mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 03:21:32 +00:00
859158bfab
Commit 2c01946c6b
(omap3 nand: cleanup
virtual address usages) wrongly enabled CONFIG_MTD_NAND_OMAP_HWECC
which breaks boards like beagle and pandora that use software ECC
for write.
Boards like beagle and pandora uses sw ecc for write (e.g. binary flushed
from u-boot) and read from kernel.
Signed-off-by: Sukumar Ghorai <s-ghorai@ti.com>
Acked-by: David Woodhouse <David.Woodhouse@intel.com>
[tony@atomide.com: updated comments]
Signed-off-by: Tony Lindgren <tony@atomide.com>
974 lines
26 KiB
C
974 lines
26 KiB
C
/*
|
|
* Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
|
|
* Copyright © 2004 Micron Technology Inc.
|
|
* Copyright © 2004 David Brownell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <plat/dma.h>
|
|
#include <plat/gpmc.h>
|
|
#include <plat/nand.h>
|
|
|
|
#define DRIVER_NAME "omap2-nand"
|
|
|
|
#define NAND_Ecc_P1e (1 << 0)
|
|
#define NAND_Ecc_P2e (1 << 1)
|
|
#define NAND_Ecc_P4e (1 << 2)
|
|
#define NAND_Ecc_P8e (1 << 3)
|
|
#define NAND_Ecc_P16e (1 << 4)
|
|
#define NAND_Ecc_P32e (1 << 5)
|
|
#define NAND_Ecc_P64e (1 << 6)
|
|
#define NAND_Ecc_P128e (1 << 7)
|
|
#define NAND_Ecc_P256e (1 << 8)
|
|
#define NAND_Ecc_P512e (1 << 9)
|
|
#define NAND_Ecc_P1024e (1 << 10)
|
|
#define NAND_Ecc_P2048e (1 << 11)
|
|
|
|
#define NAND_Ecc_P1o (1 << 16)
|
|
#define NAND_Ecc_P2o (1 << 17)
|
|
#define NAND_Ecc_P4o (1 << 18)
|
|
#define NAND_Ecc_P8o (1 << 19)
|
|
#define NAND_Ecc_P16o (1 << 20)
|
|
#define NAND_Ecc_P32o (1 << 21)
|
|
#define NAND_Ecc_P64o (1 << 22)
|
|
#define NAND_Ecc_P128o (1 << 23)
|
|
#define NAND_Ecc_P256o (1 << 24)
|
|
#define NAND_Ecc_P512o (1 << 25)
|
|
#define NAND_Ecc_P1024o (1 << 26)
|
|
#define NAND_Ecc_P2048o (1 << 27)
|
|
|
|
#define TF(value) (value ? 1 : 0)
|
|
|
|
#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
|
|
#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
|
|
#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
|
|
#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
|
|
#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
|
|
#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
|
|
#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
|
|
#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
|
|
|
|
#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
|
|
#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
|
|
#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
|
|
#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
|
|
#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
|
|
#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
|
|
#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
|
|
#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
|
|
|
|
#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
|
|
#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
|
|
#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
|
|
#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
|
|
#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
|
|
#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
|
|
#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
|
|
#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
|
|
|
|
#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
|
|
#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
|
|
#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
|
|
#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
|
|
#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
|
|
#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
|
|
#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
|
|
#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
|
|
|
|
#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
|
|
#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
static const char *part_probes[] = { "cmdlinepart", NULL };
|
|
#endif
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH
|
|
static int use_prefetch = 1;
|
|
|
|
/* "modprobe ... use_prefetch=0" etc */
|
|
module_param(use_prefetch, bool, 0);
|
|
MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH");
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
|
|
static int use_dma = 1;
|
|
|
|
/* "modprobe ... use_dma=0" etc */
|
|
module_param(use_dma, bool, 0);
|
|
MODULE_PARM_DESC(use_dma, "enable/disable use of DMA");
|
|
#else
|
|
static const int use_dma;
|
|
#endif
|
|
#else
|
|
const int use_prefetch;
|
|
static const int use_dma;
|
|
#endif
|
|
|
|
struct omap_nand_info {
|
|
struct nand_hw_control controller;
|
|
struct omap_nand_platform_data *pdata;
|
|
struct mtd_info mtd;
|
|
struct mtd_partition *parts;
|
|
struct nand_chip nand;
|
|
struct platform_device *pdev;
|
|
|
|
int gpmc_cs;
|
|
unsigned long phys_base;
|
|
struct completion comp;
|
|
int dma_ch;
|
|
};
|
|
|
|
/**
|
|
* omap_hwcontrol - hardware specific access to control-lines
|
|
* @mtd: MTD device structure
|
|
* @cmd: command to device
|
|
* @ctrl:
|
|
* NAND_NCE: bit 0 -> don't care
|
|
* NAND_CLE: bit 1 -> Command Latch
|
|
* NAND_ALE: bit 2 -> Address Latch
|
|
*
|
|
* NOTE: boards may use different bits for these!!
