mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 20:51:44 +00:00
b450777a57
Spelling corrections, from "to" to "too". Signed-off-by: G. Liakhovetski <gl@dsa-ac.de> Signed-off-by: Samuel Ortiz <samuel@sortiz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
1908 lines
51 KiB
C
1908 lines
51 KiB
C
/*********************************************************************
|
|
*
|
|
* Filename: irttp.c
|
|
* Version: 1.2
|
|
* Description: Tiny Transport Protocol (TTP) implementation
|
|
* Status: Stable
|
|
* Author: Dag Brattli <dagb@cs.uit.no>
|
|
* Created at: Sun Aug 31 20:14:31 1997
|
|
* Modified at: Wed Jan 5 11:31:27 2000
|
|
* Modified by: Dag Brattli <dagb@cs.uit.no>
|
|
*
|
|
* Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
|
|
* All Rights Reserved.
|
|
* Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* Neither Dag Brattli nor University of Tromsø admit liability nor
|
|
* provide warranty for any of this software. This material is
|
|
* provided "AS-IS" and at no charge.
|
|
*
|
|
********************************************************************/
|
|
|
|
#include <linux/skbuff.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/seq_file.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <net/irda/irda.h>
|
|
#include <net/irda/irlap.h>
|
|
#include <net/irda/irlmp.h>
|
|
#include <net/irda/parameters.h>
|
|
#include <net/irda/irttp.h>
|
|
|
|
static struct irttp_cb *irttp;
|
|
|
|
static void __irttp_close_tsap(struct tsap_cb *self);
|
|
|
|
static int irttp_data_indication(void *instance, void *sap,
|
|
struct sk_buff *skb);
|
|
static int irttp_udata_indication(void *instance, void *sap,
|
|
struct sk_buff *skb);
|
|
static void irttp_disconnect_indication(void *instance, void *sap,
|
|
LM_REASON reason, struct sk_buff *);
|
|
static void irttp_connect_indication(void *instance, void *sap,
|
|
struct qos_info *qos, __u32 max_sdu_size,
|
|
__u8 header_size, struct sk_buff *skb);
|
|
static void irttp_connect_confirm(void *instance, void *sap,
|
|
struct qos_info *qos, __u32 max_sdu_size,
|
|
__u8 header_size, struct sk_buff *skb);
|
|
static void irttp_run_tx_queue(struct tsap_cb *self);
|
|
static void irttp_run_rx_queue(struct tsap_cb *self);
|
|
|
|
static void irttp_flush_queues(struct tsap_cb *self);
|
|
static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
|
|
static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
|
|
static void irttp_todo_expired(unsigned long data);
|
|
static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
|
|
int get);
|
|
|
|
static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
|
|
static void irttp_status_indication(void *instance,
|
|
LINK_STATUS link, LOCK_STATUS lock);
|
|
|
|
/* Information for parsing parameters in IrTTP */
|
|
static pi_minor_info_t pi_minor_call_table[] = {
|
|
{ NULL, 0 }, /* 0x00 */
|
|
{ irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
|
|
};
|
|
static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
|
|
static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
|
|
|
|
/************************ GLOBAL PROCEDURES ************************/
|
|
|
|
/*
|
|
* Function irttp_init (void)
|
|
*
|
|
* Initialize the IrTTP layer. Called by module initialization code
|
|
*
|
|
*/
|
|
int __init irttp_init(void)
|
|
{
|
|
irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
|
|
if (irttp == NULL)
|
|
return -ENOMEM;
|
|
|
|
irttp->magic = TTP_MAGIC;
|
|
|
|
irttp->tsaps = hashbin_new(HB_LOCK);
|
|
if (!irttp->tsaps) {
|
|
IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
|
|
__FUNCTION__);
|
|
kfree(irttp);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irttp_cleanup (void)
|
|
*
|
|
* Called by module destruction/cleanup code
|
|
*
|
|
*/
|
|
void __exit irttp_cleanup(void)
|
|
{
|
|
/* Check for main structure */
|
|
IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
|
|
|
|
/*
|
|
* Delete hashbin and close all TSAP instances in it
|
|
*/
|
|
hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
|
|
|
|
irttp->magic = 0;
|
|
|
|
/* De-allocate main structure */
|
|
kfree(irttp);
|
|
|
|
irttp = NULL;
|
|
}
|
|
|
|
/*************************** SUBROUTINES ***************************/
|
|
|
|
/*
|
|
* Function irttp_start_todo_timer (self, timeout)
|
|
*
|
|
* Start todo timer.
|
|
*
|
|
* Made it more effient and unsensitive to race conditions - Jean II
|
|
*/
|
|
static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
|
|
{
|
|
/* Set new value for timer */
|
|
mod_timer(&self->todo_timer, jiffies + timeout);
|
|
}
|
|
|
|
/*
|
|
* Function irttp_todo_expired (data)
|
|
*
|
|
* Todo timer has expired!
|
|
*
|
|
* One of the restriction of the timer is that it is run only on the timer
|
|
* interrupt which run every 10ms. This mean that even if you set the timer
|
|
* with a delay of 0, it may take up to 10ms before it's run.
|
|
* So, to minimise latency and keep cache fresh, we try to avoid using
|
|
* it as much as possible.
|
|
* Note : we can't use tasklets, because they can't be asynchronously
|
|
* killed (need user context), and we can't guarantee that here...
|
|
* Jean II
|
|
*/
|
|
static void irttp_todo_expired(unsigned long data)
|
|
{
|
|
struct tsap_cb *self = (struct tsap_cb *) data;
|
|
|
|
/* Check that we still exist */
|
|
if (!self || self->magic != TTP_TSAP_MAGIC)
|
|
return;
|
|
|
|
IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
|
|
|
|
/* Try to make some progress, especially on Tx side - Jean II */
|
|
irttp_run_rx_queue(self);
|
|
irttp_run_tx_queue(self);
|
|
|
|
/* Check if time for disconnect */
|
|
if (test_bit(0, &self->disconnect_pend)) {
|
|
/* Check if it's possible to disconnect yet */
|
|
if (skb_queue_empty(&self->tx_queue)) {
|
|
/* Make sure disconnect is not pending anymore */
|
|
clear_bit(0, &self->disconnect_pend); /* FALSE */
|
|
|
|
/* Note : self->disconnect_skb may be NULL */
|
|
irttp_disconnect_request(self, self->disconnect_skb,
|
|
P_NORMAL);
|
|
self->disconnect_skb = NULL;
|
|
} else {
|
|
/* Try again later */
|
|
irttp_start_todo_timer(self, HZ/10);
|
|
|
|
/* No reason to try and close now */
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Check if it's closing time */
|
|
if (self->close_pend)
|
|
/* Finish cleanup */
|
|
irttp_close_tsap(self);
|
|
}
|
|
|
|
/*
|
|
* Function irttp_flush_queues (self)
|
|
*
|
|
* Flushes (removes all frames) in transitt-buffer (tx_list)
|
|
*/
|
|
void irttp_flush_queues(struct tsap_cb *self)
|
|
{
|
|
struct sk_buff* skb;
|
|
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
|
|
|
IRDA_ASSERT(self != NULL, return;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
|
|
|
/* Deallocate frames waiting to be sent */
|
|
while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
|
|
dev_kfree_skb(skb);
|
|
|
|
/* Deallocate received frames */
|
|
while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
|
|
dev_kfree_skb(skb);
|
|
|
|
/* Deallocate received fragments */
|
|
while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* Function irttp_reassemble (self)
|
|
*
|
|
* Makes a new (continuous) skb of all the fragments in the fragment
|
|
* queue
|
|
*
|
|
*/
|
|
static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
|
|
{
|
|
struct sk_buff *skb, *frag;
|
|
int n = 0; /* Fragment index */
|
|
|
|
IRDA_ASSERT(self != NULL, return NULL;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
|
|
|
|
IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__,
|
|
self->rx_sdu_size);
|
|
|
|
skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
/*
|
|
* Need to reserve space for TTP header in case this skb needs to
|
|
* be requeued in case delivery failes
|
|
*/
|
|
skb_reserve(skb, TTP_HEADER);
|
|
skb_put(skb, self->rx_sdu_size);
|
|
|
|
/*
|
|
* Copy all fragments to a new buffer
|
|
*/
|
|
while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
|
|
skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
|
|
n += frag->len;
|
|
|
|
dev_kfree_skb(frag);
|
|
}
|
|
|
|
IRDA_DEBUG(2,
|
|
"%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
|
|
__FUNCTION__, n, self->rx_sdu_size, self->rx_max_sdu_size);
|
|
/* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
|
|
* by summing the size of all fragments, so we should always
|
|
* have n == self->rx_sdu_size, except in cases where we
|
|
* droped the last fragment (when self->rx_sdu_size exceed
|
|
* self->rx_max_sdu_size), where n < self->rx_sdu_size.
