linux/fs/xfs/xfs_extfree_item.c
Darrick J. Wong 4c8900bbf1 xfs: support logging EFIs for realtime extents
Teach the EFI mechanism how to free realtime extents.  We're going to
need this to enforce proper ordering of operations when we enable
realtime rmap.

Declare a new log intent item type (XFS_LI_EFI_RT) and a separate defer
ops for rt extents.  This keeps the ondisk artifacts and processing code
completely separate between the rt and non-rt cases.  Hopefully this
will make it easier to debug filesystem problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:42 -08:00

1004 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_shared.h"
#include "xfs_mount.h"
#include "xfs_ag.h"
#include "xfs_defer.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_extfree_item.h"
#include "xfs_log.h"
#include "xfs_btree.h"
#include "xfs_rmap.h"
#include "xfs_alloc.h"
#include "xfs_bmap.h"
#include "xfs_trace.h"
#include "xfs_error.h"
#include "xfs_log_priv.h"
#include "xfs_log_recover.h"
#include "xfs_rtalloc.h"
#include "xfs_inode.h"
#include "xfs_rtbitmap.h"
#include "xfs_rtgroup.h"
struct kmem_cache *xfs_efi_cache;
struct kmem_cache *xfs_efd_cache;
static const struct xfs_item_ops xfs_efi_item_ops;
static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_efi_log_item, efi_item);
}
STATIC void
xfs_efi_item_free(
struct xfs_efi_log_item *efip)
{
kvfree(efip->efi_item.li_lv_shadow);
if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
kfree(efip);
else
kmem_cache_free(xfs_efi_cache, efip);
}
/*
* Freeing the efi requires that we remove it from the AIL if it has already
* been placed there. However, the EFI may not yet have been placed in the AIL
* when called by xfs_efi_release() from EFD processing due to the ordering of
* committed vs unpin operations in bulk insert operations. Hence the reference
* count to ensure only the last caller frees the EFI.
*/
STATIC void
xfs_efi_release(
struct xfs_efi_log_item *efip)
{
ASSERT(atomic_read(&efip->efi_refcount) > 0);
if (!atomic_dec_and_test(&efip->efi_refcount))
return;
xfs_trans_ail_delete(&efip->efi_item, 0);
xfs_efi_item_free(efip);
}
STATIC void
xfs_efi_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
*nvecs += 1;
*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
}
/*
* This is called to fill in the vector of log iovecs for the
* given efi log item. We use only 1 iovec, and we point that
* at the efi_log_format structure embedded in the efi item.
* It is at this point that we assert that all of the extent
* slots in the efi item have been filled.
*/
STATIC void
xfs_efi_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
ASSERT(atomic_read(&efip->efi_next_extent) ==
efip->efi_format.efi_nextents);
ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
efip->efi_format.efi_type = lip->li_type;
efip->efi_format.efi_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, &efip->efi_format,
xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
}
/*
* The unpin operation is the last place an EFI is manipulated in the log. It is
* either inserted in the AIL or aborted in the event of a log I/O error. In
* either case, the EFI transaction has been successfully committed to make it
* this far. Therefore, we expect whoever committed the EFI to either construct
* and commit the EFD or drop the EFD's reference in the event of error. Simply
* drop the log's EFI reference now that the log is done with it.
*/
STATIC void
xfs_efi_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
xfs_efi_release(efip);
}
/*
* The EFI has been either committed or aborted if the transaction has been
* cancelled. If the transaction was cancelled, an EFD isn't going to be
* constructed and thus we free the EFI here directly.
*/
STATIC void
xfs_efi_item_release(
struct xfs_log_item *lip)
{
xfs_efi_release(EFI_ITEM(lip));
}
/*
* Allocate and initialize an efi item with the given number of extents.
*/
STATIC struct xfs_efi_log_item *
xfs_efi_init(
struct xfs_mount *mp,
unsigned short item_type,
uint nextents)
{
struct xfs_efi_log_item *efip;
ASSERT(item_type == XFS_LI_EFI || item_type == XFS_LI_EFI_RT);
ASSERT(nextents > 0);
if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
GFP_KERNEL | __GFP_NOFAIL);
} else {
efip = kmem_cache_zalloc(xfs_efi_cache,
GFP_KERNEL | __GFP_NOFAIL);
}
xfs_log_item_init(mp, &efip->efi_item, item_type, &xfs_efi_item_ops);
efip->efi_format.efi_nextents = nextents;
efip->efi_format.efi_id = (uintptr_t)(void *)efip;
atomic_set(&efip->efi_next_extent, 0);
atomic_set(&efip->efi_refcount, 2);
return efip;
}
/*
* Copy an EFI format buffer from the given buf, and into the destination
* EFI format structure.