|
|
*/
|
|
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
|
|
if (cmd != NAND_CMD_NONE) {
|
|
if (ctrl & NAND_CLE)
|
|
gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
|
|
|
|
else if (ctrl & NAND_ALE)
|
|
gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
|
|
|
|
else /* NAND_NCE */
|
|
gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_read_buf8 - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand = mtd->priv;
|
|
|
|
ioread8_rep(nand->IO_ADDR_R, buf, len);
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf8 - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
u_char *p = (u_char *)buf;
|
|
u32 status = 0;
|
|
|
|
while (len--) {
|
|
iowrite8(*p++, info->nand.IO_ADDR_W);
|
|
/* wait until buffer is available for write */
|
|
do {
|
|
status = gpmc_read_status(GPMC_STATUS_BUFFER);
|
|
} while (!status);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_read_buf16 - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand = mtd->priv;
|
|
|
|
ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf16 - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
u16 *p = (u16 *) buf;
|
|
u32 status = 0;
|
|
/* FIXME try bursts of writesw() or DMA ... */
|
|
len >>= 1;
|
|
|
|
while (len--) {
|
|
iowrite16(*p++, info->nand.IO_ADDR_W);
|
|
/* wait until buffer is available for write */
|
|
do {
|
|
status = gpmc_read_status(GPMC_STATUS_BUFFER);
|
|
} while (!status);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_read_buf_pref - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
uint32_t r_count = 0;
|
|
int ret = 0;
|
|
u32 *p = (u32 *)buf;
|
|
|
|
/* take care of subpage reads */
|
|
if (len % 4) {
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_read_buf16(mtd, buf, len % 4);
|
|
else
|
|
omap_read_buf8(mtd, buf, len % 4);
|
|
p = (u32 *) (buf + len % 4);
|
|
len -= len % 4;
|
|
}
|
|
|
|
/* configure and start prefetch transfer */
|
|
ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0);
|
|
if (ret) {
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_read_buf16(mtd, buf, len);
|
|
else
|
|
omap_read_buf8(mtd, buf, len);
|
|
} else {
|
|
p = (u32 *) buf;
|
|
do {
|
|
r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
|
|
r_count = r_count >> 2;
|
|
ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
|
|
p += r_count;
|
|
len -= r_count << 2;
|
|
} while (len);
|
|
/* disable and stop the PFPW engine */
|
|
gpmc_prefetch_reset(info->gpmc_cs);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf_pref - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf_pref(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
uint32_t pref_count = 0, w_count = 0;
|
|
int i = 0, ret = 0;
|
|
u16 *p;
|
|
|
|
/* take care of subpage writes */
|
|
if (len % 2 != 0) {
|
|
writeb(*buf, info->nand.IO_ADDR_W);
|
|
p = (u16 *)(buf + 1);
|
|
len--;
|
|
}
|
|
|
|
/* configure and start prefetch transfer */
|
|
ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1);
|
|
if (ret) {
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_write_buf16(mtd, buf, len);
|
|
else
|
|
omap_write_buf8(mtd, buf, len);
|
|
} else {
|
|
p = (u16 *) buf;
|
|
while (len) {
|
|
w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
|
|
w_count = w_count >> 1;
|
|
for (i = 0; (i < w_count) && len; i++, len -= 2)
|
|
iowrite16(*p++, info->nand.IO_ADDR_W);
|
|
}
|
|
/* wait for data to flushed-out before reset the prefetch */
|
|
do {
|
|
pref_count = gpmc_read_status(GPMC_PREFETCH_COUNT);
|
|
} while (pref_count);
|
|
/* disable and stop the PFPW engine */
|
|
gpmc_prefetch_reset(info->gpmc_cs);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
|
|
/*
|
|
* omap_nand_dma_cb: callback on the completion of dma transfer
|
|
* @lch: logical channel
|
|
* @ch_satuts: channel status
|
|
* @data: pointer to completion data structure
|
|
*/
|
|
static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
|
|
{
|
|
complete((struct completion *) data);
|
|
}
|
|
|
|
/*
|
|
* omap_nand_dma_transfer: configer and start dma transfer
|
|
* @mtd: MTD device structure
|
|
* @addr: virtual address in RAM of source/destination
|
|
* @len: number of data bytes to be transferred
|
|
* @is_write: flag for read/write operation
|
|
*/
|
|
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
|
|
unsigned int len, int is_write)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
uint32_t prefetch_status = 0;
|
|
enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
|
|
DMA_FROM_DEVICE;
|
|
dma_addr_t dma_addr;
|
|
int ret;
|
|
|
|
/* The fifo depth is 64 bytes. We have a sync at each frame and frame
|
|
* length is 64 bytes.
