mirror of
https://github.com/torvalds/linux.git
synced 2024-12-31 23:31:29 +00:00
193383043f
Instead of open coding the generation of page table entries, use the macros/functions that exist for this - pfn_p*d and p*d_populate. Most code in the kernel already uses these macros, this patch tries to fix up the few places that don't. This is useful for the next patch in this series, which needs to change the page table entry logic, and it's better to have that logic in one place. The KVM extended ID map is special, since we're creating a level above CONFIG_PGTABLE_LEVELS and the required function isn't available. Leave it as is and add a comment to explain it. (The normal kernel ID map code doesn't need this change because its page tables are created in assembly (__create_page_tables)). Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
554 lines
14 KiB
C
554 lines
14 KiB
C
/*:
|
|
* Hibernate support specific for ARM64
|
|
*
|
|
* Derived from work on ARM hibernation support by:
|
|
*
|
|
* Ubuntu project, hibernation support for mach-dove
|
|
* Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
|
|
* Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
|
|
* https://lkml.org/lkml/2010/6/18/4
|
|
* https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
|
|
* https://patchwork.kernel.org/patch/96442/
|
|
*
|
|
* Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
|
|
*
|
|
* License terms: GNU General Public License (GPL) version 2
|
|
*/
|
|
#define pr_fmt(x) "hibernate: " x
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/version.h>
|
|
|
|
#include <asm/barrier.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/irqflags.h>
|
|
#include <asm/kexec.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgtable-hwdef.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/smp_plat.h>
|
|
#include <asm/suspend.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/virt.h>
|
|
|
|
/*
|
|
* Hibernate core relies on this value being 0 on resume, and marks it
|
|
* __nosavedata assuming it will keep the resume kernel's '0' value. This
|
|
* doesn't happen with either KASLR.
|
|
*
|
|
* defined as "__visible int in_suspend __nosavedata" in
|
|
* kernel/power/hibernate.c
|
|
*/
|
|
extern int in_suspend;
|
|
|
|
/* Do we need to reset el2? */
|
|
#define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
|
|
|
|
/* temporary el2 vectors in the __hibernate_exit_text section. */
|
|
extern char hibernate_el2_vectors[];
|
|
|
|
/* hyp-stub vectors, used to restore el2 during resume from hibernate. */
|
|
extern char __hyp_stub_vectors[];
|
|
|
|
/*
|
|
* The logical cpu number we should resume on, initialised to a non-cpu
|
|
* number.
|
|
*/
|
|
static int sleep_cpu = -EINVAL;
|
|
|
|
/*
|
|
* Values that may not change over hibernate/resume. We put the build number
|
|
* and date in here so that we guarantee not to resume with a different
|
|
* kernel.
|
|
*/
|
|
struct arch_hibernate_hdr_invariants {
|
|
char uts_version[__NEW_UTS_LEN + 1];
|
|
};
|
|
|
|
/* These values need to be know across a hibernate/restore. */
|
|
static struct arch_hibernate_hdr {
|
|
struct arch_hibernate_hdr_invariants invariants;
|
|
|
|
/* These are needed to find the relocated kernel if built with kaslr */
|
|
phys_addr_t ttbr1_el1;
|
|
void (*reenter_kernel)(void);
|
|
|
|
/*
|
|
* We need to know where the __hyp_stub_vectors are after restore to
|
|
* re-configure el2.