* The given buffer can be in 32 bit or 64 bit form (which has different padding),
* one of which will be the native format for this kernel.
* It will handle the conversion of formats if necessary.
*/
STATIC int
xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
{
xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
uint i;
uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
if (buf->i_len == len) {
memcpy(dst_efi_fmt, src_efi_fmt,
offsetof(struct xfs_efi_log_format, efi_extents));
for (i = 0; i < src_efi_fmt->efi_nextents; i++)
memcpy(&dst_efi_fmt->efi_extents[i],
&src_efi_fmt->efi_extents[i],
sizeof(struct xfs_extent));
return 0;
} else if (buf->i_len == len32) {
xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
dst_efi_fmt->efi_extents[i].ext_start =
src_efi_fmt_32->efi_extents[i].ext_start;
dst_efi_fmt->efi_extents[i].ext_len =
src_efi_fmt_32->efi_extents[i].ext_len;
}
return 0;
} else if (buf->i_len == len64) {
xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
dst_efi_fmt->efi_extents[i].ext_start =
src_efi_fmt_64->efi_extents[i].ext_start;
dst_efi_fmt->efi_extents[i].ext_len =
src_efi_fmt_64->efi_extents[i].ext_len;
}
return 0;
}
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
buf->i_len);
return -EFSCORRUPTED;
}
static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_efd_log_item, efd_item);
}
STATIC void
xfs_efd_item_free(struct xfs_efd_log_item *efdp)
{
kvfree(efdp->efd_item.li_lv_shadow);
if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
kfree(efdp);
else
kmem_cache_free(xfs_efd_cache, efdp);
}
STATIC void
xfs_efd_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
*nvecs += 1;
*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
}
/*
* This is called to fill in the vector of log iovecs for the
* given efd log item. We use only 1 iovec, and we point that
* at the efd_log_format structure embedded in the efd item.
* It is at this point that we assert that all of the extent
* slots in the efd item have been filled.
*/
STATIC void
xfs_efd_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
ASSERT(lip->li_type == XFS_LI_EFD || lip->li_type == XFS_LI_EFD_RT);
efdp->efd_format.efd_type = lip->li_type;
efdp->efd_format.efd_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, &efdp->efd_format,
xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
}
/*
* The EFD is either committed or aborted if the transaction is cancelled. If
* the transaction is cancelled, drop our reference to the EFI and free the EFD.
*/
STATIC void
xfs_efd_item_release(
struct xfs_log_item *lip)
{
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
xfs_efi_release(efdp->efd_efip);
xfs_efd_item_free(efdp);
}
static struct xfs_log_item *
xfs_efd_item_intent(
struct xfs_log_item *lip)
{
return &EFD_ITEM(lip)->efd_efip->efi_item;
}
static const struct xfs_item_ops xfs_efd_item_ops = {
.flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
XFS_ITEM_INTENT_DONE,
.iop_size = xfs_efd_item_size,
.iop_format = xfs_efd_item_format,
.iop_release = xfs_efd_item_release,
.iop_intent = xfs_efd_item_intent,
};
static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e)
{
return list_entry(e, struct xfs_extent_free_item, xefi_list);
}
static inline bool
xfs_efi_item_isrt(const struct xfs_log_item *lip)
{
ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
return lip->li_type == XFS_LI_EFI_RT;
}
/*
* Fill the EFD with all extents from the EFI when we need to roll the
* transaction and continue with a new EFI.
*
* This simply copies all the extents in the EFI to the EFD rather than make
* assumptions about which extents in the EFI have already been processed. We
* currently keep the xefi list in the same order as the EFI extent list, but
* that may not always be the case. Copying everything avoids leaving a landmine
* were we fail to cancel all the extents in an EFI if the xefi list is
* processed in a different order to the extents in the EFI.
