linux/drivers/net/wireless/mac80211_hwsim.c
Linus Torvalds 80f232121b Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
 "Highlights:

   1) Support AES128-CCM ciphers in kTLS, from Vakul Garg.

   2) Add fib_sync_mem to control the amount of dirty memory we allow to
      queue up between synchronize RCU calls, from David Ahern.

   3) Make flow classifier more lockless, from Vlad Buslov.

   4) Add PHY downshift support to aquantia driver, from Heiner
      Kallweit.

   5) Add SKB cache for TCP rx and tx, from Eric Dumazet. This reduces
      contention on SLAB spinlocks in heavy RPC workloads.

   6) Partial GSO offload support in XFRM, from Boris Pismenny.

   7) Add fast link down support to ethtool, from Heiner Kallweit.

   8) Use siphash for IP ID generator, from Eric Dumazet.

   9) Pull nexthops even further out from ipv4/ipv6 routes and FIB
      entries, from David Ahern.

  10) Move skb->xmit_more into a per-cpu variable, from Florian
      Westphal.

  11) Improve eBPF verifier speed and increase maximum program size,
      from Alexei Starovoitov.

  12) Eliminate per-bucket spinlocks in rhashtable, and instead use bit
      spinlocks. From Neil Brown.

  13) Allow tunneling with GUE encap in ipvs, from Jacky Hu.

  14) Improve link partner cap detection in generic PHY code, from
      Heiner Kallweit.

  15) Add layer 2 encap support to bpf_skb_adjust_room(), from Alan
      Maguire.

  16) Remove SKB list implementation assumptions in SCTP, your's truly.

  17) Various cleanups, optimizations, and simplifications in r8169
      driver. From Heiner Kallweit.

  18) Add memory accounting on TX and RX path of SCTP, from Xin Long.

  19) Switch PHY drivers over to use dynamic featue detection, from
      Heiner Kallweit.

  20) Support flow steering without masking in dpaa2-eth, from Ioana
      Ciocoi.

  21) Implement ndo_get_devlink_port in netdevsim driver, from Jiri
      Pirko.

  22) Increase the strict parsing of current and future netlink
      attributes, also export such policies to userspace. From Johannes
      Berg.

  23) Allow DSA tag drivers to be modular, from Andrew Lunn.

  24) Remove legacy DSA probing support, also from Andrew Lunn.

  25) Allow ll_temac driver to be used on non-x86 platforms, from Esben
      Haabendal.

  26) Add a generic tracepoint for TX queue timeouts to ease debugging,
      from Cong Wang.

  27) More indirect call optimizations, from Paolo Abeni"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1763 commits)
  cxgb4: Fix error path in cxgb4_init_module
  net: phy: improve pause mode reporting in phy_print_status
  dt-bindings: net: Fix a typo in the phy-mode list for ethernet bindings
  net: macb: Change interrupt and napi enable order in open
  net: ll_temac: Improve error message on error IRQ
  net/sched: remove block pointer from common offload structure
  net: ethernet: support of_get_mac_address new ERR_PTR error
  net: usb: smsc: fix warning reported by kbuild test robot
  staging: octeon-ethernet: Fix of_get_mac_address ERR_PTR check
  net: dsa: support of_get_mac_address new ERR_PTR error
  net: dsa: sja1105: Fix status initialization in sja1105_get_ethtool_stats
  vrf: sit mtu should not be updated when vrf netdev is the link
  net: dsa: Fix error cleanup path in dsa_init_module
  l2tp: Fix possible NULL pointer dereference
  taprio: add null check on sched_nest to avoid potential null pointer dereference
  net: mvpp2: cls: fix less than zero check on a u32 variable
  net_sched: sch_fq: handle non connected flows
  net_sched: sch_fq: do not assume EDT packets are ordered
  net: hns3: use devm_kcalloc when allocating desc_cb
  net: hns3: some cleanup for struct hns3_enet_ring
  ...
2019-05-07 22:03:58 -07:00

