mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
e9c4d8bfb2
Split the lookup and refcount handling of struct xfs_perag into an embedded xfs_group structure that can be reused for the upcoming realtime groups. It will be extended with more features later. Note that he xg_type field will only need a single bit even with realtime group support. For now it fills a hole, but it might be worth to fold it into another field if we can use this space better. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
563 lines
13 KiB
C
563 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2022-2023 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <djwong@kernel.org>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_btree_staging.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_defer.h"
|
|
#include "scrub/scrub.h"
|
|
#include "scrub/common.h"
|
|
#include "scrub/trace.h"
|
|
#include "scrub/repair.h"
|
|
#include "scrub/newbt.h"
|
|
|
|
/*
|
|
* Estimate proper slack values for a btree that's being reloaded.
|
|
*
|
|
* Under most circumstances, we'll take whatever default loading value the
|
|
* btree bulk loading code calculates for us. However, there are some
|
|
* exceptions to this rule:
|
|
*
|
|
* (0) If someone turned one of the debug knobs.
|
|
* (1) If this is a per-AG btree and the AG has less than 10% space free.
|
|
* (2) If this is an inode btree and the FS has less than 10% space free.
|
|
|
|
* In either case, format the new btree blocks almost completely full to
|
|
* minimize space usage.
|
|
*/
|
|
static void
|
|
xrep_newbt_estimate_slack(
|
|
struct xrep_newbt *xnr)
|
|
{
|
|
struct xfs_scrub *sc = xnr->sc;
|
|
struct xfs_btree_bload *bload = &xnr->bload;
|
|
uint64_t free;
|
|
uint64_t sz;
|
|
|
|
/*
|
|
* The xfs_globals values are set to -1 (i.e. take the bload defaults)
|
|
* unless someone has set them otherwise, so we just pull the values
|
|
* here.
|
|
*/
|
|
bload->leaf_slack = xfs_globals.bload_leaf_slack;
|
|
bload->node_slack = xfs_globals.bload_node_slack;
|
|
|
|
if (sc->ops->type == ST_PERAG) {
|
|
free = sc->sa.pag->pagf_freeblks;
|
|
sz = xfs_ag_block_count(sc->mp, pag_agno(sc->sa.pag));
|
|
} else {
|
|
free = percpu_counter_sum(&sc->mp->m_fdblocks);
|
|
sz = sc->mp->m_sb.sb_dblocks;
|
|
}
|
|
|
|
/* No further changes if there's more than 10% free space left. */
|
|
if (free >= div_u64(sz, 10))
|
|
return;
|
|
|
|
/*
|
|
* We're low on space; load the btrees as tightly as possible. Leave
|
|
* a couple of open slots in each btree block so that we don't end up
|
|
* splitting the btrees like crazy after a mount.
|
|
*/
|
|
if (bload->leaf_slack < 0)
|
|
bload->leaf_slack = 2;
|
|
if (bload->node_slack < 0)
|
|
bload->node_slack = 2;
|
|
}
|
|
|
|
/* Initialize accounting resources for staging a new AG btree. */
|
|
void
|
|
xrep_newbt_init_ag(
|
|
struct xrep_newbt *xnr,
|
|
struct xfs_scrub *sc,
|
|
const struct xfs_owner_info *oinfo,
|
|
xfs_fsblock_t alloc_hint,
|
|
enum xfs_ag_resv_type resv)
|
|
{
|
|
memset(xnr, 0, sizeof(struct xrep_newbt));
|
|
xnr->sc = sc;
|
|
xnr->oinfo = *oinfo; /* structure copy */
|
|
xnr->alloc_hint = alloc_hint;
|
|
xnr->resv = resv;
|
|
INIT_LIST_HEAD(&xnr->resv_list);
|
|
xnr->bload.max_dirty = XFS_B_TO_FSBT(sc->mp, 256U << 10); /* 256K */
|
|
xrep_newbt_estimate_slack(xnr);
|
|
}
|
|
|
|
/* Initialize accounting resources for staging a new inode fork btree. */
|
|
int
|
|
xrep_newbt_init_inode(
|
|
struct xrep_newbt *xnr,
|
|
struct xfs_scrub *sc,
|
|
int whichfork,
|
|
const struct xfs_owner_info *oinfo)
|
|
{
|
|
struct xfs_ifork *ifp;
|
|
|
|
ifp = kmem_cache_zalloc(xfs_ifork_cache, XCHK_GFP_FLAGS);
|
|
if (!ifp)
|
|
return -ENOMEM;
|
|
|
|
xrep_newbt_init_ag(xnr, sc, oinfo,
|
|
XFS_INO_TO_FSB(sc->mp, sc->ip->i_ino),
|
|
XFS_AG_RESV_NONE);
|
|
xnr->ifake.if_fork = ifp;
|
|
xnr->ifake.if_fork_size = xfs_inode_fork_size(sc->ip, whichfork);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize accounting resources for staging a new btree. Callers are
|
|
* expected to add their own reservations (and clean them up) manually.