*/
static void
xfs_efd_from_efi(
struct xfs_efd_log_item *efdp)
{
struct xfs_efi_log_item *efip = efdp->efd_efip;
uint i;
ASSERT(efip->efi_format.efi_nextents > 0);
ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
efdp->efd_format.efd_extents[i] =
efip->efi_format.efi_extents[i];
}
efdp->efd_next_extent = efip->efi_format.efi_nextents;
}
static void
xfs_efd_add_extent(
struct xfs_efd_log_item *efdp,
struct xfs_extent_free_item *xefi)
{
struct xfs_extent *extp;
ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents);
extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent];
extp->ext_start = xefi->xefi_startblock;
extp->ext_len = xefi->xefi_blockcount;
efdp->efd_next_extent++;
}
/* Sort bmap items by AG. */
static int
xfs_extent_free_diff_items(
void *priv,
const struct list_head *a,
const struct list_head *b)
{
struct xfs_extent_free_item *ra = xefi_entry(a);
struct xfs_extent_free_item *rb = xefi_entry(b);
return ra->xefi_group->xg_gno - rb->xefi_group->xg_gno;
}
/* Log a free extent to the intent item. */
STATIC void
xfs_extent_free_log_item(
struct xfs_trans *tp,
struct xfs_efi_log_item *efip,
struct xfs_extent_free_item *xefi)
{
uint next_extent;
struct xfs_extent *extp;
/*
* atomic_inc_return gives us the value after the increment;
* we want to use it as an array index so we need to subtract 1 from
* it.
*/
next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
ASSERT(next_extent < efip->efi_format.efi_nextents);
extp = &efip->efi_format.efi_extents[next_extent];
extp->ext_start = xefi->xefi_startblock;
extp->ext_len = xefi->xefi_blockcount;
}
static struct xfs_log_item *
__xfs_extent_free_create_intent(
struct xfs_trans *tp,
struct list_head *items,
unsigned int count,
bool sort,
unsigned short item_type)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_efi_log_item *efip;
struct xfs_extent_free_item *xefi;
ASSERT(count > 0);
efip = xfs_efi_init(mp, item_type, count);
if (sort)
list_sort(mp, items, xfs_extent_free_diff_items);
list_for_each_entry(xefi, items, xefi_list)
xfs_extent_free_log_item(tp, efip, xefi);
return &efip->efi_item;
}
static struct xfs_log_item *
xfs_extent_free_create_intent(
struct xfs_trans *tp,
struct list_head *items,
unsigned int count,
bool sort)
{
return __xfs_extent_free_create_intent(tp, items, count, sort,
XFS_LI_EFI);
}
static inline unsigned short
xfs_efd_type_from_efi(const struct xfs_efi_log_item *efip)
{
return xfs_efi_item_isrt(&efip->efi_item) ? XFS_LI_EFD_RT : XFS_LI_EFD;
}
/* Get an EFD so we can process all the free extents. */
static struct xfs_log_item *
xfs_extent_free_create_done(
struct xfs_trans *tp,
struct xfs_log_item *intent,
unsigned int count)
{
struct xfs_efi_log_item *efip = EFI_ITEM(intent);
struct xfs_efd_log_item *efdp;
ASSERT(count > 0);
if (count > XFS_EFD_MAX_FAST_EXTENTS) {
efdp = kzalloc(xfs_efd_log_item_sizeof(count),
GFP_KERNEL | __GFP_NOFAIL);
} else {
efdp = kmem_cache_zalloc(xfs_efd_cache,
GFP_KERNEL | __GFP_NOFAIL);
}
xfs_log_item_init(tp->t_mountp, &efdp->efd_item,
xfs_efd_type_from_efi(efip), &xfs_efd_item_ops);
efdp->efd_efip = efip;
efdp->efd_format.efd_nextents = count;
efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
return &efdp->efd_item;
}
static inline const struct xfs_defer_op_type *
xefi_ops(
struct xfs_extent_free_item *xefi)
{
if (xfs_efi_is_realtime(xefi))
return &xfs_rtextent_free_defer_type;
if (xefi->xefi_agresv == XFS_AG_RESV_AGFL)
return &xfs_agfl_free_defer_type;
return &xfs_extent_free_defer_type;
}
/* Add this deferred EFI to the transaction. */
void
xfs_extent_free_defer_add(
struct xfs_trans *tp,
struct xfs_extent_free_item *xefi,
struct xfs_defer_pending **dfpp)
{
struct xfs_mount *mp = tp->t_mountp;
xefi->xefi_group = xfs_group_intent_get(mp, xefi->xefi_startblock,
xfs_efi_is_realtime(xefi) ? XG_TYPE_RTG : XG_TYPE_AG);
trace_xfs_extent_free_defer(mp, xefi);
*dfpp = xfs_defer_add(tp, &xefi->xefi_list, xefi_ops(xefi));
}
/* Cancel a free extent. */
STATIC void
xfs_extent_free_cancel_item(
struct list_head *item)
{
struct xfs_extent_free_item *xefi = xefi_entry(item);
xfs_group_intent_put(xefi->xefi_group);
kmem_cache_free(xfs_extfree_item_cache, xefi);
}
/* Process a free extent. */
STATIC int
xfs_extent_free_finish_item(
struct xfs_trans *tp,
struct xfs_log_item *done,
struct list_head *item,
struct xfs_btree_cur **state)
{
struct xfs_owner_info oinfo = { };
struct xfs_extent_free_item *xefi = xefi_entry(item);
struct xfs_efd_log_item *efdp = EFD_ITEM(done);
struct xfs_mount *mp = tp->t_mountp;
xfs_agblock_t agbno;
int error = 0;
agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
oinfo.oi_owner = xefi->xefi_owner;
if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
trace_xfs_extent_free_deferred(mp, xefi);
/*
* If we need a new transaction to make progress, the caller will log a
* new EFI with the current contents. It will also log an EFD to cancel
* the existing EFI, and so we need to copy all the unprocessed extents
* in this EFI to the EFD so this works correctly.
