_reg reg, u32 val, u32 mask, u32 eval)
|
|
{
|
|
u32 reg_val;
|
|
|
|
xe_mmio_write32(gt, reg, val);
|
|
reg_val = xe_mmio_read32(gt, reg);
|
|
|
|
return (reg_val & mask) != eval ? -EINVAL : 0;
|
|
}
|
|
|
|
bool xe_mmio_in_range(const struct xe_gt *gt,
|
|
const struct xe_mmio_range *range,
|
|
struct xe_reg reg)
|
|
{
|
|
u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
|
|
|
|
return range && addr >= range->start && addr <= range->end;
|
|
}
|
|
|
|
/**
|
|
* xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
|
|
* @gt: MMIO target GT
|
|
* @reg: register to read value from
|
|
*
|
|
* Although Intel GPUs have some 64-bit registers, the hardware officially
|
|
* only supports GTTMMADR register reads of 32 bits or smaller. Even if
|
|
* a readq operation may return a reasonable value, that violation of the
|
|
* spec shouldn't be relied upon and all 64-bit register reads should be
|
|
* performed as two 32-bit reads of the upper and lower dwords.
|
|
*
|
|
* When reading registers that may be changing (such as
|
|
* counters), a rollover of the lower dword between the two 32-bit reads
|
|
* can be problematic. This function attempts to ensure the upper dword has
|
|
* stabilized before returning the 64-bit value.
|
|
*
|
|
* Note that because this function may re-read the register multiple times
|
|
* while waiting for the value to stabilize it should not be used to read
|
|
* any registers where read operations have side effects.
|
|
*
|
|
* Returns the value of the 64-bit register.
|
|
*/
|
|
u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg)
|
|
{
|
|
struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
|
|
u32 ldw, udw, oldudw, retries;
|
|
|
|
reg.addr = xe_mmio_adjusted_addr(gt, reg.addr);
|
|
reg_udw.addr = xe_mmio_adjusted_addr(gt, reg_udw.addr);
|
|
|
|
/* we shouldn't adjust just one register address */
|
|
xe_gt_assert(gt, reg_udw.addr == reg.addr + 0x4);
|
|
|
|
oldudw = xe_mmio_read32(gt, reg_udw);
|
|
for (retries = 5; retries; --retries) {
|
|
ldw = xe_mmio_read32(gt, reg);
|
|
udw = xe_mmio_read32(gt, reg_udw);
|
|
|
|
if (udw == oldudw)
|
|
break;
|
|
|
|
oldudw = udw;
|
|
}
|
|
|
|
xe_gt_WARN(gt, retries == 0,
|
|
"64-bit read of %#x did not stabilize\n", reg.addr);
|
|
|
|
return (u64)udw << 32 | ldw;
|
|
}
|
|
|
|
/**
|
|
* xe_mmio_wait32() - Wait for a register to match the desired masked value
|
|
* @gt: MMIO target GT
|
|
* @reg: register to read value from
|
|
* @mask: mask to be applied to the value read from the register
|
|
* @val: desired value after applying the mask
|
|
* @timeout_us: time out after this period of time. Wait logic tries to be
|
|
* smart, applying an exponential backoff until @timeout_us is reached.
|
|
* @out_val: if not NULL, points where to store the last unmasked value
|
|
* @atomic: needs to be true if calling from an atomic context
|
|
*
|
|
* This function polls for the desired masked value and returns zero on success
|
|
* or -ETIMEDOUT if timed out.
|
|
*
|
|
* Note that @timeout_us represents the minimum amount of time to wait before
|
|
* giving up. The actual time taken by this function can be a little more than
|
|
* @timeout_us for different reasons, specially in non-atomic contexts. Thus,
|
|
* it is possible that this function succeeds even after @timeout_us has passed.
|
|
*/
|
|
int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
|
|
u32 *out_val, bool atomic)
|
|
{
|
|
ktime_t cur = ktime_get_raw();
|
|
const ktime_t end = ktime_add_us(cur, timeout_us);
|
|
int ret = -ETIMEDOUT;
|
|
s64 wait = 10;
|
|
u32 read;
|
|
|
|
for (;;) {
|
|
read = xe_mmio_read32(gt, reg);
|
|
if ((read & mask) == val) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
cur = ktime_get_raw();
|
|
if (!ktime_before(cur, end))
|
|
break;
|
|
|
|
if (ktime_after(ktime_add_us(cur, wait), end))
|
|
wait = ktime_us_delta(end, cur);
|
|
|
|
if (atomic)
|
|
udelay(wait);
|
|
else
|
|
usleep_range(wait, wait << 1);
|
|
wait <<= 1;
|
|
}
|
|
|
|
if (ret != 0) {
|
|
read = xe_mmio_read32(gt, reg);
|
|
if ((read & mask) == val)
|
|
ret = 0;
|
|
}
|
|
|
|
if (out_val)
|
|
*out_val = read;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value
|
|
* @gt: MMIO target GT
|
|
* @reg: register to read value from
|
|
* @mask: mask to be applied to the value read from the register
|
|
* @val: value to match after applying the mask
|
|
* @timeout_us: time out after this period of time. Wait logic tries to be
|
|
* smart, applying an exponential backoff until @timeout_us is reached.
|
|
* @out_val: if not NULL, points where to store the last unmasked value
|
|
* @atomic: needs to be true if calling from an atomic context
|
|
*
|
|
* This function polls for a masked value to change from a given value and
|
|
* returns zero on success or -ETIMEDOUT if timed out.
|
|
*
|
|
* Note that @timeout_us represents the minimum amount of time to wait before
|
|
* giving up. The actual time taken by this function can be a little more than
|
|
* @timeout_us for different reasons, specially in non-atomic contexts. Thus,
|
|
* it is possible that this function succeeds even after @timeout_us has passed.
|
|
*/
|
|
int xe_mmio_wait32_not(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
|
|
u32 *out_val, bool atomic)
|
|
{
|
|
ktime_t cur = ktime_get_raw();
|
|
const ktime_t end = ktime_add_us(cur, timeout_us);
|
|
int ret = -ETIMEDOUT;
|
|
s64 wait = 10;
|
|
u32 read;
|
|
|
|
for (;;) {
|
|
read = xe_mmio_read32(gt, reg);
|
|
if ((read & mask) != val) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
cur = ktime_get_raw();
|
|
if (!ktime_before(cur, end))
|
|
break;
|
|
|
|
if (ktime_after(ktime_add_us(cur, wait), end))
|
|
wait = ktime_us_delta(end, cur);
|
|
|
|
if (atomic)
|
|
udelay(wait);
|
|
else
|
|
usleep_range(wait, wait << 1);
|
|
wait <<= 1;
|
|
}
|
|
|
|
if (ret != 0) {
|
|
read = xe_mmio_read32(gt, reg);
|
|
if ((read & mask) != val)
|
|
ret = 0;
|
|
}
|
|
|
|
if (out_val)
|
|
*out_val = read;
|
|
|
|
return ret;
|
|
}
|