|
|
*/
|
|
void
|
|
xrep_newbt_init_bare(
|
|
struct xrep_newbt *xnr,
|
|
struct xfs_scrub *sc)
|
|
{
|
|
xrep_newbt_init_ag(xnr, sc, &XFS_RMAP_OINFO_ANY_OWNER, NULLFSBLOCK,
|
|
XFS_AG_RESV_NONE);
|
|
}
|
|
|
|
/*
|
|
* Designate specific blocks to be used to build our new btree. @pag must be
|
|
* a passive reference.
|
|
*/
|
|
STATIC int
|
|
xrep_newbt_add_blocks(
|
|
struct xrep_newbt *xnr,
|
|
struct xfs_perag *pag,
|
|
const struct xfs_alloc_arg *args)
|
|
{
|
|
struct xfs_mount *mp = xnr->sc->mp;
|
|
struct xrep_newbt_resv *resv;
|
|
int error;
|
|
|
|
resv = kmalloc(sizeof(struct xrep_newbt_resv), XCHK_GFP_FLAGS);
|
|
if (!resv)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&resv->list);
|
|
resv->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
|
|
resv->len = args->len;
|
|
resv->used = 0;
|
|
resv->pag = xfs_perag_hold(pag);
|
|
|
|
if (args->tp) {
|
|
ASSERT(xnr->oinfo.oi_offset == 0);
|
|
|
|
error = xfs_alloc_schedule_autoreap(args,
|
|
XFS_FREE_EXTENT_SKIP_DISCARD, &resv->autoreap);
|
|
if (error)
|
|
goto out_pag;
|
|
}
|
|
|
|
list_add_tail(&resv->list, &xnr->resv_list);
|
|
return 0;
|
|
out_pag:
|
|
xfs_perag_put(resv->pag);
|
|
kfree(resv);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Add an extent to the new btree reservation pool. Callers are required to
|
|
* reap this reservation manually if the repair is cancelled. @pag must be a
|
|
* passive reference.
|
|
*/
|
|
int
|
|
xrep_newbt_add_extent(
|
|
struct xrep_newbt *xnr,
|
|
struct xfs_perag *pag,
|
|
xfs_agblock_t agbno,
|
|
xfs_extlen_t len)
|
|
{
|
|
struct xfs_alloc_arg args = {
|
|
.tp = NULL, /* no autoreap */
|
|
.oinfo = xnr->oinfo,
|
|
.fsbno = xfs_agbno_to_fsb(pag, agbno),
|
|
.len = len,
|
|
.resv = xnr->resv,
|
|
};
|
|
|
|
return xrep_newbt_add_blocks(xnr, pag, &args);
|
|
}
|
|
|
|
/* Don't let our allocation hint take us beyond this AG */
|
|
static inline void
|
|
xrep_newbt_validate_ag_alloc_hint(
|
|
struct xrep_newbt *xnr)
|
|
{
|
|
struct xfs_scrub *sc = xnr->sc;
|
|
xfs_agnumber_t agno = XFS_FSB_TO_AGNO(sc->mp, xnr->alloc_hint);
|
|
|
|
if (agno == pag_agno(sc->sa.pag) &&
|
|
xfs_verify_fsbno(sc->mp, xnr->alloc_hint))
|
|
return;
|
|
|
|
xnr->alloc_hint =
|
|
xfs_agbno_to_fsb(sc->sa.pag, XFS_AGFL_BLOCK(sc->mp) + 1);
|
|
}
|
|
|
|
/* Allocate disk space for a new per-AG btree. */
|
|
STATIC int
|
|
xrep_newbt_alloc_ag_blocks(
|
|
struct xrep_newbt *xnr,
|
|
uint64_t nr_blocks)
|
|
{
|
|
struct xfs_scrub *sc = xnr->sc;
|
|
struct xfs_mount *mp = sc->mp;
|
|
int error = 0;
|
|
|
|
ASSERT(sc->sa.pag != NULL);
|
|
|
|
while (nr_blocks > 0) {
|
|
struct xfs_alloc_arg args = {
|
|
.tp = sc->tp,
|
|
.mp = mp,
|
|
.oinfo = xnr->oinfo,
|
|
.minlen = 1,
|
|
.maxlen = nr_blocks,
|
|
.prod = 1,
|
|
.resv = xnr->resv,
|
|
};
|
|
xfs_agnumber_t agno;
|
|
|
|
xrep_newbt_validate_ag_alloc_hint(xnr);
|
|
|
|
if (xnr->alloc_vextent)
|
|
error = xnr->alloc_vextent(sc, &args, xnr->alloc_hint);