3972 lines
106 KiB
C

/*
* mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
* Copyright (c) 2008, Jouni Malinen <j@w1.fi>
* Copyright (c) 2011, Javier Lopez <jlopex@gmail.com>
* Copyright (c) 2016 - 2017 Intel Deutschland GmbH
* Copyright (C) 2018 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* TODO:
* - Add TSF sync and fix IBSS beacon transmission by adding
* competition for "air time" at TBTT
* - RX filtering based on filter configuration (data->rx_filter)
*/
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <net/dst.h>
#include <net/xfrm.h>
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include <linux/if_arp.h>
#include <linux/rtnetlink.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/debugfs.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <net/genetlink.h>
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include <linux/rhashtable.h>
#include <linux/nospec.h>
#include "mac80211_hwsim.h"
#define WARN_QUEUE 100
#define MAX_QUEUE 200
MODULE_AUTHOR("Jouni Malinen");
MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211");
MODULE_LICENSE("GPL");
static int radios = 2;
module_param(radios, int, 0444);
MODULE_PARM_DESC(radios, "Number of simulated radios");
static int channels = 1;
module_param(channels, int, 0444);
MODULE_PARM_DESC(channels, "Number of concurrent channels");
static bool paged_rx = false;
module_param(paged_rx, bool, 0644);
MODULE_PARM_DESC(paged_rx, "Use paged SKBs for RX instead of linear ones");
static bool rctbl = false;
module_param(rctbl, bool, 0444);
MODULE_PARM_DESC(rctbl, "Handle rate control table");
static bool support_p2p_device = true;
module_param(support_p2p_device, bool, 0444);
MODULE_PARM_DESC(support_p2p_device, "Support P2P-Device interface type");
/**
* enum hwsim_regtest - the type of regulatory tests we offer
*
* These are the different values you can use for the regtest
* module parameter. This is useful to help test world roaming
* and the driver regulatory_hint() call and combinations of these.
* If you want to do specific alpha2 regulatory domain tests simply
* use the userspace regulatory request as that will be respected as
* well without the need of this module parameter. This is designed
* only for testing the driver regulatory request, world roaming
* and all possible combinations.
*
* @HWSIM_REGTEST_DISABLED: No regulatory tests are performed,
* this is the default value.
* @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory
* hint, only one driver regulatory hint will be sent as such the
* secondary radios are expected to follow.
* @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory
* request with all radios reporting the same regulatory domain.
* @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling
* different regulatory domains requests. Expected behaviour is for
* an intersection to occur but each device will still use their
* respective regulatory requested domains. Subsequent radios will
* use the resulting intersection.
* @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish
* this by using a custom beacon-capable regulatory domain for the first
* radio. All other device world roam.
* @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory
* domain requests. All radios will adhere to this custom world regulatory
* domain.
* @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory
* domain requests. The first radio will adhere to the first custom world
* regulatory domain, the second one to the second custom world regulatory
* domain. All other devices will world roam.
* @HWSIM_REGTEST_STRICT_FOLLOW_: Used for testing strict regulatory domain
* settings, only the first radio will send a regulatory domain request
* and use strict settings. The rest of the radios are expected to follow.
* @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain
* settings. All radios will adhere to this.
* @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory
* domain settings, combined with secondary driver regulatory domain
* settings. The first radio will get a strict regulatory domain setting
* using the first driver regulatory request and the second radio will use
* non-strict settings using the second driver regulatory request. All
* other devices should follow the intersection created between the
* first two.
* @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need
* at least 6 radios for a complete test. We will test in this order:
* 1 - driver custom world regulatory domain
* 2 - second custom world regulatory domain
* 3 - first driver regulatory domain request
* 4 - second driver regulatory domain request
* 5 - strict regulatory domain settings using the third driver regulatory
* domain request
* 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio
* regulatory requests.
*/
enum hwsim_regtest {
HWSIM_REGTEST_DISABLED = 0,
HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1,
HWSIM_REGTEST_DRIVER_REG_ALL = 2,
HWSIM_REGTEST_DIFF_COUNTRY = 3,
HWSIM_REGTEST_WORLD_ROAM = 4,
HWSIM_REGTEST_CUSTOM_WORLD = 5,
HWSIM_REGTEST_CUSTOM_WORLD_2 = 6,
HWSIM_REGTEST_STRICT_FOLLOW = 7,
HWSIM_REGTEST_STRICT_ALL = 8,
HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9,
HWSIM_REGTEST_ALL = 10,
};
/* Set to one of the HWSIM_REGTEST_* values above */
static int regtest = HWSIM_REGTEST_DISABLED;
module_param(regtest, int, 0444);
MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run");
static const char *hwsim_alpha2s[] = {
"FI",
"AL",
"US",
"DE",
"JP",
"AL",
};
static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = {
.n_reg_rules = 4,
.alpha2 = "99",
.reg_rules = {
REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
REG_RULE(2484-10, 2484+10, 40, 0, 20, 0),
REG_RULE(5150-10, 5240+10, 40, 0, 30, 0),
REG_RULE(5745-10, 5825+10, 40, 0, 30, 0),
}
};
static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = {
.n_reg_rules = 2,
.alpha2 = "99",
.reg_rules = {
REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
REG_RULE(5725-10, 5850+10, 40, 0, 30,
NL80211_RRF_NO_IR),
}
};
static const struct ieee80211_regdomain *hwsim_world_regdom_custom[] = {
&hwsim_world_regdom_custom_01,
&hwsim_world_regdom_custom_02,
};
struct hwsim_vif_priv {
u32 magic;
u8 bssid[ETH_ALEN];
bool assoc;
bool bcn_en;
u16 aid;
};
#define HWSIM_VIF_MAGIC 0x69537748
static inline void hwsim_check_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
WARN(vp->magic != HWSIM_VIF_MAGIC,
"Invalid VIF (%p) magic %#x, %pM, %d/%d\n",
vif, vp->magic, vif->addr, vif->type, vif->p2p);
}
static inline void hwsim_set_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
vp->magic = HWSIM_VIF_MAGIC;
}
static inline void hwsim_clear_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
vp->magic = 0;
}
struct hwsim_sta_priv {
u32 magic;
};
#define HWSIM_STA_MAGIC 0x6d537749
static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
WARN_ON(sp->magic != HWSIM_STA_MAGIC);
}
static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
sp->magic = HWSIM_STA_MAGIC;
}
static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
sp->magic = 0;
}
struct hwsim_chanctx_priv {
u32 magic;
};
#define HWSIM_CHANCTX_MAGIC 0x6d53774a
static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
WARN_ON(cp->magic != HWSIM_CHANCTX_MAGIC);
}
static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
cp->magic = HWSIM_CHANCTX_MAGIC;
}
static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
cp->magic = 0;
}
static unsigned int hwsim_net_id;
static DEFINE_IDA(hwsim_netgroup_ida);
struct hwsim_net {
int netgroup;
u32 wmediumd;
};
static inline int hwsim_net_get_netgroup(struct net *net)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
return hwsim_net->netgroup;
}
static inline int hwsim_net_set_netgroup(struct net *net)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
hwsim_net->netgroup = ida_simple_get(&hwsim_netgroup_ida,
0, 0, GFP_KERNEL);
return hwsim_net->netgroup >= 0 ? 0 : -ENOMEM;
}
static inline u32 hwsim_net_get_wmediumd(struct net *net)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
return hwsim_net->wmediumd;
}
static inline void hwsim_net_set_wmediumd(struct net *net, u32 portid)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
hwsim_net->wmediumd = portid;
}
static struct class *hwsim_class;
static struct net_device *hwsim_mon; /* global monitor netdev */
#define CHAN2G(_freq) { \
.band = NL80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_freq), \
.max_power = 20, \
}
#define CHAN5G(_freq) { \
.band = NL80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_freq), \
.max_power = 20, \
}
static const struct ieee80211_channel hwsim_channels_2ghz[] = {
CHAN2G(2412), /* Channel 1 */
CHAN2G(2417), /* Channel 2 */
CHAN2G(2422), /* Channel 3 */
CHAN2G(2427), /* Channel 4 */
CHAN2G(2432), /* Channel 5 */
CHAN2G(2437), /* Channel 6 */
CHAN2G(2442), /* Channel 7 */
CHAN2G(2447), /* Channel 8 */
CHAN2G(2452), /* Channel 9 */
CHAN2G(2457), /* Channel 10 */
CHAN2G(2462), /* Channel 11 */
CHAN2G(2467), /* Channel 12 */
CHAN2G(2472), /* Channel 13 */
CHAN2G(2484), /* Channel 14 */
};
static const struct ieee80211_channel hwsim_channels_5ghz[] = {
CHAN5G(5180), /* Channel 36 */
CHAN5G(5200), /* Channel 40 */
CHAN5G(5220), /* Channel 44 */
CHAN5G(5240), /* Channel 48 */
CHAN5G(5260), /* Channel 52 */
CHAN5G(5280), /* Channel 56 */
CHAN5G(5300), /* Channel 60 */
CHAN5G(5320), /* Channel 64 */
CHAN5G(5500), /* Channel 100 */
CHAN5G(5520), /* Channel 104 */
CHAN5G(5540), /* Channel 108 */
CHAN5G(5560), /* Channel 112 */
CHAN5G(5580), /* Channel 116 */
CHAN5G(5600), /* Channel 120 */
CHAN5G(5620), /* Channel 124 */
CHAN5G(5640), /* Channel 128 */
CHAN5G(5660), /* Channel 132 */
CHAN5G(5680), /* Channel 136 */
CHAN5G(5700), /* Channel 140 */
CHAN5G(5745), /* Channel 149 */
CHAN5G(5765), /* Channel 153 */
CHAN5G(5785), /* Channel 157 */
CHAN5G(5805), /* Channel 161 */
CHAN5G(5825), /* Channel 165 */
CHAN5G(5845), /* Channel 169 */
};
static const struct ieee80211_rate hwsim_rates[] = {
{ .bitrate = 10 },
{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60 },
{ .bitrate = 90 },
{ .bitrate = 120 },
{ .bitrate = 180 },
{ .bitrate = 240 },
{ .bitrate = 360 },
{ .bitrate = 480 },
{ .bitrate = 540 }
};
static const u32 hwsim_ciphers[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
WLAN_CIPHER_SUITE_CCMP_256,
WLAN_CIPHER_SUITE_GCMP,
WLAN_CIPHER_SUITE_GCMP_256,
WLAN_CIPHER_SUITE_AES_CMAC,
WLAN_CIPHER_SUITE_BIP_CMAC_256,
WLAN_CIPHER_SUITE_BIP_GMAC_128,
WLAN_CIPHER_SUITE_BIP_GMAC_256,
};
#define OUI_QCA 0x001374
#define QCA_NL80211_SUBCMD_TEST 1
enum qca_nl80211_vendor_subcmds {
QCA_WLAN_VENDOR_ATTR_TEST = 8,
QCA_WLAN_VENDOR_ATTR_MAX = QCA_WLAN_VENDOR_ATTR_TEST
};
static const struct nla_policy
hwsim_vendor_test_policy[QCA_WLAN_VENDOR_ATTR_MAX + 1] = {
[QCA_WLAN_VENDOR_ATTR_MAX] = { .type = NLA_U32 },
};
static int mac80211_hwsim_vendor_cmd_test(struct wiphy *wiphy,
struct wireless_dev *wdev,
const void *data, int data_len)
{
struct sk_buff *skb;
struct nlattr *tb[QCA_WLAN_VENDOR_ATTR_MAX + 1];
int err;
u32 val;
err = nla_parse_deprecated(tb, QCA_WLAN_VENDOR_ATTR_MAX, data,
data_len, hwsim_vendor_test_policy, NULL);
if (err)
return err;
if (!tb[QCA_WLAN_VENDOR_ATTR_TEST])
return -EINVAL;
val = nla_get_u32(tb[QCA_WLAN_VENDOR_ATTR_TEST]);
wiphy_dbg(wiphy, "%s: test=%u\n", __func__, val);
/* Send a vendor event as a test. Note that this would not normally be
* done within a command handler, but rather, based on some other
* trigger. For simplicity, this command is used to trigger the event
* here.
*
* event_idx = 0 (index in mac80211_hwsim_vendor_commands)
*/
skb = cfg80211_vendor_event_alloc(wiphy, wdev, 100, 0, GFP_KERNEL);
if (skb) {
/* skb_put() or nla_put() will fill up data within
* NL80211_ATTR_VENDOR_DATA.
*/
/* Add vendor data */
nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_TEST, val + 1);
/* Send the event - this will call nla_nest_end() */
cfg80211_vendor_event(skb, GFP_KERNEL);
}
/* Send a response to the command */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, 10);
if (!skb)
return -ENOMEM;
/* skb_put() or nla_put() will fill up data within
* NL80211_ATTR_VENDOR_DATA
*/
nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_TEST, val + 2);
return cfg80211_vendor_cmd_reply(skb);
}
static struct wiphy_vendor_command mac80211_hwsim_vendor_commands[] = {
{
.info = { .vendor_id = OUI_QCA,
.subcmd = QCA_NL80211_SUBCMD_TEST },
.flags = WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = mac80211_hwsim_vendor_cmd_test,
}
};
/* Advertise support vendor specific events */
static const struct nl80211_vendor_cmd_info mac80211_hwsim_vendor_events[] = {
{ .vendor_id = OUI_QCA, .subcmd = 1 },
};
static spinlock_t hwsim_radio_lock;
static LIST_HEAD(hwsim_radios);
static struct rhashtable hwsim_radios_rht;
static int hwsim_radio_idx;
static int hwsim_radios_generation = 1;
static struct platform_driver mac80211_hwsim_driver = {
.driver = {
.name = "mac80211_hwsim",
},
};
struct mac80211_hwsim_data {
struct list_head list;
struct rhash_head rht;
struct ieee80211_hw *hw;
struct device *dev;
struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)];
struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)];
struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)];
struct ieee80211_iface_combination if_combination;
struct ieee80211_iface_limit if_limits[3];
int n_if_limits;
u32 ciphers[ARRAY_SIZE(hwsim_ciphers)];
struct mac_address addresses[2];