|
|
* Jean II */
|
|
IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
|
|
|
|
/* Set the new length */
|
|
skb_trim(skb, n);
|
|
|
|
self->rx_sdu_size = 0;
|
|
|
|
return skb;
|
|
}
|
|
|
|
/*
|
|
* Function irttp_fragment_skb (skb)
|
|
*
|
|
* Fragments a frame and queues all the fragments for transmission
|
|
*
|
|
*/
|
|
static inline void irttp_fragment_skb(struct tsap_cb *self,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct sk_buff *frag;
|
|
__u8 *frame;
|
|
|
|
IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
|
|
|
|
IRDA_ASSERT(self != NULL, return;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
|
IRDA_ASSERT(skb != NULL, return;);
|
|
|
|
/*
|
|
* Split frame into a number of segments
|
|
*/
|
|
while (skb->len > self->max_seg_size) {
|
|
IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__);
|
|
|
|
/* Make new segment */
|
|
frag = alloc_skb(self->max_seg_size+self->max_header_size,
|
|
GFP_ATOMIC);
|
|
if (!frag)
|
|
return;
|
|
|
|
skb_reserve(frag, self->max_header_size);
|
|
|
|
/* Copy data from the original skb into this fragment. */
|
|
skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
|
|
self->max_seg_size);
|
|
|
|
/* Insert TTP header, with the more bit set */
|
|
frame = skb_push(frag, TTP_HEADER);
|
|
frame[0] = TTP_MORE;
|
|
|
|
/* Hide the copied data from the original skb */
|
|
skb_pull(skb, self->max_seg_size);
|
|
|
|
/* Queue fragment */
|
|
skb_queue_tail(&self->tx_queue, frag);
|
|
}
|
|
/* Queue what is left of the original skb */
|
|
IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__);
|
|
|
|
frame = skb_push(skb, TTP_HEADER);
|
|
frame[0] = 0x00; /* Clear more bit */
|
|
|
|
/* Queue fragment */
|
|
skb_queue_tail(&self->tx_queue, skb);
|
|
}
|
|
|
|
/*
|
|
* Function irttp_param_max_sdu_size (self, param)
|
|
*
|
|
* Handle the MaxSduSize parameter in the connect frames, this function
|
|
* will be called both when this parameter needs to be inserted into, and
|
|
* extracted from the connect frames
|
|
*/
|
|
static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
|
|
int get)
|
|
{
|
|
struct tsap_cb *self;
|
|
|
|
self = (struct tsap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
|
|
|
if (get)
|
|
param->pv.i = self->tx_max_sdu_size;
|
|
else
|
|
self->tx_max_sdu_size = param->pv.i;
|
|
|
|
IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__, param->pv.i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*************************** CLIENT CALLS ***************************/
|
|
/************************** LMP CALLBACKS **************************/
|
|
/* Everything is happily mixed up. Waiting for next clean up - Jean II */
|
|
|
|
/*
|
|
* Function irttp_open_tsap (stsap, notify)
|
|
*
|
|
* Create TSAP connection endpoint,
|
|
*/
|
|
struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
|
|
{
|
|
struct tsap_cb *self;
|
|
struct lsap_cb *lsap;
|
|
notify_t ttp_notify;
|
|
|
|
IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
|
|
|
|
/* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
|
|
* use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
|
|
* JeanII */
|
|
if((stsap_sel != LSAP_ANY) &&
|
|
((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
|
|
IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__);
|
|
return NULL;
|
|
}
|
|
|
|
self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
|
|
if (self == NULL) {
|
|
IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__);
|
|
return NULL;
|
|
}
|
|
spin_lock_init(&self->lock);
|
|
|
|
/* Initialise todo timer */
|
|
init_timer(&self->todo_timer);
|
|
self->todo_timer.data = (unsigned long) self;
|
|
self->todo_timer.function = &irttp_todo_expired;
|
|
|
|
/* Initialize callbacks for IrLMP to use */
|
|
irda_notify_init(&ttp_notify);
|
|
ttp_notify.connect_confirm = irttp_connect_confirm;
|
|
ttp_notify.connect_indication = irttp_connect_indication;
|
|
ttp_notify.disconnect_indication = irttp_disconnect_indication;
|
|
ttp_notify.data_indication = irttp_data_indication;
|
|
ttp_notify.udata_indication = irttp_udata_indication;
|
|
ttp_notify.flow_indication = irttp_flow_indication;
|
|
if(notify->status_indication != NULL)
|
|
ttp_notify.status_indication = irttp_status_indication;
|
|
ttp_notify.instance = self;
|
|
strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
|
|
|
|
self->magic = TTP_TSAP_MAGIC;
|
|
self->connected = FALSE;
|
|
|
|
skb_queue_head_init(&self->rx_queue);
|
|
skb_queue_head_init(&self->tx_queue);
|
|
skb_queue_head_init(&self->rx_fragments);
|
|
/*
|
|
* Create LSAP at IrLMP layer
|
|
*/
|
|
lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
|
|
if (lsap == NULL) {
|
|
IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If user specified LSAP_ANY as source TSAP selector, then IrLMP
|
|
* will replace it with whatever source selector which is free, so
|
|
* the stsap_sel we have might not be valid anymore
|
|
*/
|
|
self->stsap_sel = lsap->slsap_sel;
|
|
IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__, self->stsap_sel);
|
|
|
|
self->notify = *notify;
|
|
self->lsap = lsap;
|
|
|
|
hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
|
|
|
|
if (credit > TTP_RX_MAX_CREDIT)
|
|
self->initial_credit = TTP_RX_MAX_CREDIT;
|
|
else
|
|
self->initial_credit = credit;
|
|
|
|
return self;
|
|
}
|
|
EXPORT_SYMBOL(irttp_open_tsap);
|
|
|
|
/*
|
|
* Function irttp_close (handle)
|
|
*
|
|
* Remove an instance of a TSAP. This function should only deal with the
|
|
* deallocation of the TSAP, and resetting of the TSAPs values;
|
|
*
|
|
*/
|
|
static void __irttp_close_tsap(struct tsap_cb *self)
|
|
{
|
|
/* First make sure we're connected. */
|
|
IRDA_ASSERT(self != NULL, return;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
|
|
|
irttp_flush_queues(self);
|
|
|
|
del_timer(&self->todo_timer);
|
|
|
|
/* This one won't be cleaned up if we are disconnect_pend + close_pend
|
|
* and we receive a disconnect_indication */
|
|
if (self->disconnect_skb)
|
|
dev_kfree_skb(self->disconnect_skb);
|
|
|
|
self->connected = FALSE;
|
|
self->magic = ~TTP_TSAP_MAGIC;
|
|
|
|
kfree(self);
|
|
}
|
|
|
|
/*
|
|
* Function irttp_close (self)
|
|
*
|
|
* Remove TSAP from list of all TSAPs and then deallocate all resources
|
|
* associated with this TSAP
|
|
*
|
|
* Note : because we *free* the tsap structure, it is the responsibility
|
|
* of the caller to make sure we are called only once and to deal with
|
|
* possible race conditions. - Jean II
|
|
*/
|
|