|
|
*/
|
|
phys_addr_t __hyp_stub_vectors;
|
|
|
|
u64 sleep_cpu_mpidr;
|
|
} resume_hdr;
|
|
|
|
static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
|
|
{
|
|
memset(i, 0, sizeof(*i));
|
|
memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
|
|
}
|
|
|
|
int pfn_is_nosave(unsigned long pfn)
|
|
{
|
|
unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
|
|
unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
|
|
|
|
return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
|
|
crash_is_nosave(pfn);
|
|
}
|
|
|
|
void notrace save_processor_state(void)
|
|
{
|
|
WARN_ON(num_online_cpus() != 1);
|
|
}
|
|
|
|
void notrace restore_processor_state(void)
|
|
{
|
|
}
|
|
|
|
int arch_hibernation_header_save(void *addr, unsigned int max_size)
|
|
{
|
|
struct arch_hibernate_hdr *hdr = addr;
|
|
|
|
if (max_size < sizeof(*hdr))
|
|
return -EOVERFLOW;
|
|
|
|
arch_hdr_invariants(&hdr->invariants);
|
|
hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir);
|
|
hdr->reenter_kernel = _cpu_resume;
|
|
|
|
/* We can't use __hyp_get_vectors() because kvm may still be loaded */
|
|
if (el2_reset_needed())
|
|
hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
|
|
else
|
|
hdr->__hyp_stub_vectors = 0;
|
|
|
|
/* Save the mpidr of the cpu we called cpu_suspend() on... */
|
|
if (sleep_cpu < 0) {
|
|
pr_err("Failing to hibernate on an unknown CPU.\n");
|
|
return -ENODEV;
|
|
}
|
|
hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
|
|
pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
|
|
hdr->sleep_cpu_mpidr);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(arch_hibernation_header_save);
|
|
|
|
int arch_hibernation_header_restore(void *addr)
|
|
{
|
|
int ret;
|
|
struct arch_hibernate_hdr_invariants invariants;
|
|
struct arch_hibernate_hdr *hdr = addr;
|
|
|
|
arch_hdr_invariants(&invariants);
|
|
if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
|
|
pr_crit("Hibernate image not generated by this kernel!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
|
|
pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
|
|
hdr->sleep_cpu_mpidr);
|
|
if (sleep_cpu < 0) {
|
|
pr_crit("Hibernated on a CPU not known to this kernel!\n");
|
|
sleep_cpu = -EINVAL;
|
|
return -EINVAL;
|
|
}
|
|
if (!cpu_online(sleep_cpu)) {
|
|
pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
|
|
ret = cpu_up(sleep_cpu);
|
|
if (ret) {
|
|
pr_err("Failed to bring hibernate-CPU up!\n");
|
|
sleep_cpu = -EINVAL;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
resume_hdr = *hdr;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(arch_hibernation_header_restore);
|
|
|
|
/*
|
|
* Copies length bytes, starting at src_start into an new page,
|
|
* perform cache maintentance, then maps it at the specified address low
|
|
* address as executable.
|
|
*
|
|
* This is used by hibernate to copy the code it needs to execute when
|
|
* overwriting the kernel text. This function generates a new set of page
|
|
* tables, which it loads into ttbr0.
|
|
*
|
|
* Length is provided as we probably only want 4K of data, even on a 64K
|
|
* page system.
|
|
*/
|
|
static int create_safe_exec_page(void *src_start, size_t length,
|
|
unsigned long dst_addr,
|
|
phys_addr_t *phys_dst_addr,
|
|
void *(*allocator)(gfp_t mask),
|
|
gfp_t mask)
|
|
{
|
|
int rc = 0;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long dst = (unsigned long)allocator(mask);
|
|
|
|
if (!dst) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
memcpy((void *)dst, src_start, length);
|
|
flush_icache_range(dst, dst + length);
|
|
|
|
pgd = pgd_offset_raw(allocator(mask), dst_addr);
|
|
if (pgd_none(*pgd)) {
|
|
pud = allocator(mask);
|
|
if (!pud) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
pgd_populate(&init_mm, pgd, pud);
|
|
}
|
|
|
|
pud = pud_offset(pgd, dst_addr);
|
|
if (pud_none(*pud)) {
|
|
pmd = allocator(mask);
|
|
if (!pmd) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
pud_populate(&init_mm, pud, pmd);
|
|
}
|
|
|
|
pmd = pmd_offset(pud, dst_addr);
|
|
if (pmd_none(*pmd)) {
|
|
pte = allocator(mask);
|
|
if (!pte) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
pmd_populate_kernel(&init_mm, pmd, pte);
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, dst_addr);
|
|
set_pte(pte, pfn_pte(virt_to_pfn(dst), PAGE_KERNEL_EXEC));
|
|
|
|
/*
|
|
* Load our new page tables. A strict BBM approach requires that we
|
|
* ensure that TLBs are free of any entries that may overlap with the
|
|
* global mappings we are about to install.
|
|
*
|
|
* For a real hibernate/resume cycle TTBR0 currently points to a zero
|
|
* page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
|
|
* runtime services), while for a userspace-driven test_resume cycle it
|
|
* points to userspace page tables (and we must point it at a zero page
|
|
* ourselves). Elsewhere we only (un)install the idmap with preemption
|
|
* disabled, so T0SZ should be as required regardless.