int channels, idx;
bool use_chanctx;
bool destroy_on_close;
u32 portid;
char alpha2[2];
const struct ieee80211_regdomain *regd;
struct ieee80211_channel *tmp_chan;
struct ieee80211_channel *roc_chan;
u32 roc_duration;
struct delayed_work roc_start;
struct delayed_work roc_done;
struct delayed_work hw_scan;
struct cfg80211_scan_request *hw_scan_request;
struct ieee80211_vif *hw_scan_vif;
int scan_chan_idx;
u8 scan_addr[ETH_ALEN];
struct {
struct ieee80211_channel *channel;
unsigned long next_start, start, end;
} survey_data[ARRAY_SIZE(hwsim_channels_2ghz) +
ARRAY_SIZE(hwsim_channels_5ghz)];
struct ieee80211_channel *channel;
u64 beacon_int /* beacon interval in us */;
unsigned int rx_filter;
bool started, idle, scanning;
struct mutex mutex;
struct hrtimer beacon_timer;
enum ps_mode {
PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL
} ps;
bool ps_poll_pending;
struct dentry *debugfs;
uintptr_t pending_cookie;
struct sk_buff_head pending; /* packets pending */
/*
* Only radios in the same group can communicate together (the
* channel has to match too). Each bit represents a group. A
* radio can be in more than one group.
*/
u64 group;
/* group shared by radios created in the same netns */
int netgroup;
/* wmediumd portid responsible for netgroup of this radio */
u32 wmediumd;
/* difference between this hw's clock and the real clock, in usecs */
s64 tsf_offset;
s64 bcn_delta;
/* absolute beacon transmission time. Used to cover up "tx" delay. */
u64 abs_bcn_ts;
/* Stats */
u64 tx_pkts;
u64 rx_pkts;
u64 tx_bytes;
u64 rx_bytes;
u64 tx_dropped;
u64 tx_failed;
};
static const struct rhashtable_params hwsim_rht_params = {
.nelem_hint = 2,
.automatic_shrinking = true,
.key_len = ETH_ALEN,
.key_offset = offsetof(struct mac80211_hwsim_data, addresses[1]),
.head_offset = offsetof(struct mac80211_hwsim_data, rht),
};
struct hwsim_radiotap_hdr {
struct ieee80211_radiotap_header hdr;
__le64 rt_tsft;
u8 rt_flags;
u8 rt_rate;
__le16 rt_channel;
__le16 rt_chbitmask;
} __packed;
struct hwsim_radiotap_ack_hdr {
struct ieee80211_radiotap_header hdr;
u8 rt_flags;
u8 pad;
__le16 rt_channel;
__le16 rt_chbitmask;
} __packed;
/* MAC80211_HWSIM netlink family */
static struct genl_family hwsim_genl_family;
enum hwsim_multicast_groups {
HWSIM_MCGRP_CONFIG,
};
static const struct genl_multicast_group hwsim_mcgrps[] = {
[HWSIM_MCGRP_CONFIG] = { .name = "config", },
};
/* MAC80211_HWSIM netlink policy */
static const struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = {
[HWSIM_ATTR_ADDR_RECEIVER] = { .type = NLA_UNSPEC, .len = ETH_ALEN },
[HWSIM_ATTR_ADDR_TRANSMITTER] = { .type = NLA_UNSPEC, .len = ETH_ALEN },
[HWSIM_ATTR_FRAME] = { .type = NLA_BINARY,
.len = IEEE80211_MAX_DATA_LEN },
[HWSIM_ATTR_FLAGS] = { .type = NLA_U32 },
[HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 },
[HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 },
[HWSIM_ATTR_TX_INFO] = { .type = NLA_UNSPEC,
.len = IEEE80211_TX_MAX_RATES *
sizeof(struct hwsim_tx_rate)},
[HWSIM_ATTR_COOKIE] = { .type = NLA_U64 },
[HWSIM_ATTR_CHANNELS] = { .type = NLA_U32 },
[HWSIM_ATTR_RADIO_ID] = { .type = NLA_U32 },
[HWSIM_ATTR_REG_HINT_ALPHA2] = { .type = NLA_STRING, .len = 2 },
[HWSIM_ATTR_REG_CUSTOM_REG] = { .type = NLA_U32 },
[HWSIM_ATTR_REG_STRICT_REG] = { .type = NLA_FLAG },
[HWSIM_ATTR_SUPPORT_P2P_DEVICE] = { .type = NLA_FLAG },
[HWSIM_ATTR_DESTROY_RADIO_ON_CLOSE] = { .type = NLA_FLAG },
[HWSIM_ATTR_RADIO_NAME] = { .type = NLA_STRING },
[HWSIM_ATTR_NO_VIF] = { .type = NLA_FLAG },
[HWSIM_ATTR_FREQ] = { .type = NLA_U32 },
[HWSIM_ATTR_PERM_ADDR] = { .type = NLA_UNSPEC, .len = ETH_ALEN },
[HWSIM_ATTR_IFTYPE_SUPPORT] = { .type = NLA_U32 },
[HWSIM_ATTR_CIPHER_SUPPORT] = { .type = NLA_BINARY },
};
static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan);
/* sysfs attributes */
static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct sk_buff *skb;
struct ieee80211_pspoll *pspoll;
if (!vp->assoc)
return;
wiphy_dbg(data->hw->wiphy,
"%s: send PS-Poll to %pM for aid %d\n",
__func__, vp->bssid, vp->aid);
skb = dev_alloc_skb(sizeof(*pspoll));
if (!skb)
return;
pspoll = skb_put(skb, sizeof(*pspoll));
pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_PSPOLL |
IEEE80211_FCTL_PM);
pspoll->aid = cpu_to_le16(0xc000 | vp->aid);
memcpy(pspoll->bssid, vp->bssid, ETH_ALEN);
memcpy(pspoll->ta, mac, ETH_ALEN);
rcu_read_lock();
mac80211_hwsim_tx_frame(data->hw, skb,
rcu_dereference(vif->chanctx_conf)->def.chan);
rcu_read_unlock();
}
static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac,
struct ieee80211_vif *vif, int ps)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
if (!vp->assoc)
return;
wiphy_dbg(data->hw->wiphy,
"%s: send data::nullfunc to %pM ps=%d\n",
__func__, vp->bssid, ps);
skb = dev_alloc_skb(sizeof(*hdr));
if (!skb)
return;
hdr = skb_put(skb, sizeof(*hdr) - ETH_ALEN);
hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_TODS |
(ps ? IEEE80211_FCTL_PM : 0));
hdr->duration_id = cpu_to_le16(0);
memcpy(hdr->addr1, vp->bssid, ETH_ALEN);
memcpy(hdr->addr2, mac, ETH_ALEN);
memcpy(hdr->addr3, vp->bssid, ETH_ALEN);
rcu_read_lock();
mac80211_hwsim_tx_frame(data->hw, skb,
rcu_dereference(vif->chanctx_conf)->def.chan);
rcu_read_unlock();
}
static void hwsim_send_nullfunc_ps(void *dat, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
hwsim_send_nullfunc(data, mac, vif, 1);
}
static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
hwsim_send_nullfunc(data, mac, vif, 0);
}
static int hwsim_fops_ps_read(void *dat, u64 *val)
{
struct mac80211_hwsim_data *data = dat;
*val = data->ps;
return 0;
}
static int hwsim_fops_ps_write(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
enum ps_mode old_ps;
if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL &&
val != PS_MANUAL_POLL)
return -EINVAL;
if (val == PS_MANUAL_POLL) {
if (data->ps != PS_ENABLED)
return -EINVAL;
local_bh_disable();
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_ps_poll, data);
local_bh_enable();
return 0;
}
old_ps = data->ps;
data->ps = val;
local_bh_disable();
if (old_ps == PS_DISABLED && val != PS_DISABLED) {
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_nullfunc_ps, data);
} else if (old_ps != PS_DISABLED && val == PS_DISABLED) {
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_nullfunc_no_ps, data);
}
local_bh_enable();
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write,
"%llu\n");
static int hwsim_write_simulate_radar(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
ieee80211_radar_detected(data->hw);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(hwsim_simulate_radar, NULL,
hwsim_write_simulate_radar, "%llu\n");
static int hwsim_fops_group_read(void *dat, u64 *val)
{
struct mac80211_hwsim_data *data = dat;
*val = data->group;
return 0;
}
static int hwsim_fops_group_write(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
data->group = val;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_group,
hwsim_fops_group_read, hwsim_fops_group_write,
"%llx\n");
static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb,
struct net_device *dev)
{
/* TODO: allow packet injection */
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static inline u64 mac80211_hwsim_get_tsf_raw(void)
{
return ktime_to_us(ktime_get_real());
}
static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data)
{
u64 now = mac80211_hwsim_get_tsf_raw();
return cpu_to_le64(now + data->tsf_offset);
}
static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = hw->priv;
return le64_to_cpu(__mac80211_hwsim_get_tsf(data));
}
static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u64 tsf)
{
struct mac80211_hwsim_data *data = hw->priv;
u64 now = mac80211_hwsim_get_tsf(hw, vif);
u32 bcn_int = data->beacon_int;
u64 delta = abs(tsf - now);
/* adjust after beaconing with new timestamp at old TBTT */
if (tsf > now) {
data->tsf_offset += delta;
data->bcn_delta = do_div(delta, bcn_int);
} else {
data->tsf_offset -= delta;
data->bcn_delta = -(s64)do_div(delta, bcn_int);
}
}
static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw,
struct sk_buff *tx_skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv;
struct sk_buff *skb;
struct hwsim_radiotap_hdr *hdr;
u16 flags;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb);
struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
if (WARN_ON(!txrate))
return;
if (!netif_running(hwsim_mon))
return;
skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC);
if (skb == NULL)
return;
hdr = skb_push(skb, sizeof(*hdr));
hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
hdr->hdr.it_pad = 0;
hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_RATE) |
(1 << IEEE80211_RADIOTAP_TSFT) |
(1 << IEEE80211_RADIOTAP_CHANNEL));
hdr->rt_tsft = __mac80211_hwsim_get_tsf(data);
hdr->rt_flags = 0;
hdr->rt_rate = txrate->bitrate / 5;
hdr->rt_channel = cpu_to_le16(chan->center_freq);
flags = IEEE80211_CHAN_2GHZ;
if (txrate->flags & IEEE80211_RATE_ERP_G)
flags |= IEEE80211_CHAN_OFDM;
else
flags |= IEEE80211_CHAN_CCK;
hdr->rt_chbitmask = cpu_to_le16(flags);
skb->dev = hwsim_mon;
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
static void mac80211_hwsim_monitor_ack(struct ieee80211_channel *chan,
const u8 *addr)
{
struct sk_buff *skb;
struct hwsim_radiotap_ack_hdr *hdr;
u16 flags;
struct ieee80211_hdr *hdr11;
if (!netif_running(hwsim_mon))
return;
skb = dev_alloc_skb(100);
if (skb == NULL)
return;
hdr = skb_put(skb, sizeof(*hdr));
hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
hdr->hdr.it_pad = 0;
hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_CHANNEL));
hdr->rt_flags = 0;
hdr->pad = 0;
hdr->rt_channel = cpu_to_le16(chan->center_freq);
flags = IEEE80211_CHAN_2GHZ;
hdr->rt_chbitmask = cpu_to_le16(flags);
hdr11 = skb_put(skb, 10);
hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_ACK);
hdr11->duration_id = cpu_to_le16(0);
memcpy(hdr11->addr1, addr, ETH_ALEN);
skb->dev = hwsim_mon;
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
struct mac80211_hwsim_addr_match_data {
u8 addr[ETH_ALEN];
bool ret;
};
static void mac80211_hwsim_addr_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_addr_match_data *md = data;
if (memcmp(mac, md->addr, ETH_ALEN) == 0)
md->ret = true;
}
static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data,
const u8 *addr)
{
struct mac80211_hwsim_addr_match_data md = {
.ret = false,
};
if (data->scanning && memcmp(addr, data->scan_addr, ETH_ALEN) == 0)
return true;
memcpy(md.addr, addr, ETH_ALEN);
ieee80211_iterate_active_interfaces_atomic(data->hw,
IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_addr_iter,
&md);
return md.ret;
}
static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data,
struct sk_buff *skb)
{
switch (data->ps) {
case PS_DISABLED:
return true;
case PS_ENABLED:
return false;
case PS_AUTO_POLL:
/* TODO: accept (some) Beacons by default and other frames only
* if pending PS-Poll has been sent */
return true;
case PS_MANUAL_POLL:
/* Allow unicast frames to own address if there is a pending
* PS-Poll */
if (data->ps_poll_pending &&
mac80211_hwsim_addr_match(data, skb->data + 4)) {
data->ps_poll_pending = false;
return true;
}
return false;
}
return true;
}
static int hwsim_unicast_netgroup(struct mac80211_hwsim_data *data,
struct sk_buff *skb, int portid)
{
struct net *net;
bool found = false;
int res = -ENOENT;
rcu_read_lock();
for_each_net_rcu(net) {
if (data->netgroup == hwsim_net_get_netgroup(net)) {
res = genlmsg_unicast(net, skb, portid);
found = true;
break;
}
}
rcu_read_unlock();
if (!found)
nlmsg_free(skb);
return res;
}
static inline u16 trans_tx_rate_flags_ieee2hwsim(struct ieee80211_tx_rate *rate)
{
u16 result = 0;
if (rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)
result |= MAC80211_HWSIM_TX_RC_USE_RTS_CTS;
if (rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
result |= MAC80211_HWSIM_TX_RC_USE_CTS_PROTECT;
if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
result |= MAC80211_HWSIM_TX_RC_USE_SHORT_PREAMBLE;
if (rate->flags & IEEE80211_TX_RC_MCS)
result |= MAC80211_HWSIM_TX_RC_MCS;
if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
result |= MAC80211_HWSIM_TX_RC_GREEN_FIELD;
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
result |= MAC80211_HWSIM_TX_RC_40_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_DUP_DATA)
result |= MAC80211_HWSIM_TX_RC_DUP_DATA;
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
result |= MAC80211_HWSIM_TX_RC_SHORT_GI;
if (rate->flags & IEEE80211_TX_RC_VHT_MCS)
result |= MAC80211_HWSIM_TX_RC_VHT_MCS;
if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
result |= MAC80211_HWSIM_TX_RC_80_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
result |= MAC80211_HWSIM_TX_RC_160_MHZ_WIDTH;
return result;
}
static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw,
struct sk_buff *my_skb,
int dst_portid)
{
struct sk_buff *skb;
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb);
void *msg_head;
unsigned int hwsim_flags = 0;
int i;
struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES];
struct hwsim_tx_rate_flag tx_attempts_flags[IEEE80211_TX_MAX_RATES];
uintptr_t cookie;
if (data->ps != PS_DISABLED)
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
/* If the queue contains MAX_QUEUE skb's drop some */
if (skb_queue_len(&data->pending) >= MAX_QUEUE) {
/* Droping until WARN_QUEUE level */
while (skb_queue_len(&data->pending) >= WARN_QUEUE) {
ieee80211_free_txskb(hw, skb_dequeue(&data->pending));