int irttp_close_tsap(struct tsap_cb *self)
|
|
{
|
|
struct tsap_cb *tsap;
|
|
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
|
|
|
/* Make sure tsap has been disconnected */
|
|
if (self->connected) {
|
|
/* Check if disconnect is not pending */
|
|
if (!test_bit(0, &self->disconnect_pend)) {
|
|
IRDA_WARNING("%s: TSAP still connected!\n",
|
|
__FUNCTION__);
|
|
irttp_disconnect_request(self, NULL, P_NORMAL);
|
|
}
|
|
self->close_pend = TRUE;
|
|
irttp_start_todo_timer(self, HZ/10);
|
|
|
|
return 0; /* Will be back! */
|
|
}
|
|
|
|
tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
|
|
|
|
IRDA_ASSERT(tsap == self, return -1;);
|
|
|
|
/* Close corresponding LSAP */
|
|
if (self->lsap) {
|
|
irlmp_close_lsap(self->lsap);
|
|
self->lsap = NULL;
|
|
}
|
|
|
|
__irttp_close_tsap(self);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(irttp_close_tsap);
|
|
|
|
/*
|
|
* Function irttp_udata_request (self, skb)
|
|
*
|
|
* Send unreliable data on this TSAP
|
|
*
|
|
*/
|
|
int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
|
|
{
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
|
IRDA_ASSERT(skb != NULL, return -1;);
|
|
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
|
|
|
/* Check that nothing bad happens */
|
|
if ((skb->len == 0) || (!self->connected)) {
|
|
IRDA_DEBUG(1, "%s(), No data, or not connected\n",
|
|
__FUNCTION__);
|
|
goto err;
|
|
}
|
|
|
|
if (skb->len > self->max_seg_size) {
|
|
IRDA_DEBUG(1, "%s(), UData is too large for IrLAP!\n",
|
|
__FUNCTION__);
|
|
goto err;
|
|
}
|
|
|
|
irlmp_udata_request(self->lsap, skb);
|
|
self->stats.tx_packets++;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
dev_kfree_skb(skb);
|
|
return -1;
|
|
}
|
|
EXPORT_SYMBOL(irttp_udata_request);
|
|
|
|
|
|
/*
|
|
* Function irttp_data_request (handle, skb)
|
|
*
|
|
* Queue frame for transmission. If SAR is enabled, fragement the frame
|
|
* and queue the fragments for transmission
|
|
*/
|
|
int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
|
|
{
|
|
__u8 *frame;
|
|
int ret;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
|
IRDA_ASSERT(skb != NULL, return -1;);
|
|
|
|
IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__,
|
|
skb_queue_len(&self->tx_queue));
|
|
|
|
/* Check that nothing bad happens */
|
|
if ((skb->len == 0) || (!self->connected)) {
|
|
IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__);
|
|
ret = -ENOTCONN;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Check if SAR is disabled, and the frame is larger than what fits
|
|
* inside an IrLAP frame
|
|
*/
|
|
if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
|
|
IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
|
|
__FUNCTION__);
|
|
ret = -EMSGSIZE;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Check if SAR is enabled, and the frame is larger than the
|
|
* TxMaxSduSize
|
|
*/
|
|
if ((self->tx_max_sdu_size != 0) &&
|
|
(self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
|
|
(skb->len > self->tx_max_sdu_size))
|
|
{
|
|
IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
|
|
__FUNCTION__);
|
|
ret = -EMSGSIZE;
|
|
goto err;
|
|
}
|
|
/*
|
|
* Check if transmit queue is full
|
|
*/
|
|
if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
|
|
/*
|
|
* Give it a chance to empty itself
|
|
*/
|
|
irttp_run_tx_queue(self);
|
|
|
|
/* Drop packet. This error code should trigger the caller
|
|
* to resend the data in the client code - Jean II */
|
|
ret = -ENOBUFS;
|
|
goto err;
|
|
}
|
|
|
|
/* Queue frame, or queue frame segments */
|
|
if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
|
|
/* Queue frame */
|
|
IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
|
|
frame = skb_push(skb, TTP_HEADER);
|
|
frame[0] = 0x00; /* Clear more bit */
|
|
|
|
skb_queue_tail(&self->tx_queue, skb);
|
|
} else {
|
|
/*
|
|
* Fragment the frame, this function will also queue the
|
|
* fragments, we don't care about the fact the transmit
|
|
* queue may be overfilled by all the segments for a little
|
|
* while
|
|
*/
|
|
irttp_fragment_skb(self, skb);
|
|
}
|
|
|
|
/* Check if we can accept more data from client */
|
|
if ((!self->tx_sdu_busy) &&
|
|
(skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
|
|
/* Tx queue filling up, so stop client. */
|
|
if (self->notify.flow_indication) {
|
|
self->notify.flow_indication(self->notify.instance,
|
|
self, FLOW_STOP);
|
|
}
|
|
/* self->tx_sdu_busy is the state of the client.
|
|
* Update state after notifying client to avoid
|
|
* race condition with irttp_flow_indication().
|
|
* If the queue empty itself after our test but before
|
|
* we set the flag, we will fix ourselves below in
|
|
* irttp_run_tx_queue().
|
|
* Jean II */
|
|
self->tx_sdu_busy = TRUE;
|
|
}
|
|
|
|
/* Try to make some progress */
|
|
irttp_run_tx_queue(self);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
dev_kfree_skb(skb);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(irttp_data_request);
|
|
|
|
/*
|
|
* Function irttp_run_tx_queue (self)
|
|
*
|
|
* Transmit packets queued for transmission (if possible)
|
|
*
|
|
*/
|
|
static void irttp_run_tx_queue(struct tsap_cb *self)
|
|
{
|
|
struct sk_buff *skb;
|
|
unsigned long flags;
|
|
int n;
|
|
|
|
IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
|
|
__FUNCTION__,
|
|
self->send_credit, skb_queue_len(&self->tx_queue));
|
|
|
|
/* Get exclusive access to the tx queue, otherwise don't touch it */
|
|
if (irda_lock(&self->tx_queue_lock) == FALSE)
|
|
return;
|
|
|
|
/* Try to send out frames as long as we have credits
|
|
* and as long as LAP is not full. If LAP is full, it will
|
|
* poll us through irttp_flow_indication() - Jean II */
|
|
while ((self->send_credit > 0) &&
|
|
(!irlmp_lap_tx_queue_full(self->lsap)) &&
|
|
(skb = skb_dequeue(&self->tx_queue)))
|
|
{
|
|
/*
|
|
* Since we can transmit and receive frames concurrently,
|
|
* the code below is a critical region and we must assure that
|
|
* nobody messes with the credits while we update them.
|
|
*/
|
|
spin_lock_irqsave(&self->lock, flags);
|
|
|
|
n = self->avail_credit;
|
|
self->avail_credit = 0;
|
|
|
|
/* Only room for 127 credits in frame */
|
|
if (n > 127) {
|
|
self->avail_credit = n-127;
|
|
n = 127;
|
|
}
|
|
self->remote_credit += n;
|
|
self->send_credit--;
|
|
|
|
spin_unlock_irqrestore(&self->lock, flags);
|
|
|
|
/*
|
|
* More bit must be set by the data_request() or fragment()
|
|
* functions
|
|
*/
|
|
skb->data[0] |= (n & 0x7f);
|
|
|
|
/* Detach from socket.