|
|
*/
|
|
cpu_set_reserved_ttbr0();
|
|
local_flush_tlb_all();
|
|
write_sysreg(phys_to_ttbr(virt_to_phys(pgd)), ttbr0_el1);
|
|
isb();
|
|
|
|
*phys_dst_addr = virt_to_phys((void *)dst);
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
#define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start))
|
|
|
|
int swsusp_arch_suspend(void)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
struct sleep_stack_data state;
|
|
|
|
if (cpus_are_stuck_in_kernel()) {
|
|
pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
flags = local_daif_save();
|
|
|
|
if (__cpu_suspend_enter(&state)) {
|
|
/* make the crash dump kernel image visible/saveable */
|
|
crash_prepare_suspend();
|
|
|
|
sleep_cpu = smp_processor_id();
|
|
ret = swsusp_save();
|
|
} else {
|
|
/* Clean kernel core startup/idle code to PoC*/
|
|
dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
|
|
dcache_clean_range(__idmap_text_start, __idmap_text_end);
|
|
|
|
/* Clean kvm setup code to PoC? */
|
|
if (el2_reset_needed())
|
|
dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
|
|
|
|
/* make the crash dump kernel image protected again */
|
|
crash_post_resume();
|
|
|
|
/*
|
|
* Tell the hibernation core that we've just restored
|
|
* the memory
|
|
*/
|
|
in_suspend = 0;
|
|
|
|
sleep_cpu = -EINVAL;
|
|
__cpu_suspend_exit();
|
|
}
|
|
|
|
local_daif_restore(flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void _copy_pte(pte_t *dst_pte, pte_t *src_pte, unsigned long addr)
|
|
{
|
|
pte_t pte = *src_pte;
|
|
|
|
if (pte_valid(pte)) {
|
|
/*
|
|
* Resume will overwrite areas that may be marked
|
|
* read only (code, rodata). Clear the RDONLY bit from
|
|
* the temporary mappings we use during restore.
|
|
*/
|
|
set_pte(dst_pte, pte_mkwrite(pte));
|
|
} else if (debug_pagealloc_enabled() && !pte_none(pte)) {
|
|
/*
|
|
* debug_pagealloc will removed the PTE_VALID bit if
|
|
* the page isn't in use by the resume kernel. It may have
|
|
* been in use by the original kernel, in which case we need
|
|
* to put it back in our copy to do the restore.
|
|
*
|
|
* Before marking this entry valid, check the pfn should
|
|
* be mapped.
|
|
*/
|
|
BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
|
|
set_pte(dst_pte, pte_mkpresent(pte_mkwrite(pte)));
|
|
}
|
|
}
|
|
|
|
static int copy_pte(pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
pte_t *src_pte;
|
|
pte_t *dst_pte;
|
|
unsigned long addr = start;
|
|
|
|
dst_pte = (pte_t *)get_safe_page(GFP_ATOMIC);
|
|
if (!dst_pte)
|
|
return -ENOMEM;
|
|
pmd_populate_kernel(&init_mm, dst_pmd, dst_pte);
|
|
dst_pte = pte_offset_kernel(dst_pmd, start);
|
|
|
|
src_pte = pte_offset_kernel(src_pmd, start);
|
|
do {
|
|
_copy_pte(dst_pte, src_pte, addr);
|
|
} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_pmd(pud_t *dst_pud, pud_t *src_pud, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
pmd_t *src_pmd;
|
|
pmd_t *dst_pmd;
|
|
unsigned long next;
|
|
unsigned long addr = start;
|
|
|
|
if (pud_none(*dst_pud)) {
|
|
dst_pmd = (pmd_t *)get_safe_page(GFP_ATOMIC);
|
|
if (!dst_pmd)
|
|
return -ENOMEM;
|
|
pud_populate(&init_mm, dst_pud, dst_pmd);
|
|
}
|
|
dst_pmd = pmd_offset(dst_pud, start);
|
|
|
|
src_pmd = pmd_offset(src_pud, start);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none(*src_pmd))
|
|
continue;
|
|
if (pmd_table(*src_pmd)) {
|
|
if (copy_pte(dst_pmd, src_pmd, addr, next))
|
|
return -ENOMEM;
|
|
} else {
|
|
set_pmd(dst_pmd,
|
|
__pmd(pmd_val(*src_pmd) & ~PMD_SECT_RDONLY));
|
|
}
|
|
} while (dst_pmd++, src_pmd++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_pud(pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
pud_t *dst_pud;
|
|
pud_t *src_pud;
|
|
unsigned long next;
|
|
unsigned long addr = start;
|
|
|
|
if (pgd_none(*dst_pgd)) {
|
|