data->tx_dropped++;
}
}
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (skb == NULL)
goto nla_put_failure;
msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
HWSIM_CMD_FRAME);
if (msg_head == NULL) {
pr_debug("mac80211_hwsim: problem with msg_head\n");
goto nla_put_failure;
}
if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
ETH_ALEN, data->addresses[1].addr))
goto nla_put_failure;
/* We get the skb->data */
if (nla_put(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data))
goto nla_put_failure;
/* We get the flags for this transmission, and we translate them to
wmediumd flags */
if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS;
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
hwsim_flags |= HWSIM_TX_CTL_NO_ACK;
if (nla_put_u32(skb, HWSIM_ATTR_FLAGS, hwsim_flags))
goto nla_put_failure;
if (nla_put_u32(skb, HWSIM_ATTR_FREQ, data->channel->center_freq))
goto nla_put_failure;
/* We get the tx control (rate and retries) info*/
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
tx_attempts[i].idx = info->status.rates[i].idx;
tx_attempts_flags[i].idx = info->status.rates[i].idx;
tx_attempts[i].count = info->status.rates[i].count;
tx_attempts_flags[i].flags =
trans_tx_rate_flags_ieee2hwsim(
&info->status.rates[i]);
}
if (nla_put(skb, HWSIM_ATTR_TX_INFO,
sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES,
tx_attempts))
goto nla_put_failure;
if (nla_put(skb, HWSIM_ATTR_TX_INFO_FLAGS,
sizeof(struct hwsim_tx_rate_flag) * IEEE80211_TX_MAX_RATES,
tx_attempts_flags))
goto nla_put_failure;
/* We create a cookie to identify this skb */
data->pending_cookie++;
cookie = data->pending_cookie;
info->rate_driver_data[0] = (void *)cookie;
if (nla_put_u64_64bit(skb, HWSIM_ATTR_COOKIE, cookie, HWSIM_ATTR_PAD))
goto nla_put_failure;
genlmsg_end(skb, msg_head);
if (hwsim_unicast_netgroup(data, skb, dst_portid))
goto err_free_txskb;
/* Enqueue the packet */
skb_queue_tail(&data->pending, my_skb);
data->tx_pkts++;
data->tx_bytes += my_skb->len;
return;
nla_put_failure:
nlmsg_free(skb);
err_free_txskb:
pr_debug("mac80211_hwsim: error occurred in %s\n", __func__);
ieee80211_free_txskb(hw, my_skb);
data->tx_failed++;
}
static bool hwsim_chans_compat(struct ieee80211_channel *c1,
struct ieee80211_channel *c2)
{
if (!c1 || !c2)
return false;
return c1->center_freq == c2->center_freq;
}
struct tx_iter_data {
struct ieee80211_channel *channel;
bool receive;
};
static void mac80211_hwsim_tx_iter(void *_data, u8 *addr,
struct ieee80211_vif *vif)
{
struct tx_iter_data *data = _data;
if (!vif->chanctx_conf)
return;
if (!hwsim_chans_compat(data->channel,
rcu_dereference(vif->chanctx_conf)->def.chan))
return;
data->receive = true;
}
static void mac80211_hwsim_add_vendor_rtap(struct sk_buff *skb)
{
/*
* To enable this code, #define the HWSIM_RADIOTAP_OUI,
* e.g. like this:
* #define HWSIM_RADIOTAP_OUI "\x02\x00\x00"
* (but you should use a valid OUI, not that)
*
* If anyone wants to 'donate' a radiotap OUI/subns code
* please send a patch removing this #ifdef and changing
* the values accordingly.
*/
#ifdef HWSIM_RADIOTAP_OUI
struct ieee80211_vendor_radiotap *rtap;
/*
* Note that this code requires the headroom in the SKB
* that was allocated earlier.
*/
rtap = skb_push(skb, sizeof(*rtap) + 8 + 4);
rtap->oui[0] = HWSIM_RADIOTAP_OUI[0];
rtap->oui[1] = HWSIM_RADIOTAP_OUI[1];
rtap->oui[2] = HWSIM_RADIOTAP_OUI[2];
rtap->subns = 127;
/*
* Radiotap vendor namespaces can (and should) also be
* split into fields by using the standard radiotap
* presence bitmap mechanism. Use just BIT(0) here for
* the presence bitmap.
*/
rtap->present = BIT(0);
/* We have 8 bytes of (dummy) data */
rtap->len = 8;
/* For testing, also require it to be aligned */
rtap->align = 8;
/* And also test that padding works, 4 bytes */
rtap->pad = 4;
/* push the data */
memcpy(rtap->data, "ABCDEFGH", 8);
/* make sure to clear padding, mac80211 doesn't */
memset(rtap->data + 8, 0, 4);
IEEE80211_SKB_RXCB(skb)->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
#endif
}
static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv, *data2;
bool ack = false;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_rx_status rx_status;
u64 now;
memset(&rx_status, 0, sizeof(rx_status));
rx_status.flag |= RX_FLAG_MACTIME_START;
rx_status.freq = chan->center_freq;
rx_status.band = chan->band;
if (info->control.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) {
rx_status.rate_idx =
ieee80211_rate_get_vht_mcs(&info->control.rates[0]);
rx_status.nss =
ieee80211_rate_get_vht_nss(&info->control.rates[0]);
rx_status.encoding = RX_ENC_VHT;
} else {
rx_status.rate_idx = info->control.rates[0].idx;
if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
rx_status.encoding = RX_ENC_HT;
}
if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
rx_status.bw = RATE_INFO_BW_40;
else if (info->control.rates[0].flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
rx_status.bw = RATE_INFO_BW_80;
else if (info->control.rates[0].flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
rx_status.bw = RATE_INFO_BW_160;
else
rx_status.bw = RATE_INFO_BW_20;
if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI)
rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
/* TODO: simulate real signal strength (and optional packet loss) */
rx_status.signal = -50;
if (info->control.vif)
rx_status.signal += info->control.vif->bss_conf.txpower;
if (data->ps != PS_DISABLED)
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
/* release the skb's source info */
skb_orphan(skb);
skb_dst_drop(skb);
skb->mark = 0;
secpath_reset(skb);
nf_reset(skb);
/*
* Get absolute mactime here so all HWs RX at the "same time", and
* absolute TX time for beacon mactime so the timestamp matches.
* Giving beacons a different mactime than non-beacons looks messy, but
* it helps the Toffset be exact and a ~10us mactime discrepancy
* probably doesn't really matter.
*/
if (ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control)) {
rx_status.boottime_ns = ktime_get_boot_ns();
now = data->abs_bcn_ts;
} else {
now = mac80211_hwsim_get_tsf_raw();
}
/* Copy skb to all enabled radios that are on the current frequency */
spin_lock(&hwsim_radio_lock);
list_for_each_entry(data2, &hwsim_radios, list) {
struct sk_buff *nskb;
struct tx_iter_data tx_iter_data = {
.receive = false,
.channel = chan,
};
if (data == data2)
continue;
if (!data2->started || (data2->idle && !data2->tmp_chan) ||
!hwsim_ps_rx_ok(data2, skb))
continue;
if (!(data->group & data2->group))
continue;
if (data->netgroup != data2->netgroup)
continue;
if (!hwsim_chans_compat(chan, data2->tmp_chan) &&
!hwsim_chans_compat(chan, data2->channel)) {
ieee80211_iterate_active_interfaces_atomic(
data2->hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_tx_iter, &tx_iter_data);
if (!tx_iter_data.receive)
continue;
}
/*
* reserve some space for our vendor and the normal
* radiotap header, since we're copying anyway
*/
if (skb->len < PAGE_SIZE && paged_rx) {
struct page *page = alloc_page(GFP_ATOMIC);
if (!page)
continue;
nskb = dev_alloc_skb(128);
if (!nskb) {
__free_page(page);
continue;
}
memcpy(page_address(page), skb->data, skb->len);
skb_add_rx_frag(nskb, 0, page, 0, skb->len, skb->len);
} else {
nskb = skb_copy(skb, GFP_ATOMIC);
if (!nskb)
continue;
}
if (mac80211_hwsim_addr_match(data2, hdr->addr1))
ack = true;
rx_status.mactime = now + data2->tsf_offset;
memcpy(IEEE80211_SKB_RXCB(nskb), &rx_status, sizeof(rx_status));
mac80211_hwsim_add_vendor_rtap(nskb);
data2->rx_pkts++;
data2->rx_bytes += nskb->len;
ieee80211_rx_irqsafe(data2->hw, nskb);
}
spin_unlock(&hwsim_radio_lock);
return ack;
}
static void mac80211_hwsim_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (void *)skb->data;
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_channel *channel;
bool ack;
u32 _portid;
if (WARN_ON(skb->len < 10)) {
/* Should not happen; just a sanity check for addr1 use */
ieee80211_free_txskb(hw, skb);
return;
}
if (!data->use_chanctx) {
channel = data->channel;
} else if (txi->hw_queue == 4) {
channel = data->tmp_chan;
} else {
chanctx_conf = rcu_dereference(txi->control.vif->chanctx_conf);
if (chanctx_conf)
channel = chanctx_conf->def.chan;
else
channel = NULL;
}
if (WARN(!channel, "TX w/o channel - queue = %d\n", txi->hw_queue)) {
ieee80211_free_txskb(hw, skb);
return;
}
if (data->idle && !data->tmp_chan) {
wiphy_dbg(hw->wiphy, "Trying to TX when idle - reject\n");
ieee80211_free_txskb(hw, skb);
return;
}
if (txi->control.vif)
hwsim_check_magic(txi->control.vif);
if (control->sta)
hwsim_check_sta_magic(control->sta);
if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE))
ieee80211_get_tx_rates(txi->control.vif, control->sta, skb,
txi->control.rates,
ARRAY_SIZE(txi->control.rates));
if (skb->len >= 24 + 8 &&
ieee80211_is_probe_resp(hdr->frame_control)) {
/* fake header transmission time */
struct ieee80211_mgmt *mgmt;
struct ieee80211_rate *txrate;
u64 ts;
mgmt = (struct ieee80211_mgmt *)skb->data;
txrate = ieee80211_get_tx_rate(hw, txi);
ts = mac80211_hwsim_get_tsf_raw();
mgmt->u.probe_resp.timestamp =
cpu_to_le64(ts + data->tsf_offset +
24 * 8 * 10 / txrate->bitrate);
}
mac80211_hwsim_monitor_rx(hw, skb, channel);
/* wmediumd mode check */
_portid = READ_ONCE(data->wmediumd);
if (_portid)
return mac80211_hwsim_tx_frame_nl(hw, skb, _portid);
/* NO wmediumd detected, perfect medium simulation */
data->tx_pkts++;
data->tx_bytes += skb->len;
ack = mac80211_hwsim_tx_frame_no_nl(hw, skb, channel);
if (ack && skb->len >= 16)
mac80211_hwsim_monitor_ack(channel, hdr->addr2);
ieee80211_tx_info_clear_status(txi);
/* frame was transmitted at most favorable rate at first attempt */
txi->control.rates[0].count = 1;
txi->control.rates[1].idx = -1;
if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack)
txi->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(hw, skb);
}
static int mac80211_hwsim_start(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *data = hw->priv;
wiphy_dbg(hw->wiphy, "%s\n", __func__);
data->started = true;
return 0;
}
static void mac80211_hwsim_stop(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *data = hw->priv;
data->started = false;
hrtimer_cancel(&data->beacon_timer);
wiphy_dbg(hw->wiphy, "%s\n", __func__);
}
static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
wiphy_dbg(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
vif->addr);
hwsim_set_magic(vif);
vif->cab_queue = 0;
vif->hw_queue[IEEE80211_AC_VO] = 0;
vif->hw_queue[IEEE80211_AC_VI] = 1;
vif->hw_queue[IEEE80211_AC_BE] = 2;
vif->hw_queue[IEEE80211_AC_BK] = 3;
return 0;
}
static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum nl80211_iftype newtype,
bool newp2p)
{
newtype = ieee80211_iftype_p2p(newtype, newp2p);
wiphy_dbg(hw->wiphy,
"%s (old type=%d, new type=%d, mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
newtype, vif->addr);
hwsim_check_magic(vif);
/*
* interface may change from non-AP to AP in
* which case this needs to be set up again
*/
vif->cab_queue = 0;
return 0;
}
static void mac80211_hwsim_remove_interface(
struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
wiphy_dbg(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
vif->addr);
hwsim_check_magic(vif);
hwsim_clear_magic(vif);
}
static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv;
u32 _pid = READ_ONCE(data->wmediumd);
if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE)) {
struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
ieee80211_get_tx_rates(txi->control.vif, NULL, skb,
txi->control.rates,
ARRAY_SIZE(txi->control.rates));
}
mac80211_hwsim_monitor_rx(hw, skb, chan);
if (_pid)
return mac80211_hwsim_tx_frame_nl(hw, skb, _pid);
mac80211_hwsim_tx_frame_no_nl(hw, skb, chan);
dev_kfree_skb(skb);
}
static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = arg;
struct ieee80211_hw *hw = data->hw;
struct ieee80211_tx_info *info;
struct ieee80211_rate *txrate;
struct ieee80211_mgmt *mgmt;
struct sk_buff *skb;
hwsim_check_magic(vif);
if (vif->type != NL80211_IFTYPE_AP &&
vif->type != NL80211_IFTYPE_MESH_POINT &&
vif->type != NL80211_IFTYPE_ADHOC)
return;
skb = ieee80211_beacon_get(hw, vif);
if (skb == NULL)
return;
info = IEEE80211_SKB_CB(skb);
if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE))
ieee80211_get_tx_rates(vif, NULL, skb,
info->control.rates,
ARRAY_SIZE(info->control.rates));
txrate = ieee80211_get_tx_rate(hw, info);
mgmt = (struct ieee80211_mgmt *) skb->data;
/* fake header transmission time */
data->abs_bcn_ts = mac80211_hwsim_get_tsf_raw();
mgmt->u.beacon.timestamp = cpu_to_le64(data->abs_bcn_ts +
data->tsf_offset +
24 * 8 * 10 / txrate->bitrate);
mac80211_hwsim_tx_frame(hw, skb,
rcu_dereference(vif->chanctx_conf)->def.chan);
if (vif->csa_active && ieee80211_csa_is_complete(vif))
ieee80211_csa_finish(vif);
}
static enum hrtimer_restart
mac80211_hwsim_beacon(struct hrtimer *timer)
{
struct mac80211_hwsim_data *data =
container_of(timer, struct mac80211_hwsim_data, beacon_timer);
struct ieee80211_hw *hw = data->hw;
u64 bcn_int = data->beacon_int;
if (!data->started)
return HRTIMER_NORESTART;
ieee80211_iterate_active_interfaces_atomic(
hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_beacon_tx, data);
/* beacon at new TBTT + beacon interval */
if (data->bcn_delta) {
bcn_int -= data->bcn_delta;
data->bcn_delta = 0;
}
hrtimer_forward(&data->beacon_timer, hrtimer_get_expires(timer),
ns_to_ktime(bcn_int * NSEC_PER_USEC));
return HRTIMER_RESTART;
}