|
|
* The current skb has a reference to the socket that sent
|
|
* it (skb->sk). When we pass it to IrLMP, the skb will be
|
|
* stored in in IrLAP (self->wx_list). When we are within
|
|
* IrLAP, we lose the notion of socket, so we should not
|
|
* have a reference to a socket. So, we drop it here.
|
|
*
|
|
* Why does it matter ?
|
|
* When the skb is freed (kfree_skb), if it is associated
|
|
* with a socket, it release buffer space on the socket
|
|
* (through sock_wfree() and sock_def_write_space()).
|
|
* If the socket no longer exist, we may crash. Hard.
|
|
* When we close a socket, we make sure that associated packets
|
|
* in IrTTP are freed. However, we have no way to cancel
|
|
* the packet that we have passed to IrLAP. So, if a packet
|
|
* remains in IrLAP (retry on the link or else) after we
|
|
* close the socket, we are dead !
|
|
* Jean II */
|
|
if (skb->sk != NULL) {
|
|
/* IrSOCK application, IrOBEX, ... */
|
|
skb_orphan(skb);
|
|
}
|
|
/* IrCOMM over IrTTP, IrLAN, ... */
|
|
|
|
/* Pass the skb to IrLMP - done */
|
|
irlmp_data_request(self->lsap, skb);
|
|
self->stats.tx_packets++;
|
|
}
|
|
|
|
/* Check if we can accept more frames from client.
|
|
* We don't want to wait until the todo timer to do that, and we
|
|
* can't use tasklets (grr...), so we are obliged to give control
|
|
* to client. That's ok, this test will be true not too often
|
|
* (max once per LAP window) and we are called from places
|
|
* where we can spend a bit of time doing stuff. - Jean II */
|
|
if ((self->tx_sdu_busy) &&
|
|
(skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
|
|
(!self->close_pend))
|
|
{
|
|
if (self->notify.flow_indication)
|
|
self->notify.flow_indication(self->notify.instance,
|
|
self, FLOW_START);
|
|
|
|
/* self->tx_sdu_busy is the state of the client.
|
|
* We don't really have a race here, but it's always safer
|
|
* to update our state after the client - Jean II */
|
|
self->tx_sdu_busy = FALSE;
|
|
}
|
|
|
|
/* Reset lock */
|
|
self->tx_queue_lock = 0;
|
|
}
|
|
|
|
/*
|
|
* Function irttp_give_credit (self)
|
|
*
|
|
* Send a dataless flowdata TTP-PDU and give available credit to peer
|
|
* TSAP
|
|
*/
|
|
static inline void irttp_give_credit(struct tsap_cb *self)
|
|
{
|
|
struct sk_buff *tx_skb = NULL;
|
|
unsigned long flags;
|
|
int n;
|
|
|
|
IRDA_ASSERT(self != NULL, return;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
|
|
|
IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
|
|
__FUNCTION__,
|
|
self->send_credit, self->avail_credit, self->remote_credit);
|
|
|
|
/* Give credit to peer */
|
|
tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
|
|
if (!tx_skb)
|
|
return;
|
|
|
|
/* Reserve space for LMP, and LAP header */
|
|
skb_reserve(tx_skb, LMP_MAX_HEADER);
|
|
|
|
/*
|
|
* Since we can transmit and receive frames concurrently,
|
|
* the code below is a critical region and we must assure that
|
|
* nobody messes with the credits while we update them.
|
|
*/
|
|
spin_lock_irqsave(&self->lock, flags);
|
|
|
|
n = self->avail_credit;
|
|
self->avail_credit = 0;
|
|
|
|
/* Only space for 127 credits in frame */
|
|
if (n > 127) {
|
|
self->avail_credit = n - 127;
|
|
n = 127;
|
|
}
|
|
self->remote_credit += n;
|
|
|
|
spin_unlock_irqrestore(&self->lock, flags);
|
|
|
|
skb_put(tx_skb, 1);
|
|
tx_skb->data[0] = (__u8) (n & 0x7f);
|
|
|
|
irlmp_data_request(self->lsap, tx_skb);
|
|
self->stats.tx_packets++;
|
|
}
|
|
|
|
/*
|
|
* Function irttp_udata_indication (instance, sap, skb)
|
|
*
|
|
* Received some unit-data (unreliable)
|
|
*
|
|
*/
|
|
static int irttp_udata_indication(void *instance, void *sap,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct tsap_cb *self;
|
|
int err;
|
|
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
|
|
|
self = (struct tsap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
|
IRDA_ASSERT(skb != NULL, return -1;);
|
|
|
|
self->stats.rx_packets++;
|
|
|
|
/* Just pass data to layer above */
|
|
if (self->notify.udata_indication) {
|
|
err = self->notify.udata_indication(self->notify.instance,
|
|
self,skb);
|
|
/* Same comment as in irttp_do_data_indication() */
|
|
if (!err)
|
|
return 0;
|
|
}
|
|
/* Either no handler, or handler returns an error */
|
|
dev_kfree_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irttp_data_indication (instance, sap, skb)
|
|
*
|
|
* Receive segment from IrLMP.
|
|
*
|
|
*/
|
|
static int irttp_data_indication(void *instance, void *sap,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct tsap_cb *self;
|
|
unsigned long flags;
|
|
int n;
|
|
|
|
self = (struct tsap_cb *) instance;
|
|
|
|
n = skb->data[0] & 0x7f; /* Extract the credits */
|
|
|
|
self->stats.rx_packets++;
|
|
|
|
/* Deal with inbound credit
|
|
* Since we can transmit and receive frames concurrently,
|
|
* the code below is a critical region and we must assure that
|
|
* nobody messes with the credits while we update them.
|
|
*/
|
|
spin_lock_irqsave(&self->lock, flags);
|
|
self->send_credit += n;
|
|
if (skb->len > 1)
|
|
self->remote_credit--;
|
|
spin_unlock_irqrestore(&self->lock, flags);
|
|
|
|
/*
|
|
* Data or dataless packet? Dataless frames contains only the
|
|
* TTP_HEADER.
|
|
*/
|
|
if (skb->len > 1) {
|
|
/*
|
|
* We don't remove the TTP header, since we must preserve the
|
|
* more bit, so the defragment routing knows what to do
|
|
*/
|
|
skb_queue_tail(&self->rx_queue, skb);
|
|
} else {
|
|
/* Dataless flowdata TTP-PDU */
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
|
|
/* Push data to the higher layer.
|
|
* We do it synchronously because running the todo timer for each
|
|
* receive packet would be too much overhead and latency.
|
|
* By passing control to the higher layer, we run the risk that
|
|
* it may take time or grab a lock. Most often, the higher layer
|
|
* will only put packet in a queue.
|
|
* Anyway, packets are only dripping through the IrDA, so we can
|
|
* have time before the next packet.
|
|
* Further, we are run from NET_BH, so the worse that can happen is
|
|
* us missing the optimal time to send back the PF bit in LAP.
|
|
* Jean II */
|
|
irttp_run_rx_queue(self);
|
|
|
|
/* We now give credits to peer in irttp_run_rx_queue().
|
|
* We need to send credit *NOW*, otherwise we are going
|
|
* to miss the next Tx window. The todo timer may take
|
|
* a while before it's run... - Jean II */
|
|
|
|
/*
|
|
* If the peer device has given us some credits and we didn't have
|
|
* anyone from before, then we need to shedule the tx queue.