|
|
*/
|
|
int buf_len = len >> 6;
|
|
|
|
if (addr >= high_memory) {
|
|
struct page *p1;
|
|
|
|
if (((size_t)addr & PAGE_MASK) !=
|
|
((size_t)(addr + len - 1) & PAGE_MASK))
|
|
goto out_copy;
|
|
p1 = vmalloc_to_page(addr);
|
|
if (!p1)
|
|
goto out_copy;
|
|
addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
|
|
}
|
|
|
|
dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
|
|
if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
|
|
dev_err(&info->pdev->dev,
|
|
"Couldn't DMA map a %d byte buffer\n", len);
|
|
goto out_copy;
|
|
}
|
|
|
|
if (is_write) {
|
|
omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
|
|
info->phys_base, 0, 0);
|
|
omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
|
|
dma_addr, 0, 0);
|
|
omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
|
|
0x10, buf_len, OMAP_DMA_SYNC_FRAME,
|
|
OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
|
|
} else {
|
|
omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
|
|
info->phys_base, 0, 0);
|
|
omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
|
|
dma_addr, 0, 0);
|
|
omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
|
|
0x10, buf_len, OMAP_DMA_SYNC_FRAME,
|
|
OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
|
|
}
|
|
/* configure and start prefetch transfer */
|
|
ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write);
|
|
if (ret)
|
|
/* PFPW engine is busy, use cpu copy methode */
|
|
goto out_copy;
|
|
|
|
init_completion(&info->comp);
|
|
|
|
omap_start_dma(info->dma_ch);
|
|
|
|
/* setup and start DMA using dma_addr */
|
|
wait_for_completion(&info->comp);
|
|
|
|
do {
|
|
prefetch_status = gpmc_read_status(GPMC_PREFETCH_COUNT);
|
|
} while (prefetch_status);
|
|
/* disable and stop the PFPW engine */
|
|
gpmc_prefetch_reset(info->gpmc_cs);
|
|
|
|
dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
|
|
return 0;
|
|
|
|
out_copy:
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
|
|
: omap_write_buf16(mtd, (u_char *) addr, len);
|
|
else
|
|
is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
|
|
: omap_write_buf8(mtd, (u_char *) addr, len);
|
|
return 0;
|
|
}
|
|
#else
|
|
static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {}
|
|
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
|
|
unsigned int len, int is_write)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* omap_read_buf_dma_pref - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
if (len <= mtd->oobsize)
|
|
omap_read_buf_pref(mtd, buf, len);
|
|
else
|
|
/* start transfer in DMA mode */
|
|
omap_nand_dma_transfer(mtd, buf, len, 0x0);
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf_dma_pref - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
if (len <= mtd->oobsize)
|
|
omap_write_buf_pref(mtd, buf, len);
|
|
else
|
|
/* start transfer in DMA mode */
|
|
omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
|
|
}
|
|
|
|
/**
|
|
* omap_verify_buf - Verify chip data against buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer containing the data to compare
|
|
* @len: number of bytes to compare
|
|
*/
|
|
static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
u16 *p = (u16 *) buf;
|
|
|
|
len >>= 1;
|
|
while (len--) {
|
|
if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_HWECC
|
|
|
|
/**
|
|
* gen_true_ecc - This function will generate true ECC value
|
|
* @ecc_buf: buffer to store ecc code
|
|
*
|
|
* This generated true ECC value can be used when correcting
|
|
* data read from NAND flash memory core
|
|
*/
|
|
static void gen_true_ecc(u8 *ecc_buf)
|
|
{
|
|
u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
|
|
((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
|
|
|
|
ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
|
|
P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
|
|
ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
|
|
P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
|
|
ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
|
|
P1e(tmp) | P2048o(tmp) | P2048e(tmp));
|
|
}
|
|
|
|
/**
|
|
* omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
|
|
* @ecc_data1: ecc code from nand spare area
|
|
* @ecc_data2: ecc code from hardware register obtained from hardware ecc
|
|
* @page_data: page data
|
|
*
|
|
* This function compares two ECC's and indicates if there is an error.