*/
if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
error = __xfs_free_extent(tp, to_perag(xefi->xefi_group), agbno,
xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
if (error == -EAGAIN) {
xfs_efd_from_efi(efdp);
return error;
}
xfs_efd_add_extent(efdp, xefi);
xfs_extent_free_cancel_item(item);
return error;
}
/* Abort all pending EFIs. */
STATIC void
xfs_extent_free_abort_intent(
struct xfs_log_item *intent)
{
xfs_efi_release(EFI_ITEM(intent));
}
/*
* AGFL blocks are accounted differently in the reserve pools and are not
* inserted into the busy extent list.
*/
STATIC int
xfs_agfl_free_finish_item(
struct xfs_trans *tp,
struct xfs_log_item *done,
struct list_head *item,
struct xfs_btree_cur **state)
{
struct xfs_owner_info oinfo = { };
struct xfs_mount *mp = tp->t_mountp;
struct xfs_efd_log_item *efdp = EFD_ITEM(done);
struct xfs_extent_free_item *xefi = xefi_entry(item);
struct xfs_buf *agbp;
int error;
xfs_agblock_t agbno;
ASSERT(xefi->xefi_blockcount == 1);
agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
oinfo.oi_owner = xefi->xefi_owner;
trace_xfs_agfl_free_deferred(mp, xefi);
error = xfs_alloc_read_agf(to_perag(xefi->xefi_group), tp, 0, &agbp);
if (!error)
error = xfs_free_ag_extent(tp, agbp, agbno, 1, &oinfo,
XFS_AG_RESV_AGFL);
xfs_efd_add_extent(efdp, xefi);
xfs_extent_free_cancel_item(&xefi->xefi_list);
return error;
}
/* Is this recovered EFI ok? */
static inline bool
xfs_efi_validate_ext(
struct xfs_mount *mp,
bool isrt,
struct xfs_extent *extp)
{
if (isrt)
return xfs_verify_rtbext(mp, extp->ext_start, extp->ext_len);
return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
}
static inline void
xfs_efi_recover_work(
struct xfs_mount *mp,
struct xfs_defer_pending *dfp,
bool isrt,
struct xfs_extent *extp)
{
struct xfs_extent_free_item *xefi;
xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
GFP_KERNEL | __GFP_NOFAIL);
xefi->xefi_startblock = extp->ext_start;
xefi->xefi_blockcount = extp->ext_len;
xefi->xefi_agresv = XFS_AG_RESV_NONE;
xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
xefi->xefi_group = xfs_group_intent_get(mp, extp->ext_start,
isrt ? XG_TYPE_RTG : XG_TYPE_AG);
if (isrt)
xefi->xefi_flags |= XFS_EFI_REALTIME;
xfs_defer_add_item(dfp, &xefi->xefi_list);
}
/*
* Process an extent free intent item that was recovered from
* the log. We need to free the extents that it describes.
*/
STATIC int
xfs_extent_free_recover_work(
struct xfs_defer_pending *dfp,
struct list_head *capture_list)
{
struct xfs_trans_res resv;
struct xfs_log_item *lip = dfp->dfp_intent;
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
struct xfs_mount *mp = lip->li_log->l_mp;
struct xfs_trans *tp;
int i;
int error = 0;
bool isrt = xfs_efi_item_isrt(lip);
/*
* First check the validity of the extents described by the EFI. If
* any are bad, then assume that all are bad and just toss the EFI.