static const char * const hwsim_chanwidths[] = {
[NL80211_CHAN_WIDTH_20_NOHT] = "noht",
[NL80211_CHAN_WIDTH_20] = "ht20",
[NL80211_CHAN_WIDTH_40] = "ht40",
[NL80211_CHAN_WIDTH_80] = "vht80",
[NL80211_CHAN_WIDTH_80P80] = "vht80p80",
[NL80211_CHAN_WIDTH_160] = "vht160",
};
static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed)
{
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = {
[IEEE80211_SMPS_AUTOMATIC] = "auto",
[IEEE80211_SMPS_OFF] = "off",
[IEEE80211_SMPS_STATIC] = "static",
[IEEE80211_SMPS_DYNAMIC] = "dynamic",
};
int idx;
if (conf->chandef.chan)
wiphy_dbg(hw->wiphy,
"%s (freq=%d(%d - %d)/%s idle=%d ps=%d smps=%s)\n",
__func__,
conf->chandef.chan->center_freq,
conf->chandef.center_freq1,
conf->chandef.center_freq2,
hwsim_chanwidths[conf->chandef.width],
!!(conf->flags & IEEE80211_CONF_IDLE),
!!(conf->flags & IEEE80211_CONF_PS),
smps_modes[conf->smps_mode]);
else
wiphy_dbg(hw->wiphy,
"%s (freq=0 idle=%d ps=%d smps=%s)\n",
__func__,
!!(conf->flags & IEEE80211_CONF_IDLE),
!!(conf->flags & IEEE80211_CONF_PS),
smps_modes[conf->smps_mode]);
data->idle = !!(conf->flags & IEEE80211_CONF_IDLE);
WARN_ON(conf->chandef.chan && data->use_chanctx);
mutex_lock(&data->mutex);
if (data->scanning && conf->chandef.chan) {
for (idx = 0; idx < ARRAY_SIZE(data->survey_data); idx++) {
if (data->survey_data[idx].channel == data->channel) {
data->survey_data[idx].start =
data->survey_data[idx].next_start;
data->survey_data[idx].end = jiffies;
break;
}
}
data->channel = conf->chandef.chan;
for (idx = 0; idx < ARRAY_SIZE(data->survey_data); idx++) {
if (data->survey_data[idx].channel &&
data->survey_data[idx].channel != data->channel)
continue;
data->survey_data[idx].channel = data->channel;
data->survey_data[idx].next_start = jiffies;
break;
}
} else {
data->channel = conf->chandef.chan;
}
mutex_unlock(&data->mutex);
if (!data->started || !data->beacon_int)
hrtimer_cancel(&data->beacon_timer);
else if (!hrtimer_is_queued(&data->beacon_timer)) {
u64 tsf = mac80211_hwsim_get_tsf(hw, NULL);
u32 bcn_int = data->beacon_int;
u64 until_tbtt = bcn_int - do_div(tsf, bcn_int);
hrtimer_start(&data->beacon_timer,
ns_to_ktime(until_tbtt * NSEC_PER_USEC),
HRTIMER_MODE_REL_SOFT);
}
return 0;
}
static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,u64 multicast)
{
struct mac80211_hwsim_data *data = hw->priv;
wiphy_dbg(hw->wiphy, "%s\n", __func__);
data->rx_filter = 0;
if (*total_flags & FIF_ALLMULTI)
data->rx_filter |= FIF_ALLMULTI;
*total_flags = data->rx_filter;
}
static void mac80211_hwsim_bcn_en_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
unsigned int *count = data;
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
if (vp->bcn_en)
(*count)++;
}
static void mac80211_hwsim_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct mac80211_hwsim_data *data = hw->priv;
hwsim_check_magic(vif);
wiphy_dbg(hw->wiphy, "%s(changed=0x%x vif->addr=%pM)\n",
__func__, changed, vif->addr);
if (changed & BSS_CHANGED_BSSID) {
wiphy_dbg(hw->wiphy, "%s: BSSID changed: %pM\n",
__func__, info->bssid);
memcpy(vp->bssid, info->bssid, ETH_ALEN);
}
if (changed & BSS_CHANGED_ASSOC) {
wiphy_dbg(hw->wiphy, " ASSOC: assoc=%d aid=%d\n",
info->assoc, info->aid);
vp->assoc = info->assoc;
vp->aid = info->aid;
}
if (changed & BSS_CHANGED_BEACON_ENABLED) {
wiphy_dbg(hw->wiphy, " BCN EN: %d (BI=%u)\n",
info->enable_beacon, info->beacon_int);
vp->bcn_en = info->enable_beacon;
if (data->started &&
!hrtimer_is_queued(&data->beacon_timer) &&
info->enable_beacon) {
u64 tsf, until_tbtt;
u32 bcn_int;
data->beacon_int = info->beacon_int * 1024;
tsf = mac80211_hwsim_get_tsf(hw, vif);
bcn_int = data->beacon_int;
until_tbtt = bcn_int - do_div(tsf, bcn_int);
hrtimer_start(&data->beacon_timer,
ns_to_ktime(until_tbtt * NSEC_PER_USEC),
HRTIMER_MODE_REL_SOFT);
} else if (!info->enable_beacon) {
unsigned int count = 0;
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_bcn_en_iter, &count);
wiphy_dbg(hw->wiphy, " beaconing vifs remaining: %u",
count);
if (count == 0) {
hrtimer_cancel(&data->beacon_timer);
data->beacon_int = 0;
}
}
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
wiphy_dbg(hw->wiphy, " ERP_CTS_PROT: %d\n",
info->use_cts_prot);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
wiphy_dbg(hw->wiphy, " ERP_PREAMBLE: %d\n",
info->use_short_preamble);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
wiphy_dbg(hw->wiphy, " ERP_SLOT: %d\n", info->use_short_slot);
}
if (changed & BSS_CHANGED_HT) {
wiphy_dbg(hw->wiphy, " HT: op_mode=0x%x\n",
info->ht_operation_mode);
}
if (changed & BSS_CHANGED_BASIC_RATES) {
wiphy_dbg(hw->wiphy, " BASIC_RATES: 0x%llx\n",
(unsigned long long) info->basic_rates);
}
if (changed & BSS_CHANGED_TXPOWER)
wiphy_dbg(hw->wiphy, " TX Power: %d dBm\n", info->txpower);
}
static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
hwsim_set_sta_magic(sta);
return 0;
}
static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
hwsim_clear_sta_magic(sta);
return 0;
}
static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum sta_notify_cmd cmd,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
switch (cmd) {
case STA_NOTIFY_SLEEP:
case STA_NOTIFY_AWAKE:
/* TODO: make good use of these flags */
break;
default:
WARN(1, "Invalid sta notify: %d\n", cmd);
break;
}
}
static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
bool set)
{
hwsim_check_sta_magic(sta);
return 0;
}
static int mac80211_hwsim_conf_tx(
struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
wiphy_dbg(hw->wiphy,
"%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n",
__func__, queue,
params->txop, params->cw_min,
params->cw_max, params->aifs);
return 0;
}
static int mac80211_hwsim_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
if (idx < 0 || idx >= ARRAY_SIZE(hwsim->survey_data))
return -ENOENT;
mutex_lock(&hwsim->mutex);
survey->channel = hwsim->survey_data[idx].channel;
if (!survey->channel) {
mutex_unlock(&hwsim->mutex);
return -ENOENT;
}
/*
* Magically conjured dummy values --- this is only ok for simulated hardware.
*
* A real driver which cannot determine real values noise MUST NOT
* report any, especially not a magically conjured ones :-)
*/
survey->filled = SURVEY_INFO_NOISE_DBM |
SURVEY_INFO_TIME |
SURVEY_INFO_TIME_BUSY;
survey->noise = -92;
survey->time =
jiffies_to_msecs(hwsim->survey_data[idx].end -
hwsim->survey_data[idx].start);
/* report 12.5% of channel time is used */
survey->time_busy = survey->time/8;
mutex_unlock(&hwsim->mutex);
return 0;
}
#ifdef CONFIG_NL80211_TESTMODE
/*
* This section contains example code for using netlink
* attributes with the testmode command in nl80211.
*/
/* These enums need to be kept in sync with userspace */
enum hwsim_testmode_attr {
__HWSIM_TM_ATTR_INVALID = 0,
HWSIM_TM_ATTR_CMD = 1,
HWSIM_TM_ATTR_PS = 2,
/* keep last */
__HWSIM_TM_ATTR_AFTER_LAST,
HWSIM_TM_ATTR_MAX = __HWSIM_TM_ATTR_AFTER_LAST - 1
};
enum hwsim_testmode_cmd {
HWSIM_TM_CMD_SET_PS = 0,
HWSIM_TM_CMD_GET_PS = 1,
HWSIM_TM_CMD_STOP_QUEUES = 2,
HWSIM_TM_CMD_WAKE_QUEUES = 3,
};
static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = {
[HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 },
[HWSIM_TM_ATTR_PS] = { .type = NLA_U32 },
};
static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
void *data, int len)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1];
struct sk_buff *skb;
int err, ps;
err = nla_parse_deprecated(tb, HWSIM_TM_ATTR_MAX, data, len,
hwsim_testmode_policy, NULL);
if (err)
return err;
if (!tb[HWSIM_TM_ATTR_CMD])
return -EINVAL;
switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) {
case HWSIM_TM_CMD_SET_PS:
if (!tb[HWSIM_TM_ATTR_PS])
return -EINVAL;
ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]);
return hwsim_fops_ps_write(hwsim, ps);
case HWSIM_TM_CMD_GET_PS:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy,
nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
if (nla_put_u32(skb, HWSIM_TM_ATTR_PS, hwsim->ps))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case HWSIM_TM_CMD_STOP_QUEUES:
ieee80211_stop_queues(hw);
return 0;
case HWSIM_TM_CMD_WAKE_QUEUES:
ieee80211_wake_queues(hw);
return 0;
default:
return -EOPNOTSUPP;
}
nla_put_failure:
kfree_skb(skb);
return -ENOBUFS;
}
#endif
static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_ampdu_params *params)
{
struct ieee80211_sta *sta = params->sta;
enum ieee80211_ampdu_mlme_action action = params->action;
u16 tid = params->tid;
switch (action) {
case IEEE80211_AMPDU_TX_START:
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
break;
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static void mac80211_hwsim_flush(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u32 queues, bool drop)
{
/* Not implemented, queues only on kernel side */
}
static void hw_scan_work(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, hw_scan.work);
struct cfg80211_scan_request *req = hwsim->hw_scan_request;
int dwell, i;
mutex_lock(&hwsim->mutex);
if (hwsim->scan_chan_idx >= req->n_channels) {
struct cfg80211_scan_info info = {
.aborted = false,
};
wiphy_dbg(hwsim->hw->wiphy, "hw scan complete\n");
ieee80211_scan_completed(hwsim->hw, &info);
hwsim->hw_scan_request = NULL;
hwsim->hw_scan_vif = NULL;
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
return;
}
wiphy_dbg(hwsim->hw->wiphy, "hw scan %d MHz\n",
req->channels[hwsim->scan_chan_idx]->center_freq);
hwsim->tmp_chan = req->channels[hwsim->scan_chan_idx];
if (hwsim->tmp_chan->flags & (IEEE80211_CHAN_NO_IR |
IEEE80211_CHAN_RADAR) ||
!req->n_ssids) {
dwell = 120;
} else {
dwell = 30;
/* send probes */
for (i = 0; i < req->n_ssids; i++) {
struct sk_buff *probe;
struct ieee80211_mgmt *mgmt;
probe = ieee80211_probereq_get(hwsim->hw,
hwsim->scan_addr,
req->ssids[i].ssid,
req->ssids[i].ssid_len,
req->ie_len);
if (!probe)
continue;
mgmt = (struct ieee80211_mgmt *) probe->data;
memcpy(mgmt->da, req->bssid, ETH_ALEN);
memcpy(mgmt->bssid, req->bssid, ETH_ALEN);
if (req->ie_len)
skb_put_data(probe, req->ie, req->ie_len);
local_bh_disable();
mac80211_hwsim_tx_frame(hwsim->hw, probe,
hwsim->tmp_chan);
local_bh_enable();
}
}
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan,
msecs_to_jiffies(dwell));
hwsim->survey_data[hwsim->scan_chan_idx].channel = hwsim->tmp_chan;
hwsim->survey_data[hwsim->scan_chan_idx].start = jiffies;
hwsim->survey_data[hwsim->scan_chan_idx].end =
jiffies + msecs_to_jiffies(dwell);
hwsim->scan_chan_idx++;
mutex_unlock(&hwsim->mutex);
}
static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_scan_request *hw_req)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
struct cfg80211_scan_request *req = &hw_req->req;
mutex_lock(&hwsim->mutex);
if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
mutex_unlock(&hwsim->mutex);
return -EBUSY;
}
hwsim->hw_scan_request = req;
hwsim->hw_scan_vif = vif;
hwsim->scan_chan_idx = 0;
if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR)
get_random_mask_addr(hwsim->scan_addr,
hw_req->req.mac_addr,
hw_req->req.mac_addr_mask);
else
memcpy(hwsim->scan_addr, vif->addr, ETH_ALEN);
memset(hwsim->survey_data, 0, sizeof(hwsim->survey_data));
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hw->wiphy, "hwsim hw_scan request\n");
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, 0);
return 0;
}
static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
struct cfg80211_scan_info info = {
.aborted = true,
};
wiphy_dbg(hw->wiphy, "hwsim cancel_hw_scan\n");
cancel_delayed_work_sync(&hwsim->hw_scan);
mutex_lock(&hwsim->mutex);
ieee80211_scan_completed(hwsim->hw, &info);
hwsim->tmp_chan = NULL;
hwsim->hw_scan_request = NULL;
hwsim->hw_scan_vif = NULL;
mutex_unlock(&hwsim->mutex);
}
static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const u8 *mac_addr)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
if (hwsim->scanning) {
pr_debug("two hwsim sw_scans detected!\n");
goto out;
}
pr_debug("hwsim sw_scan request, prepping stuff\n");
memcpy(hwsim->scan_addr, mac_addr, ETH_ALEN);
hwsim->scanning = true;
memset(hwsim->survey_data, 0, sizeof(hwsim->survey_data));
out:
mutex_unlock(&hwsim->mutex);
}
static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
pr_debug("hwsim sw_scan_complete\n");
hwsim->scanning = false;
eth_zero_addr(hwsim->scan_addr);
mutex_unlock(&hwsim->mutex);
}
static void hw_roc_start(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, roc_start.work);
mutex_lock(&hwsim->mutex);
wiphy_dbg(hwsim->hw->wiphy, "hwsim ROC begins\n");
hwsim->tmp_chan = hwsim->roc_chan;
ieee80211_ready_on_channel(hwsim->hw);
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->roc_done,
msecs_to_jiffies(hwsim->roc_duration));
mutex_unlock(&hwsim->mutex);
}
static void hw_roc_done(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, roc_done.work);
mutex_lock(&hwsim->mutex);
ieee80211_remain_on_channel_expired(hwsim->hw);
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hwsim->hw->wiphy, "hwsim ROC expired\n");
}
static int mac80211_hwsim_roc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_channel *chan,
int duration,
enum ieee80211_roc_type type)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
mutex_unlock(&hwsim->mutex);
return -EBUSY;
}
hwsim->roc_chan = chan;
hwsim->roc_duration = duration;
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hw->wiphy, "hwsim ROC (%d MHz, %d ms)\n",
chan->center_freq, duration);
ieee80211_queue_delayed_work(hw, &hwsim->roc_start, HZ/50);
return 0;
}