|
|
* If the error can be corrected it will be corrected to the buffer.
|
|
*/
|
|
static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
|
|
u8 *ecc_data2, /* read from register */
|
|
u8 *page_data)
|
|
{
|
|
uint i;
|
|
u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
|
|
u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
|
|
u8 ecc_bit[24];
|
|
u8 ecc_sum = 0;
|
|
u8 find_bit = 0;
|
|
uint find_byte = 0;
|
|
int isEccFF;
|
|
|
|
isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
|
|
|
|
gen_true_ecc(ecc_data1);
|
|
gen_true_ecc(ecc_data2);
|
|
|
|
for (i = 0; i <= 2; i++) {
|
|
*(ecc_data1 + i) = ~(*(ecc_data1 + i));
|
|
*(ecc_data2 + i) = ~(*(ecc_data2 + i));
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tmp0_bit[i] = *ecc_data1 % 2;
|
|
*ecc_data1 = *ecc_data1 / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tmp1_bit[i] = *(ecc_data1 + 1) % 2;
|
|
*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tmp2_bit[i] = *(ecc_data1 + 2) % 2;
|
|
*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
comp0_bit[i] = *ecc_data2 % 2;
|
|
*ecc_data2 = *ecc_data2 / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
comp1_bit[i] = *(ecc_data2 + 1) % 2;
|
|
*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
comp2_bit[i] = *(ecc_data2 + 2) % 2;
|
|
*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 6; i++)
|
|
ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
|
|
|
|
for (i = 0; i < 8; i++)
|
|
ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
|
|
|
|
for (i = 0; i < 8; i++)
|
|
ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
|
|
|
|
ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
|
|
ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
|
|
|
|
for (i = 0; i < 24; i++)
|
|
ecc_sum += ecc_bit[i];
|
|
|
|
switch (ecc_sum) {
|
|
case 0:
|
|
/* Not reached because this function is not called if
|
|
* ECC values are equal
|
|
*/
|
|
return 0;
|
|
|
|
case 1:
|
|
/* Uncorrectable error */
|
|
DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
|
|
return -1;
|
|
|
|
case 11:
|
|
/* UN-Correctable error */
|
|
DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
|
|
return -1;
|
|
|
|
case 12:
|
|
/* Correctable error */
|
|
find_byte = (ecc_bit[23] << 8) +
|
|
(ecc_bit[21] << 7) +
|
|
(ecc_bit[19] << 6) +
|
|
(ecc_bit[17] << 5) +
|
|
(ecc_bit[15] << 4) +
|
|
(ecc_bit[13] << 3) +
|
|
(ecc_bit[11] << 2) +
|
|
(ecc_bit[9] << 1) +
|
|
ecc_bit[7];
|
|
|
|
find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
|
|
"offset: %d, bit: %d\n", find_byte, find_bit);
|
|
|
|
page_data[find_byte] ^= (1 << find_bit);
|
|
|
|
return 0;
|
|
default:
|
|
if (isEccFF) {
|
|
if (ecc_data2[0] == 0 &&
|
|
ecc_data2[1] == 0 &&
|
|
ecc_data2[2] == 0)
|
|
return 0;
|
|
}
|
|
DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_correct_data - Compares the ECC read with HW generated ECC
|
|
* @mtd: MTD device structure
|
|
* @dat: page data
|
|
* @read_ecc: ecc read from nand flash
|
|
* @calc_ecc: ecc read from HW ECC registers
|
|
*
|
|
* Compares the ecc read from nand spare area with ECC registers values
|
|
* and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
|
|
* and correction.
|
|
*/
|
|
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
int blockCnt = 0, i = 0, ret = 0;
|
|
|
|
/* Ex NAND_ECC_HW12_2048 */
|
|
if ((info->nand.ecc.mode == NAND_ECC_HW) &&
|
|
(info->nand.ecc.size == 2048))
|
|
blockCnt = 4;
|
|
else
|
|
blockCnt = 1;
|
|
|
|
for (i = 0; i < blockCnt; i++) {
|
|
if (memcmp(read_ecc, calc_ecc, 3) != 0) {
|
|
ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
read_ecc += 3;
|
|
calc_ecc += 3;
|
|
dat += 512;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_calcuate_ecc - Generate non-inverted ECC bytes.