|
|
* We need to do that because our Tx have stopped (so we may not
|
|
* get any LAP flow indication) and the user may be stopped as
|
|
* well. - Jean II
|
|
*/
|
|
if (self->send_credit == n) {
|
|
/* Restart pushing stuff to LAP */
|
|
irttp_run_tx_queue(self);
|
|
/* Note : we don't want to schedule the todo timer
|
|
* because it has horrible latency. No tasklets
|
|
* because the tasklet API is broken. - Jean II */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irttp_status_indication (self, reason)
|
|
*
|
|
* Status_indication, just pass to the higher layer...
|
|
*
|
|
*/
|
|
static void irttp_status_indication(void *instance,
|
|
LINK_STATUS link, LOCK_STATUS lock)
|
|
{
|
|
struct tsap_cb *self;
|
|
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
|
|
|
self = (struct tsap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
|
|
|
/* Check if client has already closed the TSAP and gone away */
|
|
if (self->close_pend)
|
|
return;
|
|
|
|
/*
|
|
* Inform service user if he has requested it
|
|
*/
|
|
if (self->notify.status_indication != NULL)
|
|
self->notify.status_indication(self->notify.instance,
|
|
link, lock);
|
|
else
|
|
IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__);
|
|
}
|
|
|
|
/*
|
|
* Function irttp_flow_indication (self, reason)
|
|
*
|
|
* Flow_indication : IrLAP tells us to send more data.
|
|
*
|
|
*/
|
|
static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
|
|
{
|
|
struct tsap_cb *self;
|
|
|
|
self = (struct tsap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
|
|
|
IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
|
|
|
|
/* We are "polled" directly from LAP, and the LAP want to fill
|
|
* its Tx window. We want to do our best to send it data, so that
|
|
* we maximise the window. On the other hand, we want to limit the
|
|
* amount of work here so that LAP doesn't hang forever waiting
|
|
* for packets. - Jean II */
|
|
|
|
/* Try to send some packets. Currently, LAP calls us every time
|
|
* there is one free slot, so we will send only one packet.
|
|
* This allow the scheduler to do its round robin - Jean II */
|
|
irttp_run_tx_queue(self);
|
|
|
|
/* Note regarding the interraction with higher layer.
|
|
* irttp_run_tx_queue() may call the client when its queue
|
|
* start to empty, via notify.flow_indication(). Initially.
|
|
* I wanted this to happen in a tasklet, to avoid client
|
|
* grabbing the CPU, but we can't use tasklets safely. And timer
|
|
* is definitely too slow.
|
|
* This will happen only once per LAP window, and usually at
|
|
* the third packet (unless window is smaller). LAP is still
|
|
* doing mtt and sending first packet so it's sort of OK
|
|
* to do that. Jean II */
|
|
|
|
/* If we need to send disconnect. try to do it now */
|
|
if(self->disconnect_pend)
|
|
irttp_start_todo_timer(self, 0);
|
|
}
|
|
|
|
/*
|
|
* Function irttp_flow_request (self, command)
|
|
*
|
|
* This function could be used by the upper layers to tell IrTTP to stop
|
|
* delivering frames if the receive queues are starting to get full, or
|
|
* to tell IrTTP to start delivering frames again.
|
|
*/
|
|
void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
|
|
{
|
|
IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
|
|
|
|
IRDA_ASSERT(self != NULL, return;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
|
|
|
switch (flow) {
|
|
case FLOW_STOP:
|
|
IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__);
|
|
self->rx_sdu_busy = TRUE;
|
|
break;
|
|
case FLOW_START:
|
|
IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__);
|
|
self->rx_sdu_busy = FALSE;
|
|
|
|
/* Client say he can accept more data, try to free our
|
|
* queues ASAP - Jean II */
|
|
irttp_run_rx_queue(self);
|
|
|
|
break;
|
|
default:
|
|
IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(irttp_flow_request);
|
|
|
|
/*
|
|
* Function irttp_connect_request (self, dtsap_sel, daddr, qos)
|
|
*
|
|
* Try to connect to remote destination TSAP selector
|
|
*
|
|
*/
|
|
int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
|
|
__u32 saddr, __u32 daddr,
|
|
struct qos_info *qos, __u32 max_sdu_size,
|
|
struct sk_buff *userdata)
|
|
{
|
|
struct sk_buff *tx_skb;
|
|
__u8 *frame;
|
|
__u8 n;
|
|
|
|
IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__, max_sdu_size);
|
|
|
|
IRDA_ASSERT(self != NULL, return -EBADR;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
|
|
|
|
if (self->connected) {
|
|
if(userdata)
|
|
dev_kfree_skb(userdata);
|
|
return -EISCONN;
|
|
}
|
|
|
|
/* Any userdata supplied? */
|
|
if (userdata == NULL) {
|
|
tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
|
|
GFP_ATOMIC);
|
|
if (!tx_skb)
|
|
return -ENOMEM;
|
|
|
|
/* Reserve space for MUX_CONTROL and LAP header */
|
|
skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
|
|
} else {
|
|
tx_skb = userdata;
|
|
/*
|
|
* Check that the client has reserved enough space for
|
|
* headers
|
|
*/
|
|
IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
|
|
{ dev_kfree_skb(userdata); return -1; } );
|
|
}
|
|
|
|
/* Initialize connection parameters */
|
|
self->connected = FALSE;
|
|
self->avail_credit = 0;
|
|
self->rx_max_sdu_size = max_sdu_size;
|
|
self->rx_sdu_size = 0;
|
|
self->rx_sdu_busy = FALSE;
|
|
self->dtsap_sel = dtsap_sel;
|
|
|
|
n = self->initial_credit;
|
|
|
|
self->remote_credit = 0;
|
|
self->send_credit = 0;
|
|
|
|
/*
|
|
* Give away max 127 credits for now
|
|
*/
|
|
if (n > 127) {
|
|
self->avail_credit=n-127;
|
|
n = 127;
|
|
}
|
|
|
|
self->remote_credit = n;
|
|
|
|
/* SAR enabled? */
|
|
if (max_sdu_size > 0) {
|
|
IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
|
|
{ dev_kfree_skb(tx_skb); return -1; } );
|
|
|
|
/* Insert SAR parameters */
|
|
frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
|
|
|
|
frame[0] = TTP_PARAMETERS | n;
|
|
frame[1] = 0x04; /* Length */
|
|
frame[2] = 0x01; /* MaxSduSize */
|
|
frame[3] = 0x02; /* Value length */
|
|
|
|
put_unaligned(cpu_to_be16((__u16) max_sdu_size),
|
|
(__be16 *)(frame+4));
|
|
} else {
|
|
/* Insert plain TTP header */
|
|
frame = skb_push(tx_skb, TTP_HEADER);
|
|
|
|
/* Insert initial credit in frame */
|
|
frame[0] = n & 0x7f;
|
|
}
|
|
|
|
/* Connect with IrLMP. No QoS parameters for now */
|
|
return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
|
|
tx_skb);
|
|
}
|
|
EXPORT_SYMBOL(irttp_connect_request);
|
|
|
|
/*
|
|
* Function irttp_connect_confirm (handle, qos, skb)
|
|
*
|
|
* Sevice user confirms TSAP connection with peer.
|
|
*
|
|
*/
|
|
static void irttp_connect_confirm(void *instance, void *sap,
|
|
struct qos_info *qos, __u32 max_seg_size,
|
|
__u8 max_header_size, struct sk_buff *skb)
|
|
{
|
|
struct tsap_cb *self;
|
|
int parameters;
|
|
int ret;
|
|
__u8 plen;
|
|
__u8 n;
|
|
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
|
|
|
self = (struct tsap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
|
IRDA_ASSERT(skb != NULL, return;);
|
|
|
|
self->max_seg_size = max_seg_size - TTP_HEADER;
|
|
self->max_header_size = max_header_size + TTP_HEADER;
|
|
|
|
/*
|
|
* Check if we have got some QoS parameters back! This should be the
|
|
* negotiated QoS for the link.