|
|
else
|
|
error = xfs_alloc_vextent_near_bno(&args,
|
|
xnr->alloc_hint);
|
|
if (error)
|
|
return error;
|
|
if (args.fsbno == NULLFSBLOCK)
|
|
return -ENOSPC;
|
|
|
|
agno = XFS_FSB_TO_AGNO(mp, args.fsbno);
|
|
if (agno != pag_agno(sc->sa.pag)) {
|
|
ASSERT(agno == pag_agno(sc->sa.pag));
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
trace_xrep_newbt_alloc_ag_blocks(sc->sa.pag,
|
|
XFS_FSB_TO_AGBNO(mp, args.fsbno), args.len,
|
|
xnr->oinfo.oi_owner);
|
|
|
|
error = xrep_newbt_add_blocks(xnr, sc->sa.pag, &args);
|
|
if (error)
|
|
return error;
|
|
|
|
nr_blocks -= args.len;
|
|
xnr->alloc_hint = args.fsbno + args.len;
|
|
|
|
error = xrep_defer_finish(sc);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Don't let our allocation hint take us beyond EOFS */
|
|
static inline void
|
|
xrep_newbt_validate_file_alloc_hint(
|
|
struct xrep_newbt *xnr)
|
|
{
|
|
struct xfs_scrub *sc = xnr->sc;
|
|
|
|
if (xfs_verify_fsbno(sc->mp, xnr->alloc_hint))
|
|
return;
|
|
|
|
xnr->alloc_hint = XFS_AGB_TO_FSB(sc->mp, 0, XFS_AGFL_BLOCK(sc->mp) + 1);
|
|
}
|
|
|
|
/* Allocate disk space for our new file-based btree. */
|
|
STATIC int
|
|
xrep_newbt_alloc_file_blocks(
|
|
struct xrep_newbt *xnr,
|
|
uint64_t nr_blocks)
|
|
{
|
|
struct xfs_scrub *sc = xnr->sc;
|
|
struct xfs_mount *mp = sc->mp;
|
|
int error = 0;
|
|
|
|
while (nr_blocks > 0) {
|
|
struct xfs_alloc_arg args = {
|
|
.tp = sc->tp,
|
|
.mp = mp,
|
|
.oinfo = xnr->oinfo,
|
|
.minlen = 1,
|
|
.maxlen = nr_blocks,
|
|
.prod = 1,
|
|
.resv = xnr->resv,
|
|
};
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno;
|
|
|
|
xrep_newbt_validate_file_alloc_hint(xnr);
|
|
|
|
if (xnr->alloc_vextent)
|
|
error = xnr->alloc_vextent(sc, &args, xnr->alloc_hint);
|
|
else
|
|
error = xfs_alloc_vextent_start_ag(&args,
|
|
xnr->alloc_hint);
|
|
if (error)
|
|
return error;
|
|
if (args.fsbno == NULLFSBLOCK)
|
|
return -ENOSPC;
|
|
|
|
agno = XFS_FSB_TO_AGNO(mp, args.fsbno);
|
|
|
|
pag = xfs_perag_get(mp, agno);
|
|
if (!pag) {
|
|
ASSERT(0);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
trace_xrep_newbt_alloc_file_blocks(pag,
|
|
XFS_FSB_TO_AGBNO(mp, args.fsbno), args.len,
|
|
xnr->oinfo.oi_owner);
|
|
|
|
error = xrep_newbt_add_blocks(xnr, pag, &args);
|
|
xfs_perag_put(pag);
|
|
if (error)
|
|
return error;
|
|
|
|
nr_blocks -= args.len;
|
|
xnr->alloc_hint = args.fsbno + args.len;
|
|
|
|
error = xrep_defer_finish(sc);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate disk space for our new btree. */
|
|
int
|
|
xrep_newbt_alloc_blocks(
|
|
struct xrep_newbt *xnr,
|
|
uint64_t nr_blocks)
|
|
{
|
|
if (xnr->sc->ip)
|
|
return xrep_newbt_alloc_file_blocks(xnr, nr_blocks);
|
|
return xrep_newbt_alloc_ag_blocks(xnr, nr_blocks);
|
|
}
|
|
|
|
/*
|
|
* Free the unused part of a space extent that was reserved for a new ondisk
|
|
* structure. Returns the number of EFIs logged or a negative errno.