|
|
* @mtd: MTD device structure
|
|
* @dat: The pointer to data on which ecc is computed
|
|
* @ecc_code: The ecc_code buffer
|
|
*
|
|
* Using noninverted ECC can be considered ugly since writing a blank
|
|
* page ie. padding will clear the ECC bytes. This is no problem as long
|
|
* nobody is trying to write data on the seemingly unused page. Reading
|
|
* an erased page will produce an ECC mismatch between generated and read
|
|
* ECC bytes that has to be dealt with separately.
|
|
*/
|
|
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
|
|
u_char *ecc_code)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
|
|
}
|
|
|
|
/**
|
|
* omap_enable_hwecc - This function enables the hardware ecc functionality
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
*/
|
|
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
struct nand_chip *chip = mtd->priv;
|
|
unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
|
|
|
|
gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* omap_wait - wait until the command is done
|
|
* @mtd: MTD device structure
|
|
* @chip: NAND Chip structure
|
|
*
|
|
* Wait function is called during Program and erase operations and
|
|
* the way it is called from MTD layer, we should wait till the NAND
|
|
* chip is ready after the programming/erase operation has completed.
|
|
*
|
|
* Erase can take up to 400ms and program up to 20ms according to
|
|
* general NAND and SmartMedia specs
|
|
*/
|
|
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
unsigned long timeo = jiffies;
|
|
int status = NAND_STATUS_FAIL, state = this->state;
|
|
|
|
if (state == FL_ERASING)
|
|
timeo += (HZ * 400) / 1000;
|
|
else
|
|
timeo += (HZ * 20) / 1000;
|
|
|
|
gpmc_nand_write(info->gpmc_cs,
|
|
GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
|
|
while (time_before(jiffies, timeo)) {
|
|
status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
|
|
if (status & NAND_STATUS_READY)
|
|
break;
|
|
cond_resched();
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* omap_dev_ready - calls the platform specific dev_ready function
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static int omap_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
unsigned int val = 0;
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
|
|
val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
|
|
if ((val & 0x100) == 0x100) {
|
|
/* Clear IRQ Interrupt */
|
|
val |= 0x100;
|
|
val &= ~(0x0);
|
|
gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
|
|
} else {
|
|
unsigned int cnt = 0;
|
|
while (cnt++ < 0x1FF) {
|
|
if ((val & 0x100) == 0x100)
|
|
return 0;
|
|
val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __devinit omap_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct omap_nand_info *info;
|
|
struct omap_nand_platform_data *pdata;
|
|
int err;
|
|
|
|
pdata = pdev->dev.platform_data;
|
|
if (pdata == NULL) {
|
|
dev_err(&pdev->dev, "platform data missing\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
platform_set_drvdata(pdev, info);
|
|
|
|
spin_lock_init(&info->controller.lock);
|
|
init_waitqueue_head(&info->controller.wq);
|
|
|
|
info->pdev = pdev;
|
|
|
|
info->gpmc_cs = pdata->cs;
|
|
info->phys_base = pdata->phys_base;
|
|
|
|
info->mtd.priv = &info->nand;
|
|
info->mtd.name = dev_name(&pdev->dev);
|
|
info->mtd.owner = THIS_MODULE;
|
|
|
|
info->nand.options |= pdata->devsize ? NAND_BUSWIDTH_16 : 0;
|
|
info->nand.options |= NAND_SKIP_BBTSCAN;
|
|
|
|
/* NAND write protect off */
|
|
gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
|
|
|
|
if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
|
|
pdev->dev.driver->name)) {
|
|
err = -EBUSY;
|
|
goto out_free_info;
|
|
}
|
|
|
|
info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
|
|
if (!info->nand.IO_ADDR_R) {
|
|
err = -ENOMEM;
|
|
goto out_release_mem_region;
|
|
}
|
|
|
|
info->nand.controller = &info->controller;
|
|
|
|
info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
|
|
info->nand.cmd_ctrl = omap_hwcontrol;
|
|
|
|
/*
|
|
* If RDY/BSY line is connected to OMAP then use the omap ready
|
|
* funcrtion and the generic nand_wait function which reads the status
|
|
* register after monitoring the RDY/BSY line.Otherwise use a standard
|
|
* chip delay which is slightly more than tR (AC Timing) of the NAND
|
|
* device and read status register until you get a failure or success
|
|
*/
|
|
if (pdata->dev_ready) {
|
|
info->nand.dev_ready = omap_dev_ready;
|
|
info->nand.chip_delay = 0;
|
|
} else {
|
|
info->nand.waitfunc = omap_wait;
|
|
info->nand.chip_delay = 50;
|
|
}
|
|
|
|
if (use_prefetch) {
|
|
|
|
info->nand.read_buf = omap_read_buf_pref;
|
|
info->nand.write_buf = omap_write_buf_pref;
|
|
if (use_dma) {
|
|
err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
|
|
omap_nand_dma_cb, &info->comp, &info->dma_ch);
|
|
if (err < 0) {
|
|
info->dma_ch = -1;
|
|
printk(KERN_WARNING "DMA request failed."