* Mixing RT and non-RT extents in the same EFI item is not allowed.
*/
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
if (!xfs_efi_validate_ext(mp, isrt,
&efip->efi_format.efi_extents[i])) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
&efip->efi_format,
sizeof(efip->efi_format));
return -EFSCORRUPTED;
}
xfs_efi_recover_work(mp, dfp, isrt,
&efip->efi_format.efi_extents[i]);
}
resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
if (error)
return error;
error = xlog_recover_finish_intent(tp, dfp);
if (error == -EFSCORRUPTED)
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
&efip->efi_format,
sizeof(efip->efi_format));
if (error)
goto abort_error;
return xfs_defer_ops_capture_and_commit(tp, capture_list);
abort_error:
xfs_trans_cancel(tp);
return error;
}
/* Relog an intent item to push the log tail forward. */
static struct xfs_log_item *
xfs_extent_free_relog_intent(
struct xfs_trans *tp,
struct xfs_log_item *intent,
struct xfs_log_item *done_item)
{
struct xfs_efd_log_item *efdp = EFD_ITEM(done_item);
struct xfs_efi_log_item *efip;
struct xfs_extent *extp;
unsigned int count;
count = EFI_ITEM(intent)->efi_format.efi_nextents;
extp = EFI_ITEM(intent)->efi_format.efi_extents;
ASSERT(intent->li_type == XFS_LI_EFI || intent->li_type == XFS_LI_EFI_RT);
efdp->efd_next_extent = count;
memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
efip = xfs_efi_init(tp->t_mountp, intent->li_type, count);
memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
atomic_set(&efip->efi_next_extent, count);
return &efip->efi_item;
}
const struct xfs_defer_op_type xfs_extent_free_defer_type = {
.name = "extent_free",
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
.create_intent = xfs_extent_free_create_intent,
.abort_intent = xfs_extent_free_abort_intent,
.create_done = xfs_extent_free_create_done,
.finish_item = xfs_extent_free_finish_item,
.cancel_item = xfs_extent_free_cancel_item,
.recover_work = xfs_extent_free_recover_work,
.relog_intent = xfs_extent_free_relog_intent,
};
/* sub-type with special handling for AGFL deferred frees */
const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
.name = "agfl_free",
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
.create_intent = xfs_extent_free_create_intent,
.abort_intent = xfs_extent_free_abort_intent,
.create_done = xfs_extent_free_create_done,
.finish_item = xfs_agfl_free_finish_item,
.cancel_item = xfs_extent_free_cancel_item,
.recover_work = xfs_extent_free_recover_work,
.relog_intent = xfs_extent_free_relog_intent,
};
#ifdef CONFIG_XFS_RT
/* Create a realtime extent freeing */
static struct xfs_log_item *
xfs_rtextent_free_create_intent(
struct xfs_trans *tp,
struct list_head *items,
unsigned int count,
bool sort)
{
return __xfs_extent_free_create_intent(tp, items, count, sort,
XFS_LI_EFI_RT);
}
/* Process a free realtime extent. */
STATIC int
xfs_rtextent_free_finish_item(
struct xfs_trans *tp,
struct xfs_log_item *done,
struct list_head *item,
struct xfs_btree_cur **state)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_extent_free_item *xefi = xefi_entry(item);
struct xfs_efd_log_item *efdp = EFD_ITEM(done);
struct xfs_rtgroup **rtgp = (struct xfs_rtgroup **)state;
int error = 0;
trace_xfs_extent_free_deferred(mp, xefi);
if (!(xefi->xefi_flags & XFS_EFI_CANCELLED)) {
if (*rtgp != to_rtg(xefi->xefi_group)) {
*rtgp = to_rtg(xefi->xefi_group);
xfs_rtgroup_lock(*rtgp, XFS_RTGLOCK_BITMAP);
xfs_rtgroup_trans_join(tp, *rtgp,
XFS_RTGLOCK_BITMAP);
}
error = xfs_rtfree_blocks(tp, *rtgp,
xefi->xefi_startblock, xefi->xefi_blockcount);
}
if (error == -EAGAIN) {
xfs_efd_from_efi(efdp);
return error;
}
xfs_efd_add_extent(efdp, xefi);
xfs_extent_free_cancel_item(item);
return error;
}
const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
.name = "rtextent_free",
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
.create_intent = xfs_rtextent_free_create_intent,
.abort_intent = xfs_extent_free_abort_intent,
.create_done = xfs_extent_free_create_done,
.finish_item = xfs_rtextent_free_finish_item,
.cancel_item = xfs_extent_free_cancel_item,
.recover_work = xfs_extent_free_recover_work,
.relog_intent = xfs_extent_free_relog_intent,
};
#else
const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
.name = "rtextent_free",
};
#endif /* CONFIG_XFS_RT */
STATIC bool
xfs_efi_item_match(
struct xfs_log_item *lip,
uint64_t intent_id)
{
return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
}
static const struct xfs_item_ops xfs_efi_item_ops = {
.flags = XFS_ITEM_INTENT,
.iop_size = xfs_efi_item_size,
.iop_format = xfs_efi_item_format,
.iop_unpin = xfs_efi_item_unpin,
.iop_release = xfs_efi_item_release,
.iop_match = xfs_efi_item_match,
};
/*
* This routine is called to create an in-core extent free intent
* item from the efi format structure which was logged on disk.