|
|
*/
|
|
STATIC int
|
|
xrep_newbt_free_extent(
|
|
struct xrep_newbt *xnr,
|
|
struct xrep_newbt_resv *resv,
|
|
bool btree_committed)
|
|
{
|
|
struct xfs_scrub *sc = xnr->sc;
|
|
xfs_agblock_t free_agbno = resv->agbno;
|
|
xfs_extlen_t free_aglen = resv->len;
|
|
int error;
|
|
|
|
if (!btree_committed || resv->used == 0) {
|
|
/*
|
|
* If we're not committing a new btree or we didn't use the
|
|
* space reservation, let the existing EFI free the entire
|
|
* space extent.
|
|
*/
|
|
trace_xrep_newbt_free_blocks(resv->pag, free_agbno, free_aglen,
|
|
xnr->oinfo.oi_owner);
|
|
xfs_alloc_commit_autoreap(sc->tp, &resv->autoreap);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* We used space and committed the btree. Cancel the autoreap, remove
|
|
* the written blocks from the reservation, and possibly log a new EFI
|
|
* to free any unused reservation space.
|
|
*/
|
|
xfs_alloc_cancel_autoreap(sc->tp, &resv->autoreap);
|
|
free_agbno += resv->used;
|
|
free_aglen -= resv->used;
|
|
|
|
if (free_aglen == 0)
|
|
return 0;
|
|
|
|
trace_xrep_newbt_free_blocks(resv->pag, free_agbno, free_aglen,
|
|
xnr->oinfo.oi_owner);
|
|
|
|
ASSERT(xnr->resv != XFS_AG_RESV_AGFL);
|
|
ASSERT(xnr->resv != XFS_AG_RESV_IGNORE);
|
|
|
|
/*
|
|
* Use EFIs to free the reservations. This reduces the chance
|
|
* that we leak blocks if the system goes down.
|
|
*/
|
|
error = xfs_free_extent_later(sc->tp,
|
|
xfs_agbno_to_fsb(resv->pag, free_agbno), free_aglen,
|
|
&xnr->oinfo, xnr->resv, XFS_FREE_EXTENT_SKIP_DISCARD);
|
|
if (error)
|
|
return error;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Free all the accounting info and disk space we reserved for a new btree. */
|
|
STATIC int
|
|
xrep_newbt_free(
|
|
struct xrep_newbt *xnr,
|
|
bool btree_committed)
|
|
{
|
|
struct xfs_scrub *sc = xnr->sc;
|
|
struct xrep_newbt_resv *resv, *n;
|
|
unsigned int freed = 0;
|
|
int error = 0;
|
|
|
|
/*
|
|
* If the filesystem already went down, we can't free the blocks. Skip
|
|
* ahead to freeing the incore metadata because we can't fix anything.