dst_pud = (pud_t *)get_safe_page(GFP_ATOMIC);
|
|
if (!dst_pud)
|
|
return -ENOMEM;
|
|
pgd_populate(&init_mm, dst_pgd, dst_pud);
|
|
}
|
|
dst_pud = pud_offset(dst_pgd, start);
|
|
|
|
src_pud = pud_offset(src_pgd, start);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none(*src_pud))
|
|
continue;
|
|
if (pud_table(*(src_pud))) {
|
|
if (copy_pmd(dst_pud, src_pud, addr, next))
|
|
return -ENOMEM;
|
|
} else {
|
|
set_pud(dst_pud,
|
|
__pud(pud_val(*src_pud) & ~PMD_SECT_RDONLY));
|
|
}
|
|
} while (dst_pud++, src_pud++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_page_tables(pgd_t *dst_pgd, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
unsigned long addr = start;
|
|
pgd_t *src_pgd = pgd_offset_k(start);
|
|
|
|
dst_pgd = pgd_offset_raw(dst_pgd, start);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none(*src_pgd))
|
|
continue;
|
|
if (copy_pud(dst_pgd, src_pgd, addr, next))
|
|
return -ENOMEM;
|
|
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
|
|
*
|
|
* Memory allocated by get_safe_page() will be dealt with by the hibernate code,
|
|
* we don't need to free it here.
|
|
*/
|
|
int swsusp_arch_resume(void)
|
|
{
|
|
int rc = 0;
|
|
void *zero_page;
|
|
size_t exit_size;
|
|
pgd_t *tmp_pg_dir;
|
|
phys_addr_t phys_hibernate_exit;
|
|
void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
|
|
void *, phys_addr_t, phys_addr_t);
|
|
|
|
/*
|
|
* Restoring the memory image will overwrite the ttbr1 page tables.
|
|
* Create a second copy of just the linear map, and use this when
|
|
* restoring.
|
|
*/
|
|
tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC);
|
|
if (!tmp_pg_dir) {
|
|
pr_err("Failed to allocate memory for temporary page tables.\n");
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/*
|
|
* We need a zero page that is zero before & after resume in order to
|
|
* to break before make on the ttbr1 page tables.
|
|
*/
|
|
zero_page = (void *)get_safe_page(GFP_ATOMIC);
|
|
if (!zero_page) {
|
|
pr_err("Failed to allocate zero page.\n");
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Locate the exit code in the bottom-but-one page, so that *NULL
|
|
* still has disastrous affects.
|
|
*/
|
|
hibernate_exit = (void *)PAGE_SIZE;
|
|
exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
|
|
/*
|
|
* Copy swsusp_arch_suspend_exit() to a safe page. This will generate
|
|
* a new set of ttbr0 page tables and load them.
|
|
*/
|
|
rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
|
|
(unsigned long)hibernate_exit,
|
|
&phys_hibernate_exit,
|
|
(void *)get_safe_page, GFP_ATOMIC);
|
|
if (rc) {
|
|
pr_err("Failed to create safe executable page for hibernate_exit code.\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The hibernate exit text contains a set of el2 vectors, that will
|
|
* be executed at el2 with the mmu off in order to reload hyp-stub.
|
|
*/
|
|
__flush_dcache_area(hibernate_exit, exit_size);
|
|
|
|
/*
|
|
* KASLR will cause the el2 vectors to be in a different location in
|
|
* the resumed kernel. Load hibernate's temporary copy into el2.
|
|
*
|
|
* We can skip this step if we booted at EL1, or are running with VHE.
|
|
*/
|
|
if (el2_reset_needed()) {
|
|
phys_addr_t el2_vectors = phys_hibernate_exit; /* base */
|
|
el2_vectors += hibernate_el2_vectors -
|
|
__hibernate_exit_text_start; /* offset */
|
|
|
|
__hyp_set_vectors(el2_vectors);
|
|
}
|
|
|
|
hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
|
|
resume_hdr.reenter_kernel, restore_pblist,
|
|
resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int hibernate_resume_nonboot_cpu_disable(void)
|
|
{
|
|
if (sleep_cpu < 0) {
|
|
pr_err("Failing to resume from hibernate on an unknown CPU.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
return freeze_secondary_cpus(sleep_cpu);
|
|
}
|