* It allocates an in-core efi, copies the extents from the format
* structure into it, and adds the efi to the AIL with the given
* LSN.
*/
STATIC int
xlog_recover_efi_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
struct xfs_mount *mp = log->l_mp;
struct xfs_efi_log_item *efip;
struct xfs_efi_log_format *efi_formatp;
int error;
efi_formatp = item->ri_buf[0].i_addr;
if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
if (error) {
xfs_efi_item_free(efip);
return error;
}
atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
xlog_recover_intent_item(log, &efip->efi_item, lsn,
&xfs_extent_free_defer_type);
return 0;
}
const struct xlog_recover_item_ops xlog_efi_item_ops = {
.item_type = XFS_LI_EFI,
.commit_pass2 = xlog_recover_efi_commit_pass2,
};
#ifdef CONFIG_XFS_RT
STATIC int
xlog_recover_rtefi_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
struct xfs_mount *mp = log->l_mp;
struct xfs_efi_log_item *efip;
struct xfs_efi_log_format *efi_formatp;
int error;
efi_formatp = item->ri_buf[0].i_addr;
if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
if (error) {
xfs_efi_item_free(efip);
return error;
}
atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
xlog_recover_intent_item(log, &efip->efi_item, lsn,
&xfs_rtextent_free_defer_type);
return 0;
}
#else
STATIC int
xlog_recover_rtefi_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
#endif
const struct xlog_recover_item_ops xlog_rtefi_item_ops = {
.item_type = XFS_LI_EFI_RT,
.commit_pass2 = xlog_recover_rtefi_commit_pass2,
};
/*
* This routine is called when an EFD format structure is found in a committed
* transaction in the log. Its purpose is to cancel the corresponding EFI if it
* was still in the log. To do this it searches the AIL for the EFI with an id
* equal to that in the EFD format structure. If we find it we drop the EFD
* reference, which removes the EFI from the AIL and frees it.
*/
STATIC int
xlog_recover_efd_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
struct xfs_efd_log_format *efd_formatp;
int buflen = item->ri_buf[0].i_len;
efd_formatp = item->ri_buf[0].i_addr;
if (buflen < sizeof(struct xfs_efd_log_format)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
efd_formatp, buflen);
return -EFSCORRUPTED;
}
if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
efd_formatp->efd_nextents) &&
item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
efd_formatp->efd_nextents)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
efd_formatp, buflen);
return -EFSCORRUPTED;
}
xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
return 0;
}
const struct xlog_recover_item_ops xlog_efd_item_ops = {
.item_type = XFS_LI_EFD,
.commit_pass2 = xlog_recover_efd_commit_pass2,
};
#ifdef CONFIG_XFS_RT
STATIC int
xlog_recover_rtefd_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
struct xfs_efd_log_format *efd_formatp;
int buflen = item->ri_buf[0].i_len;
efd_formatp = item->ri_buf[0].i_addr;
if (buflen < sizeof(struct xfs_efd_log_format)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
efd_formatp, buflen);
return -EFSCORRUPTED;
}
if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
efd_formatp->efd_nextents) &&
item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
efd_formatp->efd_nextents)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
efd_formatp, buflen);
return -EFSCORRUPTED;
}
xlog_recover_release_intent(log, XFS_LI_EFI_RT,
efd_formatp->efd_efi_id);
return 0;
}
#else
# define xlog_recover_rtefd_commit_pass2 xlog_recover_rtefi_commit_pass2
#endif
const struct xlog_recover_item_ops xlog_rtefd_item_ops = {
.item_type = XFS_LI_EFD_RT,
.commit_pass2 = xlog_recover_rtefd_commit_pass2,
};