static int mac80211_hwsim_croc(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
cancel_delayed_work_sync(&hwsim->roc_start);
cancel_delayed_work_sync(&hwsim->roc_done);
mutex_lock(&hwsim->mutex);
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hw->wiphy, "hwsim ROC canceled\n");
return 0;
}
static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_set_chanctx_magic(ctx);
wiphy_dbg(hw->wiphy,
"add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
return 0;
}
static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
wiphy_dbg(hw->wiphy,
"remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
hwsim_check_chanctx_magic(ctx);
hwsim_clear_chanctx_magic(ctx);
}
static void mac80211_hwsim_change_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx,
u32 changed)
{
hwsim_check_chanctx_magic(ctx);
wiphy_dbg(hw->wiphy,
"change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
}
static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_check_magic(vif);
hwsim_check_chanctx_magic(ctx);
return 0;
}
static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_check_magic(vif);
hwsim_check_chanctx_magic(ctx);
}
static const char mac80211_hwsim_gstrings_stats[][ETH_GSTRING_LEN] = {
"tx_pkts_nic",
"tx_bytes_nic",
"rx_pkts_nic",
"rx_bytes_nic",
"d_tx_dropped",
"d_tx_failed",
"d_ps_mode",
"d_group",
};
#define MAC80211_HWSIM_SSTATS_LEN ARRAY_SIZE(mac80211_hwsim_gstrings_stats)
static void mac80211_hwsim_get_et_strings(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u32 sset, u8 *data)
{
if (sset == ETH_SS_STATS)
memcpy(data, *mac80211_hwsim_gstrings_stats,
sizeof(mac80211_hwsim_gstrings_stats));
}
static int mac80211_hwsim_get_et_sset_count(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, int sset)
{
if (sset == ETH_SS_STATS)
return MAC80211_HWSIM_SSTATS_LEN;
return 0;
}
static void mac80211_hwsim_get_et_stats(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ethtool_stats *stats, u64 *data)
{
struct mac80211_hwsim_data *ar = hw->priv;
int i = 0;
data[i++] = ar->tx_pkts;
data[i++] = ar->tx_bytes;
data[i++] = ar->rx_pkts;
data[i++] = ar->rx_bytes;
data[i++] = ar->tx_dropped;
data[i++] = ar->tx_failed;
data[i++] = ar->ps;
data[i++] = ar->group;
WARN_ON(i != MAC80211_HWSIM_SSTATS_LEN);
}
#define HWSIM_COMMON_OPS \
.tx = mac80211_hwsim_tx, \
.start = mac80211_hwsim_start, \
.stop = mac80211_hwsim_stop, \
.add_interface = mac80211_hwsim_add_interface, \
.change_interface = mac80211_hwsim_change_interface, \
.remove_interface = mac80211_hwsim_remove_interface, \
.config = mac80211_hwsim_config, \
.configure_filter = mac80211_hwsim_configure_filter, \
.bss_info_changed = mac80211_hwsim_bss_info_changed, \
.sta_add = mac80211_hwsim_sta_add, \
.sta_remove = mac80211_hwsim_sta_remove, \
.sta_notify = mac80211_hwsim_sta_notify, \
.set_tim = mac80211_hwsim_set_tim, \
.conf_tx = mac80211_hwsim_conf_tx, \
.get_survey = mac80211_hwsim_get_survey, \
CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd) \
.ampdu_action = mac80211_hwsim_ampdu_action, \
.flush = mac80211_hwsim_flush, \
.get_tsf = mac80211_hwsim_get_tsf, \
.set_tsf = mac80211_hwsim_set_tsf, \
.get_et_sset_count = mac80211_hwsim_get_et_sset_count, \
.get_et_stats = mac80211_hwsim_get_et_stats, \
.get_et_strings = mac80211_hwsim_get_et_strings,
static const struct ieee80211_ops mac80211_hwsim_ops = {
HWSIM_COMMON_OPS
.sw_scan_start = mac80211_hwsim_sw_scan,
.sw_scan_complete = mac80211_hwsim_sw_scan_complete,
};
static const struct ieee80211_ops mac80211_hwsim_mchan_ops = {
HWSIM_COMMON_OPS
.hw_scan = mac80211_hwsim_hw_scan,
.cancel_hw_scan = mac80211_hwsim_cancel_hw_scan,
.sw_scan_start = NULL,
.sw_scan_complete = NULL,
.remain_on_channel = mac80211_hwsim_roc,
.cancel_remain_on_channel = mac80211_hwsim_croc,
.add_chanctx = mac80211_hwsim_add_chanctx,
.remove_chanctx = mac80211_hwsim_remove_chanctx,
.change_chanctx = mac80211_hwsim_change_chanctx,
.assign_vif_chanctx = mac80211_hwsim_assign_vif_chanctx,
.unassign_vif_chanctx = mac80211_hwsim_unassign_vif_chanctx,
};
struct hwsim_new_radio_params {
unsigned int channels;
const char *reg_alpha2;
const struct ieee80211_regdomain *regd;
bool reg_strict;
bool p2p_device;
bool use_chanctx;
bool destroy_on_close;
const char *hwname;
bool no_vif;
const u8 *perm_addr;
u32 iftypes;
u32 *ciphers;
u8 n_ciphers;
};
static void hwsim_mcast_config_msg(struct sk_buff *mcast_skb,
struct genl_info *info)
{
if (info)
genl_notify(&hwsim_genl_family, mcast_skb, info,
HWSIM_MCGRP_CONFIG, GFP_KERNEL);
else
genlmsg_multicast(&hwsim_genl_family, mcast_skb, 0,
HWSIM_MCGRP_CONFIG, GFP_KERNEL);
}
static int append_radio_msg(struct sk_buff *skb, int id,
struct hwsim_new_radio_params *param)
{
int ret;
ret = nla_put_u32(skb, HWSIM_ATTR_RADIO_ID, id);
if (ret < 0)
return ret;
if (param->channels) {
ret = nla_put_u32(skb, HWSIM_ATTR_CHANNELS, param->channels);
if (ret < 0)
return ret;
}
if (param->reg_alpha2) {
ret = nla_put(skb, HWSIM_ATTR_REG_HINT_ALPHA2, 2,
param->reg_alpha2);
if (ret < 0)
return ret;
}
if (param->regd) {
int i;
for (i = 0; i < ARRAY_SIZE(hwsim_world_regdom_custom); i++) {
if (hwsim_world_regdom_custom[i] != param->regd)
continue;
ret = nla_put_u32(skb, HWSIM_ATTR_REG_CUSTOM_REG, i);
if (ret < 0)
return ret;
break;
}
}
if (param->reg_strict) {
ret = nla_put_flag(skb, HWSIM_ATTR_REG_STRICT_REG);
if (ret < 0)
return ret;
}
if (param->p2p_device) {
ret = nla_put_flag(skb, HWSIM_ATTR_SUPPORT_P2P_DEVICE);
if (ret < 0)
return ret;
}
if (param->use_chanctx) {
ret = nla_put_flag(skb, HWSIM_ATTR_USE_CHANCTX);
if (ret < 0)
return ret;
}
if (param->hwname) {
ret = nla_put(skb, HWSIM_ATTR_RADIO_NAME,
strlen(param->hwname), param->hwname);
if (ret < 0)
return ret;
}
return 0;
}
static void hwsim_mcast_new_radio(int id, struct genl_info *info,
struct hwsim_new_radio_params *param)
{
struct sk_buff *mcast_skb;
void *data;
mcast_skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!mcast_skb)
return;
data = genlmsg_put(mcast_skb, 0, 0, &hwsim_genl_family, 0,
HWSIM_CMD_NEW_RADIO);
if (!data)
goto out_err;
if (append_radio_msg(mcast_skb, id, param) < 0)
goto out_err;
genlmsg_end(mcast_skb, data);
hwsim_mcast_config_msg(mcast_skb, info);
return;
out_err:
nlmsg_free(mcast_skb);
}
static const struct ieee80211_sband_iftype_data he_capa_2ghz = {
/* TODO: should we support other types, e.g., P2P?*/
.types_mask = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
/* Leave all the other PHY capability bytes unset, as
* DCM, beam forming, RU and PPE threshold information
* are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xffff),
.tx_mcs_160 = cpu_to_le16(0xffff),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
},
};
static const struct ieee80211_sband_iftype_data he_capa_5ghz = {
/* TODO: should we support other types, e.g., P2P?*/
.types_mask = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
/* Leave all the other PHY capability bytes unset, as
* DCM, beam forming, RU and PPE threshold information
* are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xfffa),
.tx_mcs_80p80 = cpu_to_le16(0xfffa),
},
},
};
static void mac80211_hswim_he_capab(struct ieee80211_supported_band *sband)
{
if (sband->band == NL80211_BAND_2GHZ)
sband->iftype_data =
(struct ieee80211_sband_iftype_data *)&he_capa_2ghz;
else if (sband->band == NL80211_BAND_5GHZ)
sband->iftype_data =
(struct ieee80211_sband_iftype_data *)&he_capa_5ghz;
else
return;
sband->n_iftype_data = 1;
}
#ifdef CONFIG_MAC80211_MESH
#define HWSIM_MESH_BIT BIT(NL80211_IFTYPE_MESH_POINT)
#else
#define HWSIM_MESH_BIT 0
#endif
#define HWSIM_DEFAULT_IF_LIMIT \
(BIT(NL80211_IFTYPE_STATION) | \
BIT(NL80211_IFTYPE_P2P_CLIENT) | \
BIT(NL80211_IFTYPE_AP) | \
BIT(NL80211_IFTYPE_P2P_GO) | \
HWSIM_MESH_BIT)
#define HWSIM_IFTYPE_SUPPORT_MASK \
(BIT(NL80211_IFTYPE_STATION) | \
BIT(NL80211_IFTYPE_AP) | \
BIT(NL80211_IFTYPE_P2P_CLIENT) | \
BIT(NL80211_IFTYPE_P2P_GO) | \
BIT(NL80211_IFTYPE_ADHOC) | \
BIT(NL80211_IFTYPE_MESH_POINT))
static int mac80211_hwsim_new_radio(struct genl_info *info,
struct hwsim_new_radio_params *param)
{
int err;
u8 addr[ETH_ALEN];
struct mac80211_hwsim_data *data;
struct ieee80211_hw *hw;
enum nl80211_band band;
const struct ieee80211_ops *ops = &mac80211_hwsim_ops;
struct net *net;
int idx, i;
int n_limits = 0;
if (WARN_ON(param->channels > 1 && !param->use_chanctx))
return -EINVAL;
spin_lock_bh(&hwsim_radio_lock);
idx = hwsim_radio_idx++;
spin_unlock_bh(&hwsim_radio_lock);
if (param->use_chanctx)
ops = &mac80211_hwsim_mchan_ops;
hw = ieee80211_alloc_hw_nm(sizeof(*data), ops, param->hwname);
if (!hw) {
pr_debug("mac80211_hwsim: ieee80211_alloc_hw failed\n");
err = -ENOMEM;
goto failed;
}
/* ieee80211_alloc_hw_nm may have used a default name */
param->hwname = wiphy_name(hw->wiphy);
if (info)
net = genl_info_net(info);
else
net = &init_net;
wiphy_net_set(hw->wiphy, net);
data = hw->priv;
data->hw = hw;
data->dev = device_create(hwsim_class, NULL, 0, hw, "hwsim%d", idx);
if (IS_ERR(data->dev)) {
printk(KERN_DEBUG
"mac80211_hwsim: device_create failed (%ld)\n",
PTR_ERR(data->dev));
err = -ENOMEM;
goto failed_drvdata;
}
data->dev->driver = &mac80211_hwsim_driver.driver;
err = device_bind_driver(data->dev);
if (err != 0) {
pr_debug("mac80211_hwsim: device_bind_driver failed (%d)\n",
err);
goto failed_bind;
}
skb_queue_head_init(&data->pending);
SET_IEEE80211_DEV(hw, data->dev);
if (!param->perm_addr) {
eth_zero_addr(addr);
addr[0] = 0x02;
addr[3] = idx >> 8;
addr[4] = idx;
memcpy(data->addresses[0].addr, addr, ETH_ALEN);
/* Why need here second address ? */
memcpy(data->addresses[1].addr, addr, ETH_ALEN);
data->addresses[1].addr[0] |= 0x40;
hw->wiphy->n_addresses = 2;
hw->wiphy->addresses = data->addresses;
/* possible address clash is checked at hash table insertion */
} else {
memcpy(data->addresses[0].addr, param->perm_addr, ETH_ALEN);
/* compatibility with automatically generated mac addr */
memcpy(data->addresses[1].addr, param->perm_addr, ETH_ALEN);
hw->wiphy->n_addresses = 2;
hw->wiphy->addresses = data->addresses;
}
data->channels = param->channels;
data->use_chanctx = param->use_chanctx;
data->idx = idx;
data->destroy_on_close = param->destroy_on_close;
if (info)
data->portid = info->snd_portid;
/* setup interface limits, only on interface types we support */
if (param->iftypes & BIT(NL80211_IFTYPE_ADHOC)) {
data->if_limits[n_limits].max = 1;
data->if_limits[n_limits].types = BIT(NL80211_IFTYPE_ADHOC);
n_limits++;
}
if (param->iftypes & HWSIM_DEFAULT_IF_LIMIT) {
data->if_limits[n_limits].max = 2048;
/*
* For this case, we may only support a subset of
* HWSIM_DEFAULT_IF_LIMIT, therefore we only want to add the
* bits that both param->iftype & HWSIM_DEFAULT_IF_LIMIT have.
*/
data->if_limits[n_limits].types =
HWSIM_DEFAULT_IF_LIMIT & param->iftypes;
n_limits++;
}
if (param->iftypes & BIT(NL80211_IFTYPE_P2P_DEVICE)) {
data->if_limits[n_limits].max = 1;
data->if_limits[n_limits].types =
BIT(NL80211_IFTYPE_P2P_DEVICE);
n_limits++;
}
if (data->use_chanctx) {
hw->wiphy->max_scan_ssids = 255;
hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
hw->wiphy->max_remain_on_channel_duration = 1000;
data->if_combination.radar_detect_widths = 0;
data->if_combination.num_different_channels = data->channels;
} else {
data->if_combination.num_different_channels = 1;
data->if_combination.radar_detect_widths =
BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80) |
BIT(NL80211_CHAN_WIDTH_160);
}
if (!n_limits) {
err = -EINVAL;
goto failed_hw;
}
data->if_combination.max_interfaces = 0;
for (i = 0; i < n_limits; i++)
data->if_combination.max_interfaces +=
data->if_limits[i].max;
data->if_combination.n_limits = n_limits;
data->if_combination.limits = data->if_limits;
/*
* If we actually were asked to support combinations,
* advertise them - if there's only a single thing like
* only IBSS then don't advertise it as combinations.
*/
if (data->if_combination.max_interfaces > 1) {
hw->wiphy->iface_combinations = &data->if_combination;
hw->wiphy->n_iface_combinations = 1;
}
if (param->ciphers) {
memcpy(data->ciphers, param->ciphers,
param->n_ciphers * sizeof(u32));
hw->wiphy->cipher_suites = data->ciphers;
hw->wiphy->n_cipher_suites = param->n_ciphers;
}
INIT_DELAYED_WORK(&data->roc_start, hw_roc_start);
INIT_DELAYED_WORK(&data->roc_done, hw_roc_done);
INIT_DELAYED_WORK(&data->hw_scan, hw_scan_work);
hw->queues = 5;
hw->offchannel_tx_hw_queue = 4;
ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
ieee80211_hw_set(hw, CHANCTX_STA_CSA);
ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
ieee80211_hw_set(hw, QUEUE_CONTROL);
ieee80211_hw_set(hw, WANT_MONITOR_VIF);
ieee80211_hw_set(hw, AMPDU_AGGREGATION);
ieee80211_hw_set(hw, MFP_CAPABLE);
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, SUPPORTS_PS);
ieee80211_hw_set(hw, TDLS_WIDER_BW);
/* We only have SW crypto and only implement the A-MPDU API
* (but don't really build A-MPDUs) so can have extended key
* support
*/
ieee80211_hw_set(hw, EXT_KEY_ID_NATIVE);
if (rctbl)
ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID);
hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL |
WIPHY_FLAG_AP_UAPSD |
WIPHY_FLAG_HAS_CHANNEL_SWITCH;
hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR |
NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE |
NL80211_FEATURE_STATIC_SMPS |
NL80211_FEATURE_DYNAMIC_SMPS |
NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
hw->wiphy->interface_modes = param->iftypes;
/* ask mac80211 to reserve space for magic */