|
|
" Non-dma data transfer mode\n");
|
|
} else {
|
|
omap_set_dma_dest_burst_mode(info->dma_ch,
|
|
OMAP_DMA_DATA_BURST_16);
|
|
omap_set_dma_src_burst_mode(info->dma_ch,
|
|
OMAP_DMA_DATA_BURST_16);
|
|
|
|
info->nand.read_buf = omap_read_buf_dma_pref;
|
|
info->nand.write_buf = omap_write_buf_dma_pref;
|
|
}
|
|
}
|
|
} else {
|
|
if (info->nand.options & NAND_BUSWIDTH_16) {
|
|
info->nand.read_buf = omap_read_buf16;
|
|
info->nand.write_buf = omap_write_buf16;
|
|
} else {
|
|
info->nand.read_buf = omap_read_buf8;
|
|
info->nand.write_buf = omap_write_buf8;
|
|
}
|
|
}
|
|
info->nand.verify_buf = omap_verify_buf;
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_HWECC
|
|
info->nand.ecc.bytes = 3;
|
|
info->nand.ecc.size = 512;
|
|
info->nand.ecc.calculate = omap_calculate_ecc;
|
|
info->nand.ecc.hwctl = omap_enable_hwecc;
|
|
info->nand.ecc.correct = omap_correct_data;
|
|
info->nand.ecc.mode = NAND_ECC_HW;
|
|
|
|
#else
|
|
info->nand.ecc.mode = NAND_ECC_SOFT;
|
|
#endif
|
|
|
|
/* DIP switches on some boards change between 8 and 16 bit
|
|
* bus widths for flash. Try the other width if the first try fails.
|
|
*/
|
|
if (nand_scan(&info->mtd, 1)) {
|
|
info->nand.options ^= NAND_BUSWIDTH_16;
|
|
if (nand_scan(&info->mtd, 1)) {
|
|
err = -ENXIO;
|
|
goto out_release_mem_region;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
|
|
if (err > 0)
|
|
add_mtd_partitions(&info->mtd, info->parts, err);
|
|
else if (pdata->parts)
|
|
add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
|
|
else
|
|
#endif
|
|
add_mtd_device(&info->mtd);
|
|
|
|
platform_set_drvdata(pdev, &info->mtd);
|
|
|
|
return 0;
|
|
|
|
out_release_mem_region:
|
|
release_mem_region(info->phys_base, NAND_IO_SIZE);
|
|
out_free_info:
|
|
kfree(info);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int omap_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct mtd_info *mtd = platform_get_drvdata(pdev);
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
if (use_dma)
|
|
omap_free_dma(info->dma_ch);
|
|
|
|
/* Release NAND device, its internal structures and partitions */
|
|
nand_release(&info->mtd);
|
|
iounmap(info->nand.IO_ADDR_R);
|
|
kfree(&info->mtd);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver omap_nand_driver = {
|
|
.probe = omap_nand_probe,
|
|
.remove = omap_nand_remove,
|
|
.driver = {
|
|
.name = DRIVER_NAME,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
static int __init omap_nand_init(void)
|
|
{
|
|
printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
|
|
|
|
/* This check is required if driver is being
|
|
* loaded run time as a module
|
|
*/
|
|
if ((1 == use_dma) && (0 == use_prefetch)) {
|
|
printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 "
|
|
"without use_prefetch'. Prefetch will not be"
|
|
" used in either mode (mpu or dma)\n");
|
|
}
|
|
return platform_driver_register(&omap_nand_driver);
|
|
}
|
|
|
|
static void __exit omap_nand_exit(void)
|
|
{
|
|
platform_driver_unregister(&omap_nand_driver);
|
|
}
|
|
|
|
module_init(omap_nand_init);
|
|
module_exit(omap_nand_exit);
|
|
|
|
MODULE_ALIAS(DRIVER_NAME);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
|