|
|
*/
|
|
if (xfs_is_shutdown(sc->mp))
|
|
goto junkit;
|
|
|
|
list_for_each_entry_safe(resv, n, &xnr->resv_list, list) {
|
|
int ret;
|
|
|
|
ret = xrep_newbt_free_extent(xnr, resv, btree_committed);
|
|
list_del(&resv->list);
|
|
xfs_perag_put(resv->pag);
|
|
kfree(resv);
|
|
if (ret < 0) {
|
|
error = ret;
|
|
goto junkit;
|
|
}
|
|
|
|
freed += ret;
|
|
if (freed >= XREP_MAX_ITRUNCATE_EFIS) {
|
|
error = xrep_defer_finish(sc);
|
|
if (error)
|
|
goto junkit;
|
|
freed = 0;
|
|
}
|
|
}
|
|
|
|
if (freed)
|
|
error = xrep_defer_finish(sc);
|
|
|
|
junkit:
|
|
/*
|
|
* If we still have reservations attached to @newbt, cleanup must have
|
|
* failed and the filesystem is about to go down. Clean up the incore
|
|
* reservations and try to commit to freeing the space we used.
|
|
*/
|
|
list_for_each_entry_safe(resv, n, &xnr->resv_list, list) {
|
|
xfs_alloc_commit_autoreap(sc->tp, &resv->autoreap);
|
|
list_del(&resv->list);
|
|
xfs_perag_put(resv->pag);
|
|
kfree(resv);
|
|
}
|
|
|
|
if (sc->ip) {
|
|
kmem_cache_free(xfs_ifork_cache, xnr->ifake.if_fork);
|
|
xnr->ifake.if_fork = NULL;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Free all the accounting info and unused disk space allocations after
|
|
* committing a new btree.
|
|
*/
|
|
int
|
|
xrep_newbt_commit(
|
|
struct xrep_newbt *xnr)
|
|
{
|
|
return xrep_newbt_free(xnr, true);
|
|
}
|
|
|
|
/*
|
|
* Free all the accounting info and all of the disk space we reserved for a new
|
|
* btree that we're not going to commit. We want to try to roll things back
|
|
* cleanly for things like ENOSPC midway through allocation.
|
|
*/
|
|
void
|
|
xrep_newbt_cancel(
|
|
struct xrep_newbt *xnr)
|
|
{
|
|
xrep_newbt_free(xnr, false);
|
|
}
|
|
|
|
/* Feed one of the reserved btree blocks to the bulk loader. */
|
|
int
|
|
xrep_newbt_claim_block(
|
|
struct xfs_btree_cur *cur,
|
|
struct xrep_newbt *xnr,
|
|
union xfs_btree_ptr *ptr)
|
|
{
|
|
struct xrep_newbt_resv *resv;
|
|
xfs_agblock_t agbno;
|
|
|
|
/*
|
|
* The first item in the list should always have a free block unless
|
|
* we're completely out.
|
|
*/
|
|
resv = list_first_entry(&xnr->resv_list, struct xrep_newbt_resv, list);
|
|
if (resv->used == resv->len)
|
|
return -ENOSPC;
|
|
|
|
/*
|
|
* Peel off a block from the start of the reservation. We allocate
|
|
* blocks in order to place blocks on disk in increasing record or key
|
|
* order. The block reservations tend to end up on the list in
|
|
* decreasing order, which hopefully results in leaf blocks ending up
|
|
* together.
|
|
*/
|
|
agbno = resv->agbno + resv->used;
|
|
resv->used++;
|
|
|
|
/* If we used all the blocks in this reservation, move it to the end. */
|
|
if (resv->used == resv->len)
|
|
list_move_tail(&resv->list, &xnr->resv_list);
|
|
|
|
trace_xrep_newbt_claim_block(resv->pag, agbno, 1, xnr->oinfo.oi_owner);
|
|
|
|
if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
|
|
ptr->l = cpu_to_be64(xfs_agbno_to_fsb(resv->pag, agbno));
|
|
else
|
|
ptr->s = cpu_to_be32(agbno);
|
|
|
|
/* Relog all the EFIs. */
|
|
return xrep_defer_finish(xnr->sc);
|
|
}
|
|
|
|
/* How many reserved blocks are unused? */
|
|
unsigned int
|
|
xrep_newbt_unused_blocks(
|
|
struct xrep_newbt *xnr)
|
|
{
|
|
struct xrep_newbt_resv *resv;
|
|
unsigned int unused = 0;
|
|
|
|
list_for_each_entry(resv, &xnr->resv_list, list)
|
|
unused += resv->len - resv->used;
|
|
return unused;
|
|
}
|