hw->vif_data_size = sizeof(struct hwsim_vif_priv);
hw->sta_data_size = sizeof(struct hwsim_sta_priv);
hw->chanctx_data_size = sizeof(struct hwsim_chanctx_priv);
memcpy(data->channels_2ghz, hwsim_channels_2ghz,
sizeof(hwsim_channels_2ghz));
memcpy(data->channels_5ghz, hwsim_channels_5ghz,
sizeof(hwsim_channels_5ghz));
memcpy(data->rates, hwsim_rates, sizeof(hwsim_rates));
for (band = NL80211_BAND_2GHZ; band < NUM_NL80211_BANDS; band++) {
struct ieee80211_supported_band *sband = &data->bands[band];
sband->band = band;
switch (band) {
case NL80211_BAND_2GHZ:
sband->channels = data->channels_2ghz;
sband->n_channels = ARRAY_SIZE(hwsim_channels_2ghz);
sband->bitrates = data->rates;
sband->n_bitrates = ARRAY_SIZE(hwsim_rates);
break;
case NL80211_BAND_5GHZ:
sband->channels = data->channels_5ghz;
sband->n_channels = ARRAY_SIZE(hwsim_channels_5ghz);
sband->bitrates = data->rates + 4;
sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4;
sband->vht_cap.vht_supported = true;
sband->vht_cap.cap =
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ |
IEEE80211_VHT_CAP_RXLDPC |
IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_SHORT_GI_160 |
IEEE80211_VHT_CAP_TXSTBC |
IEEE80211_VHT_CAP_RXSTBC_4 |
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK;
sband->vht_cap.vht_mcs.rx_mcs_map =
cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 6 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 8 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 14);
sband->vht_cap.vht_mcs.tx_mcs_map =
sband->vht_cap.vht_mcs.rx_mcs_map;
break;
default:
continue;
}
sband->ht_cap.ht_supported = true;
sband->ht_cap.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_GRN_FLD |
IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_DSSSCCK40;
sband->ht_cap.ampdu_factor = 0x3;
sband->ht_cap.ampdu_density = 0x6;
memset(&sband->ht_cap.mcs, 0,
sizeof(sband->ht_cap.mcs));
sband->ht_cap.mcs.rx_mask[0] = 0xff;
sband->ht_cap.mcs.rx_mask[1] = 0xff;
sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
mac80211_hswim_he_capab(sband);
hw->wiphy->bands[band] = sband;
}
/* By default all radios belong to the first group */
data->group = 1;
mutex_init(&data->mutex);
data->netgroup = hwsim_net_get_netgroup(net);
data->wmediumd = hwsim_net_get_wmediumd(net);
/* Enable frame retransmissions for lossy channels */
hw->max_rates = 4;
hw->max_rate_tries = 11;
hw->wiphy->vendor_commands = mac80211_hwsim_vendor_commands;
hw->wiphy->n_vendor_commands =
ARRAY_SIZE(mac80211_hwsim_vendor_commands);
hw->wiphy->vendor_events = mac80211_hwsim_vendor_events;
hw->wiphy->n_vendor_events = ARRAY_SIZE(mac80211_hwsim_vendor_events);
if (param->reg_strict)
hw->wiphy->regulatory_flags |= REGULATORY_STRICT_REG;
if (param->regd) {
data->regd = param->regd;
hw->wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
wiphy_apply_custom_regulatory(hw->wiphy, param->regd);
/* give the regulatory workqueue a chance to run */
schedule_timeout_interruptible(1);
}
if (param->no_vif)
ieee80211_hw_set(hw, NO_AUTO_VIF);
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
hrtimer_init(&data->beacon_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_ABS_SOFT);
data->beacon_timer.function = mac80211_hwsim_beacon;
err = ieee80211_register_hw(hw);
if (err < 0) {
pr_debug("mac80211_hwsim: ieee80211_register_hw failed (%d)\n",
err);
goto failed_hw;
}
wiphy_dbg(hw->wiphy, "hwaddr %pM registered\n", hw->wiphy->perm_addr);
if (param->reg_alpha2) {
data->alpha2[0] = param->reg_alpha2[0];
data->alpha2[1] = param->reg_alpha2[1];
regulatory_hint(hw->wiphy, param->reg_alpha2);
}
data->debugfs = debugfs_create_dir("hwsim", hw->wiphy->debugfsdir);
debugfs_create_file("ps", 0666, data->debugfs, data, &hwsim_fops_ps);
debugfs_create_file("group", 0666, data->debugfs, data,
&hwsim_fops_group);
if (!data->use_chanctx)
debugfs_create_file("dfs_simulate_radar", 0222,
data->debugfs,
data, &hwsim_simulate_radar);
spin_lock_bh(&hwsim_radio_lock);
err = rhashtable_insert_fast(&hwsim_radios_rht, &data->rht,
hwsim_rht_params);
if (err < 0) {
if (info) {
GENL_SET_ERR_MSG(info, "perm addr already present");
NL_SET_BAD_ATTR(info->extack,
info->attrs[HWSIM_ATTR_PERM_ADDR]);
}
spin_unlock_bh(&hwsim_radio_lock);
goto failed_final_insert;
}
list_add_tail(&data->list, &hwsim_radios);
hwsim_radios_generation++;
spin_unlock_bh(&hwsim_radio_lock);
hwsim_mcast_new_radio(idx, info, param);
return idx;
failed_final_insert:
debugfs_remove_recursive(data->debugfs);
ieee80211_unregister_hw(data->hw);
failed_hw:
device_release_driver(data->dev);
failed_bind:
device_unregister(data->dev);
failed_drvdata:
ieee80211_free_hw(hw);
failed:
return err;
}
static void hwsim_mcast_del_radio(int id, const char *hwname,
struct genl_info *info)
{
struct sk_buff *skb;
void *data;
int ret;
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb)
return;
data = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
HWSIM_CMD_DEL_RADIO);
if (!data)
goto error;
ret = nla_put_u32(skb, HWSIM_ATTR_RADIO_ID, id);
if (ret < 0)
goto error;
ret = nla_put(skb, HWSIM_ATTR_RADIO_NAME, strlen(hwname),
hwname);
if (ret < 0)
goto error;
genlmsg_end(skb, data);
hwsim_mcast_config_msg(skb, info);
return;
error:
nlmsg_free(skb);
}
static void mac80211_hwsim_del_radio(struct mac80211_hwsim_data *data,
const char *hwname,
struct genl_info *info)
{
hwsim_mcast_del_radio(data->idx, hwname, info);
debugfs_remove_recursive(data->debugfs);
ieee80211_unregister_hw(data->hw);
device_release_driver(data->dev);
device_unregister(data->dev);
ieee80211_free_hw(data->hw);
}
static int mac80211_hwsim_get_radio(struct sk_buff *skb,
struct mac80211_hwsim_data *data,
u32 portid, u32 seq,
struct netlink_callback *cb, int flags)
{
void *hdr;
struct hwsim_new_radio_params param = { };
int res = -EMSGSIZE;
hdr = genlmsg_put(skb, portid, seq, &hwsim_genl_family, flags,
HWSIM_CMD_GET_RADIO);
if (!hdr)
return -EMSGSIZE;
if (cb)
genl_dump_check_consistent(cb, hdr);
if (data->alpha2[0] && data->alpha2[1])
param.reg_alpha2 = data->alpha2;
param.reg_strict = !!(data->hw->wiphy->regulatory_flags &
REGULATORY_STRICT_REG);
param.p2p_device = !!(data->hw->wiphy->interface_modes &
BIT(NL80211_IFTYPE_P2P_DEVICE));
param.use_chanctx = data->use_chanctx;
param.regd = data->regd;
param.channels = data->channels;
param.hwname = wiphy_name(data->hw->wiphy);
res = append_radio_msg(skb, data->idx, &param);
if (res < 0)
goto out_err;
genlmsg_end(skb, hdr);
return 0;
out_err:
genlmsg_cancel(skb, hdr);
return res;
}
static void mac80211_hwsim_free(void)
{
struct mac80211_hwsim_data *data;
spin_lock_bh(&hwsim_radio_lock);
while ((data = list_first_entry_or_null(&hwsim_radios,
struct mac80211_hwsim_data,
list))) {
list_del(&data->list);
spin_unlock_bh(&hwsim_radio_lock);
mac80211_hwsim_del_radio(data, wiphy_name(data->hw->wiphy),
NULL);
spin_lock_bh(&hwsim_radio_lock);
}
spin_unlock_bh(&hwsim_radio_lock);
class_destroy(hwsim_class);
}
static const struct net_device_ops hwsim_netdev_ops = {
.ndo_start_xmit = hwsim_mon_xmit,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static void hwsim_mon_setup(struct net_device *dev)
{
dev->netdev_ops = &hwsim_netdev_ops;
dev->needs_free_netdev = true;
ether_setup(dev);
dev->priv_flags |= IFF_NO_QUEUE;
dev->type = ARPHRD_IEEE80211_RADIOTAP;
eth_zero_addr(dev->dev_addr);
dev->dev_addr[0] = 0x12;
}
static struct mac80211_hwsim_data *get_hwsim_data_ref_from_addr(const u8 *addr)
{
return rhashtable_lookup_fast(&hwsim_radios_rht,
addr,
hwsim_rht_params);
}
static void hwsim_register_wmediumd(struct net *net, u32 portid)
{
struct mac80211_hwsim_data *data;
hwsim_net_set_wmediumd(net, portid);
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry(data, &hwsim_radios, list) {
if (data->netgroup == hwsim_net_get_netgroup(net))
data->wmediumd = portid;
}
spin_unlock_bh(&hwsim_radio_lock);
}
static int hwsim_tx_info_frame_received_nl(struct sk_buff *skb_2,
struct genl_info *info)
{
struct ieee80211_hdr *hdr;
struct mac80211_hwsim_data *data2;
struct ieee80211_tx_info *txi;
struct hwsim_tx_rate *tx_attempts;
u64 ret_skb_cookie;
struct sk_buff *skb, *tmp;
const u8 *src;
unsigned int hwsim_flags;
int i;
bool found = false;
if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER] ||
!info->attrs[HWSIM_ATTR_FLAGS] ||
!info->attrs[HWSIM_ATTR_COOKIE] ||
!info->attrs[HWSIM_ATTR_SIGNAL] ||
!info->attrs[HWSIM_ATTR_TX_INFO])
goto out;
src = (void *)nla_data(info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]);
hwsim_flags = nla_get_u32(info->attrs[HWSIM_ATTR_FLAGS]);
ret_skb_cookie = nla_get_u64(info->attrs[HWSIM_ATTR_COOKIE]);
data2 = get_hwsim_data_ref_from_addr(src);
if (!data2)
goto out;
if (hwsim_net_get_netgroup(genl_info_net(info)) != data2->netgroup)
goto out;
if (info->snd_portid != data2->wmediumd)
goto out;
/* look for the skb matching the cookie passed back from user */
skb_queue_walk_safe(&data2->pending, skb, tmp) {
u64 skb_cookie;
txi = IEEE80211_SKB_CB(skb);
skb_cookie = (u64)(uintptr_t)txi->rate_driver_data[0];
if (skb_cookie == ret_skb_cookie) {
skb_unlink(skb, &data2->pending);
found = true;
break;
}
}
/* not found */
if (!found)
goto out;
/* Tx info received because the frame was broadcasted on user space,
so we get all the necessary info: tx attempts and skb control buff */
tx_attempts = (struct hwsim_tx_rate *)nla_data(
info->attrs[HWSIM_ATTR_TX_INFO]);
/* now send back TX status */
txi = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(txi);
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
txi->status.rates[i].idx = tx_attempts[i].idx;
txi->status.rates[i].count = tx_attempts[i].count;
}
txi->status.ack_signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
if (!(hwsim_flags & HWSIM_TX_CTL_NO_ACK) &&
(hwsim_flags & HWSIM_TX_STAT_ACK)) {
if (skb->len >= 16) {
hdr = (struct ieee80211_hdr *) skb->data;
mac80211_hwsim_monitor_ack(data2->channel,
hdr->addr2);
}
txi->flags |= IEEE80211_TX_STAT_ACK;
}
ieee80211_tx_status_irqsafe(data2->hw, skb);
return 0;
out:
return -EINVAL;
}
static int hwsim_cloned_frame_received_nl(struct sk_buff *skb_2,
struct genl_info *info)
{
struct mac80211_hwsim_data *data2;
struct ieee80211_rx_status rx_status;
const u8 *dst;
int frame_data_len;
void *frame_data;
struct sk_buff *skb = NULL;
if (!info->attrs[HWSIM_ATTR_ADDR_RECEIVER] ||
!info->attrs[HWSIM_ATTR_FRAME] ||
!info->attrs[HWSIM_ATTR_RX_RATE] ||
!info->attrs[HWSIM_ATTR_SIGNAL])
goto out;
dst = (void *)nla_data(info->attrs[HWSIM_ATTR_ADDR_RECEIVER]);
frame_data_len = nla_len(info->attrs[HWSIM_ATTR_FRAME]);
frame_data = (void *)nla_data(info->attrs[HWSIM_ATTR_FRAME]);
/* Allocate new skb here */
skb = alloc_skb(frame_data_len, GFP_KERNEL);
if (skb == NULL)
goto err;
if (frame_data_len > IEEE80211_MAX_DATA_LEN)
goto err;
/* Copy the data */
skb_put_data(skb, frame_data, frame_data_len);
data2 = get_hwsim_data_ref_from_addr(dst);
if (!data2)
goto out;
if (hwsim_net_get_netgroup(genl_info_net(info)) != data2->netgroup)
goto out;
if (info->snd_portid != data2->wmediumd)
goto out;
/* check if radio is configured properly */
if (data2->idle || !data2->started)
goto out;
/* A frame is received from user space */
memset(&rx_status, 0, sizeof(rx_status));
if (info->attrs[HWSIM_ATTR_FREQ]) {
/* throw away off-channel packets, but allow both the temporary
* ("hw" scan/remain-on-channel) and regular channel, since the
* internal datapath also allows this
*/
mutex_lock(&data2->mutex);
rx_status.freq = nla_get_u32(info->attrs[HWSIM_ATTR_FREQ]);
if (rx_status.freq != data2->channel->center_freq &&
(!data2->tmp_chan ||
rx_status.freq != data2->tmp_chan->center_freq)) {
mutex_unlock(&data2->mutex);
goto out;
}
mutex_unlock(&data2->mutex);
} else {
rx_status.freq = data2->channel->center_freq;
}
rx_status.band = data2->channel->band;
rx_status.rate_idx = nla_get_u32(info->attrs[HWSIM_ATTR_RX_RATE]);
rx_status.signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
data2->rx_pkts++;
data2->rx_bytes += skb->len;
ieee80211_rx_irqsafe(data2->hw, skb);
return 0;
err:
pr_debug("mac80211_hwsim: error occurred in %s\n", __func__);
out:
dev_kfree_skb(skb);
return -EINVAL;
}
static int hwsim_register_received_nl(struct sk_buff *skb_2,
struct genl_info *info)
{
struct net *net = genl_info_net(info);
struct mac80211_hwsim_data *data;
int chans = 1;
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry(data, &hwsim_radios, list)
chans = max(chans, data->channels);
spin_unlock_bh(&hwsim_radio_lock);
/* In the future we should revise the userspace API and allow it
* to set a flag that it does support multi-channel, then we can
* let this pass conditionally on the flag.
* For current userspace, prohibit it since it won't work right.
*/
if (chans > 1)
return -EOPNOTSUPP;
if (hwsim_net_get_wmediumd(net))
return -EBUSY;
hwsim_register_wmediumd(net, info->snd_portid);
pr_debug("mac80211_hwsim: received a REGISTER, "
"switching to wmediumd mode with pid %d\n", info->snd_portid);
return 0;
}
/* ensures ciphers only include ciphers listed in 'hwsim_ciphers' array */
static bool hwsim_known_ciphers(const u32 *ciphers, int n_ciphers)
{
int i;
for (i = 0; i < n_ciphers; i++) {
int j;
int found = 0;
for (j = 0; j < ARRAY_SIZE(hwsim_ciphers); j++) {
if (ciphers[i] == hwsim_ciphers[j]) {
found = 1;
break;
}
}
if (!found)
return false;
}
return true;
}
static int hwsim_new_radio_nl(struct sk_buff *msg, struct genl_info *info)
{
struct hwsim_new_radio_params param = { 0 };
const char *hwname = NULL;
int ret;
param.reg_strict = info->attrs[HWSIM_ATTR_REG_STRICT_REG];