|
|
*/
|
|
if (qos) {
|
|
IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
|
|
qos->baud_rate.bits);
|
|
IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
|
|
qos->baud_rate.value);
|
|
}
|
|
|
|
n = skb->data[0] & 0x7f;
|
|
|
|
IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__, n);
|
|
|
|
self->send_credit = n;
|
|
self->tx_max_sdu_size = 0;
|
|
self->connected = TRUE;
|
|
|
|
parameters = skb->data[0] & 0x80;
|
|
|
|
IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
|
|
skb_pull(skb, TTP_HEADER);
|
|
|
|
if (parameters) {
|
|
plen = skb->data[0];
|
|
|
|
ret = irda_param_extract_all(self, skb->data+1,
|
|
IRDA_MIN(skb->len-1, plen),
|
|
¶m_info);
|
|
|
|
/* Any errors in the parameter list? */
|
|
if (ret < 0) {
|
|
IRDA_WARNING("%s: error extracting parameters\n",
|
|
__FUNCTION__);
|
|
dev_kfree_skb(skb);
|
|
|
|
/* Do not accept this connection attempt */
|
|
return;
|
|
}
|
|
/* Remove parameters */
|
|
skb_pull(skb, IRDA_MIN(skb->len, plen+1));
|
|
}
|
|
|
|
IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
|
|
self->send_credit, self->avail_credit, self->remote_credit);
|
|
|
|
IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__,
|
|
self->tx_max_sdu_size);
|
|
|
|
if (self->notify.connect_confirm) {
|
|
self->notify.connect_confirm(self->notify.instance, self, qos,
|
|
self->tx_max_sdu_size,
|
|
self->max_header_size, skb);
|
|
} else
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* Function irttp_connect_indication (handle, skb)
|
|
*
|
|
* Some other device is connecting to this TSAP
|
|
*
|
|
*/
|
|
void irttp_connect_indication(void *instance, void *sap, struct qos_info *qos,
|
|
__u32 max_seg_size, __u8 max_header_size,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct tsap_cb *self;
|
|
struct lsap_cb *lsap;
|
|
int parameters;
|
|
int ret;
|
|
__u8 plen;
|
|
__u8 n;
|
|
|
|
self = (struct tsap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
|
IRDA_ASSERT(skb != NULL, return;);
|
|
|
|
lsap = (struct lsap_cb *) sap;
|
|
|
|
self->max_seg_size = max_seg_size - TTP_HEADER;
|
|
self->max_header_size = max_header_size+TTP_HEADER;
|
|
|
|
IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__, self->stsap_sel);
|
|
|
|
/* Need to update dtsap_sel if its equal to LSAP_ANY */
|
|
self->dtsap_sel = lsap->dlsap_sel;
|
|
|
|
n = skb->data[0] & 0x7f;
|
|
|
|
self->send_credit = n;
|
|
self->tx_max_sdu_size = 0;
|
|
|
|
parameters = skb->data[0] & 0x80;
|
|
|
|
IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
|
|
skb_pull(skb, TTP_HEADER);
|
|
|
|
if (parameters) {
|
|
plen = skb->data[0];
|
|
|
|
ret = irda_param_extract_all(self, skb->data+1,
|
|
IRDA_MIN(skb->len-1, plen),
|
|
¶m_info);
|
|
|
|
/* Any errors in the parameter list? */
|
|
if (ret < 0) {
|
|
IRDA_WARNING("%s: error extracting parameters\n",
|
|
__FUNCTION__);
|
|
dev_kfree_skb(skb);
|
|
|
|
/* Do not accept this connection attempt */
|
|
return;
|
|
}
|
|
|
|
/* Remove parameters */
|
|
skb_pull(skb, IRDA_MIN(skb->len, plen+1));
|
|
}
|
|
|
|
if (self->notify.connect_indication) {
|
|
self->notify.connect_indication(self->notify.instance, self,
|
|
qos, self->tx_max_sdu_size,
|
|
self->max_header_size, skb);
|
|
} else
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* Function irttp_connect_response (handle, userdata)
|
|
*
|
|
* Service user is accepting the connection, just pass it down to
|
|
* IrLMP!
|
|
*
|
|
*/
|
|
int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
|
|
struct sk_buff *userdata)
|
|
{
|
|
struct sk_buff *tx_skb;
|
|
__u8 *frame;
|
|
int ret;
|
|
__u8 n;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
|
|
|
IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__,
|
|
self->stsap_sel);
|
|
|
|
/* Any userdata supplied? */
|
|
if (userdata == NULL) {
|
|
tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
|
|
GFP_ATOMIC);
|
|
if (!tx_skb)
|
|
return -ENOMEM;
|
|
|
|
/* Reserve space for MUX_CONTROL and LAP header */
|
|
skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
|
|
} else {
|
|
tx_skb = userdata;
|
|
/*
|
|
* Check that the client has reserved enough space for
|
|
* headers
|
|
*/
|
|
IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
|
|
{ dev_kfree_skb(userdata); return -1; } );
|
|
}
|
|
|
|
self->avail_credit = 0;
|
|
self->remote_credit = 0;
|
|
self->rx_max_sdu_size = max_sdu_size;
|
|
self->rx_sdu_size = 0;
|
|
self->rx_sdu_busy = FALSE;
|
|
|
|
n = self->initial_credit;
|
|
|
|
/* Frame has only space for max 127 credits (7 bits) */
|
|
if (n > 127) {
|
|
self->avail_credit = n - 127;
|
|
n = 127;
|
|
}
|
|
|
|
self->remote_credit = n;
|
|
self->connected = TRUE;
|
|
|
|
/* SAR enabled? */
|
|
if (max_sdu_size > 0) {
|
|
IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
|
|
{ dev_kfree_skb(tx_skb); return -1; } );
|
|
|
|
/* Insert TTP header with SAR parameters */
|
|
frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
|
|
|
|
frame[0] = TTP_PARAMETERS | n;
|
|
frame[1] = 0x04; /* Length */
|
|
|
|
/* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
|
|
/* TTP_SAR_HEADER, ¶m_info) */
|
|
|
|
frame[2] = 0x01; /* MaxSduSize */
|
|
frame[3] = 0x02; /* Value length */
|
|
|
|
put_unaligned(cpu_to_be16((__u16) max_sdu_size),
|
|
(__be16 *)(frame+4));
|
|
} else {
|
|
/* Insert TTP header */
|
|
frame = skb_push(tx_skb, TTP_HEADER);
|
|
|
|
frame[0] = n & 0x7f;
|
|
}
|
|
|
|
ret = irlmp_connect_response(self->lsap, tx_skb);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(irttp_connect_response);
|
|
|
|
/*
|
|
* Function irttp_dup (self, instance)
|
|
*
|
|
* Duplicate TSAP, can be used by servers to confirm a connection on a
|
|
* new TSAP so it can keep listening on the old one.
