mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
3f1bdf50ab
Enable scrubbing of realtime group superblocks. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
327 lines
10 KiB
C
327 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2019-2023 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <djwong@kernel.org>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_health.h"
|
|
#include "xfs_rtgroup.h"
|
|
#include "scrub/scrub.h"
|
|
#include "scrub/health.h"
|
|
#include "scrub/common.h"
|
|
|
|
/*
|
|
* Scrub and In-Core Filesystem Health Assessments
|
|
* ===============================================
|
|
*
|
|
* Online scrub and repair have the time and the ability to perform stronger
|
|
* checks than we can do from the metadata verifiers, because they can
|
|
* cross-reference records between data structures. Therefore, scrub is in a
|
|
* good position to update the online filesystem health assessments to reflect
|
|
* the good/bad state of the data structure.
|
|
*
|
|
* We therefore extend scrub in the following ways to achieve this:
|
|
*
|
|
* 1. Create a "sick_mask" field in the scrub context. When we're setting up a
|
|
* scrub call, set this to the default XFS_SICK_* flag(s) for the selected
|
|
* scrub type (call it A). Scrub and repair functions can override the default
|
|
* sick_mask value if they choose.
|
|
*
|
|
* 2. If the scrubber returns a runtime error code, we exit making no changes
|
|
* to the incore sick state.
|
|
*
|
|
* 3. If the scrubber finds that A is clean, use sick_mask to clear the incore
|
|
* sick flags before exiting.
|
|
*
|
|
* 4. If the scrubber finds that A is corrupt, use sick_mask to set the incore
|
|
* sick flags. If the user didn't want to repair then we exit, leaving the
|
|
* metadata structure unfixed and the sick flag set.
|
|
*
|
|
* 5. Now we know that A is corrupt and the user wants to repair, so run the
|
|
* repairer. If the repairer returns an error code, we exit with that error
|
|
* code, having made no further changes to the incore sick state.
|
|
*
|
|
* 6. If repair rebuilds A correctly and the subsequent re-scrub of A is clean,
|
|
* use sick_mask to clear the incore sick flags. This should have the effect
|
|
* that A is no longer marked sick.
|
|
*
|
|
* 7. If repair rebuilds A incorrectly, the re-scrub will find it corrupt and
|
|
* use sick_mask to set the incore sick flags. This should have no externally
|
|
* visible effect since we already set them in step (4).
|
|
*
|
|
* There are some complications to this story, however. For certain types of
|
|
* complementary metadata indices (e.g. inobt/finobt), it is easier to rebuild
|
|
* both structures at the same time. The following principles apply to this
|
|
* type of repair strategy:
|
|
*
|
|
* 8. Any repair function that rebuilds multiple structures should update
|
|
* sick_mask_visible to reflect whatever other structures are rebuilt, and
|
|
* verify that all the rebuilt structures can pass a scrub check. The outcomes
|
|
* of 5-7 still apply, but with a sick_mask that covers everything being
|
|
* rebuilt.