param.p2p_device = info->attrs[HWSIM_ATTR_SUPPORT_P2P_DEVICE];
param.channels = channels;
param.destroy_on_close =
info->attrs[HWSIM_ATTR_DESTROY_RADIO_ON_CLOSE];
if (info->attrs[HWSIM_ATTR_CHANNELS])
param.channels = nla_get_u32(info->attrs[HWSIM_ATTR_CHANNELS]);
if (param.channels < 1) {
GENL_SET_ERR_MSG(info, "must have at least one channel");
return -EINVAL;
}
if (param.channels > CFG80211_MAX_NUM_DIFFERENT_CHANNELS) {
GENL_SET_ERR_MSG(info, "too many channels specified");
return -EINVAL;
}
if (info->attrs[HWSIM_ATTR_NO_VIF])
param.no_vif = true;
if (info->attrs[HWSIM_ATTR_USE_CHANCTX])
param.use_chanctx = true;
else
param.use_chanctx = (param.channels > 1);
if (info->attrs[HWSIM_ATTR_REG_HINT_ALPHA2])
param.reg_alpha2 =
nla_data(info->attrs[HWSIM_ATTR_REG_HINT_ALPHA2]);
if (info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]) {
u32 idx = nla_get_u32(info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]);
if (idx >= ARRAY_SIZE(hwsim_world_regdom_custom))
return -EINVAL;
idx = array_index_nospec(idx,
ARRAY_SIZE(hwsim_world_regdom_custom));
param.regd = hwsim_world_regdom_custom[idx];
}
if (info->attrs[HWSIM_ATTR_PERM_ADDR]) {
if (!is_valid_ether_addr(
nla_data(info->attrs[HWSIM_ATTR_PERM_ADDR]))) {
GENL_SET_ERR_MSG(info,"MAC is no valid source addr");
NL_SET_BAD_ATTR(info->extack,
info->attrs[HWSIM_ATTR_PERM_ADDR]);
return -EINVAL;
}
param.perm_addr = nla_data(info->attrs[HWSIM_ATTR_PERM_ADDR]);
}
if (info->attrs[HWSIM_ATTR_IFTYPE_SUPPORT]) {
param.iftypes =
nla_get_u32(info->attrs[HWSIM_ATTR_IFTYPE_SUPPORT]);
if (param.iftypes & ~HWSIM_IFTYPE_SUPPORT_MASK) {
NL_SET_ERR_MSG_ATTR(info->extack,
info->attrs[HWSIM_ATTR_IFTYPE_SUPPORT],
"cannot support more iftypes than kernel");
return -EINVAL;
}
} else {
param.iftypes = HWSIM_IFTYPE_SUPPORT_MASK;
}
/* ensure both flag and iftype support is honored */
if (param.p2p_device ||
param.iftypes & BIT(NL80211_IFTYPE_P2P_DEVICE)) {
param.iftypes |= BIT(NL80211_IFTYPE_P2P_DEVICE);
param.p2p_device = true;
}
if (info->attrs[HWSIM_ATTR_CIPHER_SUPPORT]) {
u32 len = nla_len(info->attrs[HWSIM_ATTR_CIPHER_SUPPORT]);
param.ciphers =
nla_data(info->attrs[HWSIM_ATTR_CIPHER_SUPPORT]);
if (len % sizeof(u32)) {
NL_SET_ERR_MSG_ATTR(info->extack,
info->attrs[HWSIM_ATTR_CIPHER_SUPPORT],
"bad cipher list length");
return -EINVAL;
}
param.n_ciphers = len / sizeof(u32);
if (param.n_ciphers > ARRAY_SIZE(hwsim_ciphers)) {
NL_SET_ERR_MSG_ATTR(info->extack,
info->attrs[HWSIM_ATTR_CIPHER_SUPPORT],
"too many ciphers specified");
return -EINVAL;
}
if (!hwsim_known_ciphers(param.ciphers, param.n_ciphers)) {
NL_SET_ERR_MSG_ATTR(info->extack,
info->attrs[HWSIM_ATTR_CIPHER_SUPPORT],
"unsupported ciphers specified");
return -EINVAL;
}
}
if (info->attrs[HWSIM_ATTR_RADIO_NAME]) {
hwname = kasprintf(GFP_KERNEL, "%.*s",
nla_len(info->attrs[HWSIM_ATTR_RADIO_NAME]),
(char *)nla_data(info->attrs[HWSIM_ATTR_RADIO_NAME]));
if (!hwname)
return -ENOMEM;
param.hwname = hwname;
}
ret = mac80211_hwsim_new_radio(info, &param);
kfree(hwname);
return ret;
}
static int hwsim_del_radio_nl(struct sk_buff *msg, struct genl_info *info)
{
struct mac80211_hwsim_data *data;
s64 idx = -1;
const char *hwname = NULL;
if (info->attrs[HWSIM_ATTR_RADIO_ID]) {
idx = nla_get_u32(info->attrs[HWSIM_ATTR_RADIO_ID]);
} else if (info->attrs[HWSIM_ATTR_RADIO_NAME]) {
hwname = kasprintf(GFP_KERNEL, "%.*s",
nla_len(info->attrs[HWSIM_ATTR_RADIO_NAME]),
(char *)nla_data(info->attrs[HWSIM_ATTR_RADIO_NAME]));
if (!hwname)
return -ENOMEM;
} else
return -EINVAL;
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry(data, &hwsim_radios, list) {
if (idx >= 0) {
if (data->idx != idx)
continue;
} else {
if (!hwname ||
strcmp(hwname, wiphy_name(data->hw->wiphy)))
continue;
}
if (!net_eq(wiphy_net(data->hw->wiphy), genl_info_net(info)))
continue;
list_del(&data->list);
rhashtable_remove_fast(&hwsim_radios_rht, &data->rht,
hwsim_rht_params);
hwsim_radios_generation++;
spin_unlock_bh(&hwsim_radio_lock);
mac80211_hwsim_del_radio(data, wiphy_name(data->hw->wiphy),
info);
kfree(hwname);
return 0;
}
spin_unlock_bh(&hwsim_radio_lock);
kfree(hwname);
return -ENODEV;
}
static int hwsim_get_radio_nl(struct sk_buff *msg, struct genl_info *info)
{
struct mac80211_hwsim_data *data;
struct sk_buff *skb;
int idx, res = -ENODEV;
if (!info->attrs[HWSIM_ATTR_RADIO_ID])
return -EINVAL;
idx = nla_get_u32(info->attrs[HWSIM_ATTR_RADIO_ID]);
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry(data, &hwsim_radios, list) {
if (data->idx != idx)
continue;
if (!net_eq(wiphy_net(data->hw->wiphy), genl_info_net(info)))
continue;
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (!skb) {
res = -ENOMEM;
goto out_err;
}
res = mac80211_hwsim_get_radio(skb, data, info->snd_portid,
info->snd_seq, NULL, 0);
if (res < 0) {
nlmsg_free(skb);
goto out_err;
}
res = genlmsg_reply(skb, info);
break;
}
out_err:
spin_unlock_bh(&hwsim_radio_lock);
return res;
}
static int hwsim_dump_radio_nl(struct sk_buff *skb,
struct netlink_callback *cb)
{
int last_idx = cb->args[0] - 1;
struct mac80211_hwsim_data *data = NULL;
int res = 0;
void *hdr;
spin_lock_bh(&hwsim_radio_lock);
cb->seq = hwsim_radios_generation;
if (last_idx >= hwsim_radio_idx-1)
goto done;
list_for_each_entry(data, &hwsim_radios, list) {
if (data->idx <= last_idx)
continue;
if (!net_eq(wiphy_net(data->hw->wiphy), sock_net(skb->sk)))
continue;
res = mac80211_hwsim_get_radio(skb, data,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, cb,
NLM_F_MULTI);
if (res < 0)
break;
last_idx = data->idx;
}
cb->args[0] = last_idx + 1;
/* list changed, but no new element sent, set interrupted flag */
if (skb->len == 0 && cb->prev_seq && cb->seq != cb->prev_seq) {
hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, &hwsim_genl_family,
NLM_F_MULTI, HWSIM_CMD_GET_RADIO);
if (!hdr)
res = -EMSGSIZE;
genl_dump_check_consistent(cb, hdr);
genlmsg_end(skb, hdr);
}
done:
spin_unlock_bh(&hwsim_radio_lock);
return res ?: skb->len;
}
/* Generic Netlink operations array */
static const struct genl_ops hwsim_ops[] = {
{
.cmd = HWSIM_CMD_REGISTER,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_register_received_nl,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = HWSIM_CMD_FRAME,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_cloned_frame_received_nl,
},
{
.cmd = HWSIM_CMD_TX_INFO_FRAME,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_tx_info_frame_received_nl,
},
{
.cmd = HWSIM_CMD_NEW_RADIO,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_new_radio_nl,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = HWSIM_CMD_DEL_RADIO,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_del_radio_nl,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = HWSIM_CMD_GET_RADIO,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_get_radio_nl,
.dumpit = hwsim_dump_radio_nl,
},
};
static struct genl_family hwsim_genl_family __ro_after_init = {
.name = "MAC80211_HWSIM",
.version = 1,
.maxattr = HWSIM_ATTR_MAX,
.policy = hwsim_genl_policy,
.netnsok = true,
.module = THIS_MODULE,
.ops = hwsim_ops,
.n_ops = ARRAY_SIZE(hwsim_ops),
.mcgrps = hwsim_mcgrps,
.n_mcgrps = ARRAY_SIZE(hwsim_mcgrps),
};
static void remove_user_radios(u32 portid)
{
struct mac80211_hwsim_data *entry, *tmp;
LIST_HEAD(list);
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry_safe(entry, tmp, &hwsim_radios, list) {
if (entry->destroy_on_close && entry->portid == portid) {
list_move(&entry->list, &list);
rhashtable_remove_fast(&hwsim_radios_rht, &entry->rht,
hwsim_rht_params);
hwsim_radios_generation++;
}
}
spin_unlock_bh(&hwsim_radio_lock);
list_for_each_entry_safe(entry, tmp, &list, list) {
list_del(&entry->list);
mac80211_hwsim_del_radio(entry, wiphy_name(entry->hw->wiphy),
NULL);
}
}
static int mac80211_hwsim_netlink_notify(struct notifier_block *nb,
unsigned long state,
void *_notify)
{
struct netlink_notify *notify = _notify;
if (state != NETLINK_URELEASE)
return NOTIFY_DONE;
remove_user_radios(notify->portid);
if (notify->portid == hwsim_net_get_wmediumd(notify->net)) {
printk(KERN_INFO "mac80211_hwsim: wmediumd released netlink"
" socket, switching to perfect channel medium\n");
hwsim_register_wmediumd(notify->net, 0);
}
return NOTIFY_DONE;
}
static struct notifier_block hwsim_netlink_notifier = {
.notifier_call = mac80211_hwsim_netlink_notify,
};
static int __init hwsim_init_netlink(void)
{
int rc;
printk(KERN_INFO "mac80211_hwsim: initializing netlink\n");
rc = genl_register_family(&hwsim_genl_family);
if (rc)
goto failure;
rc = netlink_register_notifier(&hwsim_netlink_notifier);
if (rc) {
genl_unregister_family(&hwsim_genl_family);
goto failure;
}
return 0;
failure:
pr_debug("mac80211_hwsim: error occurred in %s\n", __func__);
return -EINVAL;
}
static __net_init int hwsim_init_net(struct net *net)
{
return hwsim_net_set_netgroup(net);
}
static void __net_exit hwsim_exit_net(struct net *net)
{
struct mac80211_hwsim_data *data, *tmp;
LIST_HEAD(list);
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry_safe(data, tmp, &hwsim_radios, list) {
if (!net_eq(wiphy_net(data->hw->wiphy), net))
continue;
/* Radios created in init_net are returned to init_net. */
if (data->netgroup == hwsim_net_get_netgroup(&init_net))
continue;
list_move(&data->list, &list);
rhashtable_remove_fast(&hwsim_radios_rht, &data->rht,
hwsim_rht_params);
hwsim_radios_generation++;
}
spin_unlock_bh(&hwsim_radio_lock);
list_for_each_entry_safe(data, tmp, &list, list) {
list_del(&data->list);
mac80211_hwsim_del_radio(data,
wiphy_name(data->hw->wiphy),
NULL);
}
ida_simple_remove(&hwsim_netgroup_ida, hwsim_net_get_netgroup(net));
}
static struct pernet_operations hwsim_net_ops = {
.init = hwsim_init_net,
.exit = hwsim_exit_net,
.id = &hwsim_net_id,
.size = sizeof(struct hwsim_net),
};
static void hwsim_exit_netlink(void)
{
/* unregister the notifier */
netlink_unregister_notifier(&hwsim_netlink_notifier);
/* unregister the family */
genl_unregister_family(&hwsim_genl_family);
}
static int __init init_mac80211_hwsim(void)
{
int i, err;
if (radios < 0 || radios > 100)
return -EINVAL;
if (channels < 1)
return -EINVAL;
spin_lock_init(&hwsim_radio_lock);
err = rhashtable_init(&hwsim_radios_rht, &hwsim_rht_params);
if (err)
return err;
err = register_pernet_device(&hwsim_net_ops);
if (err)
goto out_free_rht;
err = platform_driver_register(&mac80211_hwsim_driver);
if (err)
goto out_unregister_pernet;
err = hwsim_init_netlink();
if (err)
goto out_unregister_driver;
hwsim_class = class_create(THIS_MODULE, "mac80211_hwsim");
if (IS_ERR(hwsim_class)) {
err = PTR_ERR(hwsim_class);
goto out_exit_netlink;
}
for (i = 0; i < radios; i++) {
struct hwsim_new_radio_params param = { 0 };
param.channels = channels;
switch (regtest) {
case HWSIM_REGTEST_DIFF_COUNTRY:
if (i < ARRAY_SIZE(hwsim_alpha2s))
param.reg_alpha2 = hwsim_alpha2s[i];
break;
case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
if (!i)
param.reg_alpha2 = hwsim_alpha2s[0];
break;
case HWSIM_REGTEST_STRICT_ALL:
param.reg_strict = true;
case HWSIM_REGTEST_DRIVER_REG_ALL:
param.reg_alpha2 = hwsim_alpha2s[0];
break;
case HWSIM_REGTEST_WORLD_ROAM:
if (i == 0)
param.regd = &hwsim_world_regdom_custom_01;
break;
case HWSIM_REGTEST_CUSTOM_WORLD:
param.regd = &hwsim_world_regdom_custom_01;
break;
case HWSIM_REGTEST_CUSTOM_WORLD_2:
if (i == 0)
param.regd = &hwsim_world_regdom_custom_01;
else if (i == 1)
param.regd = &hwsim_world_regdom_custom_02;
break;
case HWSIM_REGTEST_STRICT_FOLLOW:
if (i == 0) {
param.reg_strict = true;
param.reg_alpha2 = hwsim_alpha2s[0];
}
break;
case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
if (i == 0) {
param.reg_strict = true;
param.reg_alpha2 = hwsim_alpha2s[0];
} else if (i == 1) {
param.reg_alpha2 = hwsim_alpha2s[1];
}
break;
case HWSIM_REGTEST_ALL:
switch (i) {
case 0:
param.regd = &hwsim_world_regdom_custom_01;
break;
case 1:
param.regd = &hwsim_world_regdom_custom_02;
break;
case 2:
param.reg_alpha2 = hwsim_alpha2s[0];
break;
case 3:
param.reg_alpha2 = hwsim_alpha2s[1];
break;
case 4:
param.reg_strict = true;
param.reg_alpha2 = hwsim_alpha2s[2];
break;
}
break;
default:
break;
}
param.p2p_device = support_p2p_device;
param.use_chanctx = channels > 1;
param.iftypes = HWSIM_IFTYPE_SUPPORT_MASK;
if (param.p2p_device)
param.iftypes |= BIT(NL80211_IFTYPE_P2P_DEVICE);
err = mac80211_hwsim_new_radio(NULL, &param);
if (err < 0)
goto out_free_radios;
}
hwsim_mon = alloc_netdev(0, "hwsim%d", NET_NAME_UNKNOWN,
hwsim_mon_setup);
if (hwsim_mon == NULL) {
err = -ENOMEM;
goto out_free_radios;
}
rtnl_lock();
err = dev_alloc_name(hwsim_mon, hwsim_mon->name);
if (err < 0) {
rtnl_unlock();
goto out_free_radios;
}
err = register_netdevice(hwsim_mon);
if (err < 0) {
rtnl_unlock();
goto out_free_mon;
}
rtnl_unlock();
return 0;
out_free_mon:
free_netdev(hwsim_mon);
out_free_radios:
mac80211_hwsim_free();
out_exit_netlink:
hwsim_exit_netlink();
out_unregister_driver:
platform_driver_unregister(&mac80211_hwsim_driver);
out_unregister_pernet:
unregister_pernet_device(&hwsim_net_ops);
out_free_rht:
rhashtable_destroy(&hwsim_radios_rht);
return err;
}
module_init(init_mac80211_hwsim);
static void __exit exit_mac80211_hwsim(void)
{
pr_debug("mac80211_hwsim: unregister radios\n");
hwsim_exit_netlink();
mac80211_hwsim_free();
rhashtable_destroy(&hwsim_radios_rht);
unregister_netdev(hwsim_mon);
platform_driver_unregister(&mac80211_hwsim_driver);
unregister_pernet_device(&hwsim_net_ops);
}
module_exit(exit_mac80211_hwsim);