|
|
*/
|
|
struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
|
|
{
|
|
struct tsap_cb *new;
|
|
unsigned long flags;
|
|
|
|
IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
|
|
|
|
/* Protect our access to the old tsap instance */
|
|
spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
|
|
|
|
/* Find the old instance */
|
|
if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
|
|
IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__);
|
|
spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate a new instance */
|
|
new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
|
|
if (!new) {
|
|
IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__);
|
|
spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
|
|
return NULL;
|
|
}
|
|
/* Dup */
|
|
memcpy(new, orig, sizeof(struct tsap_cb));
|
|
|
|
/* We don't need the old instance any more */
|
|
spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
|
|
|
|
/* Try to dup the LSAP (may fail if we were too slow) */
|
|
new->lsap = irlmp_dup(orig->lsap, new);
|
|
if (!new->lsap) {
|
|
IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
|
|
kfree(new);
|
|
return NULL;
|
|
}
|
|
|
|
/* Not everything should be copied */
|
|
new->notify.instance = instance;
|
|
spin_lock_init(&new->lock);
|
|
init_timer(&new->todo_timer);
|
|
|
|
skb_queue_head_init(&new->rx_queue);
|
|
skb_queue_head_init(&new->tx_queue);
|
|
skb_queue_head_init(&new->rx_fragments);
|
|
|
|
/* This is locked */
|
|
hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
|
|
|
|
return new;
|
|
}
|
|
EXPORT_SYMBOL(irttp_dup);
|
|
|
|
/*
|
|
* Function irttp_disconnect_request (self)
|
|
*
|
|
* Close this connection please! If priority is high, the queued data
|
|
* segments, if any, will be deallocated first
|
|
*
|
|
*/
|
|
int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
|
|
int priority)
|
|
{
|
|
int ret;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
|
|
|
/* Already disconnected? */
|
|
if (!self->connected) {
|
|
IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__);
|
|
if (userdata)
|
|
dev_kfree_skb(userdata);
|
|
return -1;
|
|
}
|
|
|
|
/* Disconnect already pending ?
|
|
* We need to use an atomic operation to prevent reentry. This
|
|
* function may be called from various context, like user, timer
|
|
* for following a disconnect_indication() (i.e. net_bh).
|
|
* Jean II */
|
|
if(test_and_set_bit(0, &self->disconnect_pend)) {
|
|
IRDA_DEBUG(0, "%s(), disconnect already pending\n",
|
|
__FUNCTION__);
|
|
if (userdata)
|
|
dev_kfree_skb(userdata);
|
|
|
|
/* Try to make some progress */
|
|
irttp_run_tx_queue(self);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Check if there is still data segments in the transmit queue
|
|
*/
|
|
if (!skb_queue_empty(&self->tx_queue)) {
|
|
if (priority == P_HIGH) {
|
|
/*
|
|
* No need to send the queued data, if we are
|
|
* disconnecting right now since the data will
|
|
* not have any usable connection to be sent on
|
|
*/
|
|
IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__);
|
|
irttp_flush_queues(self);
|
|
} else if (priority == P_NORMAL) {
|
|
/*
|
|
* Must delay disconnect until after all data segments
|
|
* have been sent and the tx_queue is empty
|
|
*/
|
|
/* We'll reuse this one later for the disconnect */
|
|
self->disconnect_skb = userdata; /* May be NULL */
|
|
|
|
irttp_run_tx_queue(self);
|
|
|
|
irttp_start_todo_timer(self, HZ/10);
|
|
return -1;
|
|
}
|
|
}
|
|
/* Note : we don't need to check if self->rx_queue is full and the
|
|
* state of self->rx_sdu_busy because the disconnect response will
|
|
* be sent at the LMP level (so even if the peer has its Tx queue
|
|
* full of data). - Jean II */
|
|
|
|
IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__);
|
|
self->connected = FALSE;
|
|
|
|
if (!userdata) {
|
|
struct sk_buff *tx_skb;
|
|
tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
|
|
if (!tx_skb)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Reserve space for MUX and LAP header
|
|
*/
|
|
skb_reserve(tx_skb, LMP_MAX_HEADER);
|
|
|
|
userdata = tx_skb;
|
|
}
|
|
ret = irlmp_disconnect_request(self->lsap, userdata);
|
|
|
|
/* The disconnect is no longer pending */
|
|
clear_bit(0, &self->disconnect_pend); /* FALSE */
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(irttp_disconnect_request);
|
|
|
|
/*
|
|
* Function irttp_disconnect_indication (self, reason)
|
|
*
|
|
* Disconnect indication, TSAP disconnected by peer?
|
|
*
|
|
*/
|
|
void irttp_disconnect_indication(void *instance, void *sap, LM_REASON reason,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct tsap_cb *self;
|
|
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
|
|
|
self = (struct tsap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return;);
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
|
|
|
/* Prevent higher layer to send more data */
|
|
self->connected = FALSE;
|
|
|
|
/* Check if client has already tried to close the TSAP */
|
|
if (self->close_pend) {
|
|
/* In this case, the higher layer is probably gone. Don't
|
|
* bother it and clean up the remains - Jean II */
|
|
if (skb)
|
|
dev_kfree_skb(skb);
|
|
irttp_close_tsap(self);
|
|
return;
|
|
}
|
|
|
|
/* If we are here, we assume that is the higher layer is still
|
|
* waiting for the disconnect notification and able to process it,
|
|
* even if he tried to disconnect. Otherwise, it would have already
|
|
* attempted to close the tsap and self->close_pend would be TRUE.
|
|
* Jean II */
|
|
|
|
/* No need to notify the client if has already tried to disconnect */
|
|
if(self->notify.disconnect_indication)
|
|
self->notify.disconnect_indication(self->notify.instance, self,
|
|
reason, skb);
|
|
else
|
|
if (skb)
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* Function irttp_do_data_indication (self, skb)
|
|
*
|
|
* Try to deliver reassembled skb to layer above, and requeue it if that
|
|
* for some reason should fail. We mark rx sdu as busy to apply back
|
|
* pressure is necessary.
|
|
*/
|
|
static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
|
|
{
|
|
int err;
|
|
|
|
/* Check if client has already closed the TSAP and gone away */
|
|
if (self->close_pend) {
|
|
dev_kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
err = self->notify.data_indication(self->notify.instance, self, skb);
|
|
|
|
/* Usually the layer above will notify that it's input queue is
|
|
* starting to get filled by using the flow request, but this may
|
|
* be difficult, so it can instead just refuse to eat it and just
|
|
* give an error back
|
|
*/
|
|
if (err) {
|
|
IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__);
|
|
|
|
/* Make sure we take a break */
|
|
self->rx_sdu_busy = TRUE;
|
|
|
|
/* Need to push the header in again */
|
|
skb_push(skb, TTP_HEADER);
|
|
skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
|
|
|
|
/* Put skb back on queue */
|
|
skb_queue_head(&self->rx_queue, skb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Function irttp_run_rx_queue (self)
|
|
*
|
|
* Check if we have any frames to be transmitted, or if we have any
|
|
* available credit to give away.
|
|
*/
|
|
void irttp_run_rx_queue(struct tsap_cb *self)
|
|
{
|
|
struct sk_buff *skb;
|
|
int more = 0;
|
|
|
|
IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
|
|
self->send_credit, self->avail_credit, self->remote_credit);
|
|
|
|
/* Get exclusive access to the rx queue, otherwise don't touch it */
|
|
if (irda_lock(&self->rx_queue_lock) == FALSE)
|
|
return;
|
|
|
|
/*
|
|
* Reassemble all frames in receive queue and deliver them
|
|
*/
|
|
while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
|
|
/* This bit will tell us if it's the last fragment or not */
|
|
more = skb->data[0] & 0x80;
|
|
|
|
/* Remove TTP header */
|
|
skb_pull(skb, TTP_HEADER);
|
|
|
|
/* Add the length of the remaining data */
|
|
self->rx_sdu_size += skb->len;
|
|
|
|
/*
|
|
* If SAR is disabled, or user has requested no reassembly
|
|
* of received fragments then we just deliver them
|
|
* immediately. This can be requested by clients that
|
|
* implements byte streams without any message boundaries
|
|
*/
|
|
if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
|
|
irttp_do_data_indication(self, skb);
|
|
self->rx_sdu_size = 0;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Check if this is a fragment, and not the last fragment */
|
|
if (more) {
|
|
/*
|
|
* Queue the fragment if we still are within the
|
|
* limits of the maximum size of the rx_sdu
|
|
*/
|
|
if (self->rx_sdu_size <= self->rx_max_sdu_size) {
|
|
IRDA_DEBUG(4, "%s(), queueing frag\n",
|
|
__FUNCTION__);
|
|
skb_queue_tail(&self->rx_fragments, skb);
|
|
} else {
|
|
/* Free the part of the SDU that is too big */
|
|
dev_kfree_skb(skb);
|
|
}
|
|
continue;
|
|
}
|
|
/*
|
|
* This is the last fragment, so time to reassemble!
|
|
*/
|
|
if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
|
|
(self->rx_max_sdu_size == TTP_SAR_UNBOUND))
|
|
{
|
|
/*
|
|
* A little optimizing. Only queue the fragment if
|
|
* there are other fragments. Since if this is the
|
|
* last and only fragment, there is no need to
|
|
* reassemble :-)
|
|
*/
|
|
if (!skb_queue_empty(&self->rx_fragments)) {
|
|
skb_queue_tail(&self->rx_fragments,
|
|
skb);
|
|
|
|
skb = irttp_reassemble_skb(self);
|
|
}
|
|
|
|
/* Now we can deliver the reassembled skb */
|
|
irttp_do_data_indication(self, skb);
|
|
} else {
|
|
IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__);
|
|
|
|
/* Free the part of the SDU that is too big */
|
|
dev_kfree_skb(skb);
|
|
|
|
/* Deliver only the valid but truncated part of SDU */
|
|
skb = irttp_reassemble_skb(self);
|
|
|
|
irttp_do_data_indication(self, skb);
|
|
}
|
|
self->rx_sdu_size = 0;
|
|
}
|
|
|
|
/*
|
|
* It's not trivial to keep track of how many credits are available
|
|
* by incrementing at each packet, because delivery may fail
|
|
* (irttp_do_data_indication() may requeue the frame) and because
|
|
* we need to take care of fragmentation.
|
|
* We want the other side to send up to initial_credit packets.
|
|
* We have some frames in our queues, and we have already allowed it
|
|
* to send remote_credit.
|
|
* No need to spinlock, write is atomic and self correcting...
|
|
* Jean II
|
|
*/
|
|
self->avail_credit = (self->initial_credit -
|
|
(self->remote_credit +
|
|
skb_queue_len(&self->rx_queue) +
|
|
skb_queue_len(&self->rx_fragments)));
|
|
|
|
/* Do we have too much credits to send to peer ? */
|
|
if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
|
|
(self->avail_credit > 0)) {
|
|
/* Send explicit credit frame */
|
|
irttp_give_credit(self);
|
|
/* Note : do *NOT* check if tx_queue is non-empty, that
|
|
* will produce deadlocks. I repeat : send a credit frame
|
|
* even if we have something to send in our Tx queue.
|
|
* If we have credits, it means that our Tx queue is blocked.
|
|
*
|
|
* Let's suppose the peer can't keep up with our Tx. He will
|
|
* flow control us by not sending us any credits, and we
|
|
* will stop Tx and start accumulating credits here.
|
|
* Up to the point where the peer will stop its Tx queue,
|
|
* for lack of credits.
|
|
* Let's assume the peer application is single threaded.
|
|
* It will block on Tx and never consume any Rx buffer.
|
|
* Deadlock. Guaranteed. - Jean II
|
|
*/
|
|
}
|
|
|
|
/* Reset lock */
|
|
self->rx_queue_lock = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
struct irttp_iter_state {
|
|
int id;
|
|
};
|
|
|
|
static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
struct irttp_iter_state *iter = seq->private;
|
|
struct tsap_cb *self;
|
|
|
|
/* Protect our access to the tsap list */
|
|
spin_lock_irq(&irttp->tsaps->hb_spinlock);
|
|
iter->id = 0;
|
|
|
|
for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
|
|
self != NULL;
|
|
self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
|
|
if (iter->id == *pos)
|
|
break;
|
|
++iter->id;
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct irttp_iter_state *iter = seq->private;
|
|
|
|
++*pos;
|
|
++iter->id;
|
|
return (void *) hashbin_get_next(irttp->tsaps);
|
|
}
|
|
|
|
static void irttp_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
spin_unlock_irq(&irttp->tsaps->hb_spinlock);
|
|
}
|
|
|
|
static int irttp_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
const struct irttp_iter_state *iter = seq->private;
|
|
const struct tsap_cb *self = v;
|
|
|
|
seq_printf(seq, "TSAP %d, ", iter->id);
|
|
seq_printf(seq, "stsap_sel: %02x, ",
|
|
self->stsap_sel);
|
|
seq_printf(seq, "dtsap_sel: %02x\n",
|
|
self->dtsap_sel);
|
|
seq_printf(seq, " connected: %s, ",
|
|
self->connected? "TRUE":"FALSE");
|
|
seq_printf(seq, "avail credit: %d, ",
|
|
self->avail_credit);
|
|
seq_printf(seq, "remote credit: %d, ",
|
|
self->remote_credit);
|
|
seq_printf(seq, "send credit: %d\n",
|
|
self->send_credit);
|
|
seq_printf(seq, " tx packets: %ld, ",
|
|
self->stats.tx_packets);
|
|
seq_printf(seq, "rx packets: %ld, ",
|
|
self->stats.rx_packets);
|
|
seq_printf(seq, "tx_queue len: %d ",
|
|
skb_queue_len(&self->tx_queue));
|
|
seq_printf(seq, "rx_queue len: %d\n",
|
|
skb_queue_len(&self->rx_queue));
|
|
seq_printf(seq, " tx_sdu_busy: %s, ",
|
|
self->tx_sdu_busy? "TRUE":"FALSE");
|
|
seq_printf(seq, "rx_sdu_busy: %s\n",
|
|
self->rx_sdu_busy? "TRUE":"FALSE");
|
|
seq_printf(seq, " max_seg_size: %d, ",
|
|
self->max_seg_size);
|
|
seq_printf(seq, "tx_max_sdu_size: %d, ",
|
|
self->tx_max_sdu_size);
|
|
seq_printf(seq, "rx_max_sdu_size: %d\n",
|
|
self->rx_max_sdu_size);
|
|
|
|
seq_printf(seq, " Used by (%s)\n\n",
|
|
self->notify.name);
|
|
return 0;
|
|
}
|
|
|
|
static struct seq_operations irttp_seq_ops = {
|
|
.start = irttp_seq_start,
|
|
.next = irttp_seq_next,
|
|
.stop = irttp_seq_stop,
|
|
.show = irttp_seq_show,
|
|
};
|
|
|
|
static int irttp_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct seq_file *seq;
|
|
int rc = -ENOMEM;
|
|
struct irttp_iter_state *s;
|
|
|
|
s = kzalloc(sizeof(*s), GFP_KERNEL);
|
|
if (!s)
|
|
goto out;
|
|
|
|
rc = seq_open(file, &irttp_seq_ops);
|
|
if (rc)
|
|
goto out_kfree;
|
|
|
|
seq = file->private_data;
|
|
seq->private = s;
|
|
out:
|
|
return rc;
|
|
out_kfree:
|
|
kfree(s);
|
|
goto out;
|
|
}
|
|
|
|
const struct file_operations irttp_seq_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = irttp_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
#endif /* PROC_FS */
|