|
|
*/
|
|
|
|
/* Map our scrub type to a sick mask and a set of health update functions. */
|
|
|
|
enum xchk_health_group {
|
|
XHG_FS = 1,
|
|
XHG_AG,
|
|
XHG_INO,
|
|
XHG_RTGROUP,
|
|
};
|
|
|
|
struct xchk_health_map {
|
|
enum xchk_health_group group;
|
|
unsigned int sick_mask;
|
|
};
|
|
|
|
static const struct xchk_health_map type_to_health_flag[XFS_SCRUB_TYPE_NR] = {
|
|
[XFS_SCRUB_TYPE_SB] = { XHG_AG, XFS_SICK_AG_SB },
|
|
[XFS_SCRUB_TYPE_AGF] = { XHG_AG, XFS_SICK_AG_AGF },
|
|
[XFS_SCRUB_TYPE_AGFL] = { XHG_AG, XFS_SICK_AG_AGFL },
|
|
[XFS_SCRUB_TYPE_AGI] = { XHG_AG, XFS_SICK_AG_AGI },
|
|
[XFS_SCRUB_TYPE_BNOBT] = { XHG_AG, XFS_SICK_AG_BNOBT },
|
|
[XFS_SCRUB_TYPE_CNTBT] = { XHG_AG, XFS_SICK_AG_CNTBT },
|
|
[XFS_SCRUB_TYPE_INOBT] = { XHG_AG, XFS_SICK_AG_INOBT },
|
|
[XFS_SCRUB_TYPE_FINOBT] = { XHG_AG, XFS_SICK_AG_FINOBT },
|
|
[XFS_SCRUB_TYPE_RMAPBT] = { XHG_AG, XFS_SICK_AG_RMAPBT },
|
|
[XFS_SCRUB_TYPE_REFCNTBT] = { XHG_AG, XFS_SICK_AG_REFCNTBT },
|
|
[XFS_SCRUB_TYPE_INODE] = { XHG_INO, XFS_SICK_INO_CORE },
|
|
[XFS_SCRUB_TYPE_BMBTD] = { XHG_INO, XFS_SICK_INO_BMBTD },
|
|
[XFS_SCRUB_TYPE_BMBTA] = { XHG_INO, XFS_SICK_INO_BMBTA },
|
|
[XFS_SCRUB_TYPE_BMBTC] = { XHG_INO, XFS_SICK_INO_BMBTC },
|
|
[XFS_SCRUB_TYPE_DIR] = { XHG_INO, XFS_SICK_INO_DIR },
|
|
[XFS_SCRUB_TYPE_XATTR] = { XHG_INO, XFS_SICK_INO_XATTR },
|
|
[XFS_SCRUB_TYPE_SYMLINK] = { XHG_INO, XFS_SICK_INO_SYMLINK },
|
|
[XFS_SCRUB_TYPE_PARENT] = { XHG_INO, XFS_SICK_INO_PARENT },
|
|
[XFS_SCRUB_TYPE_RTBITMAP] = { XHG_RTGROUP, XFS_SICK_RG_BITMAP },
|
|
[XFS_SCRUB_TYPE_RTSUM] = { XHG_RTGROUP, XFS_SICK_RG_SUMMARY },
|
|
[XFS_SCRUB_TYPE_UQUOTA] = { XHG_FS, XFS_SICK_FS_UQUOTA },
|
|
[XFS_SCRUB_TYPE_GQUOTA] = { XHG_FS, XFS_SICK_FS_GQUOTA },
|
|
[XFS_SCRUB_TYPE_PQUOTA] = { XHG_FS, XFS_SICK_FS_PQUOTA },
|
|
[XFS_SCRUB_TYPE_FSCOUNTERS] = { XHG_FS, XFS_SICK_FS_COUNTERS },
|
|
[XFS_SCRUB_TYPE_QUOTACHECK] = { XHG_FS, XFS_SICK_FS_QUOTACHECK },
|
|
[XFS_SCRUB_TYPE_NLINKS] = { XHG_FS, XFS_SICK_FS_NLINKS },
|
|
[XFS_SCRUB_TYPE_DIRTREE] = { XHG_INO, XFS_SICK_INO_DIRTREE },
|
|
[XFS_SCRUB_TYPE_METAPATH] = { XHG_FS, XFS_SICK_FS_METAPATH },
|
|
[XFS_SCRUB_TYPE_RGSUPER] = { XHG_RTGROUP, XFS_SICK_RG_SUPER },
|
|
};
|
|
|
|
/* Return the health status mask for this scrub type. */
|
|
unsigned int
|
|
xchk_health_mask_for_scrub_type(
|
|
__u32 scrub_type)
|
|
{
|
|
return type_to_health_flag[scrub_type].sick_mask;
|
|
}
|
|
|
|
/*
|
|
* If the scrub state is clean, add @mask to the scrub sick mask to clear
|
|
* additional sick flags from the metadata object's sick state.
|
|
*/
|
|
void
|
|
xchk_mark_healthy_if_clean(
|
|
struct xfs_scrub *sc,
|
|
unsigned int mask)
|
|
{
|
|
if (!(sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
|
|
XFS_SCRUB_OFLAG_XCORRUPT)))
|
|
sc->sick_mask |= mask;
|
|
}
|
|
|
|
/*
|
|
* If we're scrubbing a piece of file metadata for the first time, does it look
|
|
* like it has been zapped? Skip the check if we just repaired the metadata
|
|
* and are revalidating it.
|
|
*/
|
|
bool
|
|
xchk_file_looks_zapped(
|
|
struct xfs_scrub *sc,
|
|
unsigned int mask)
|
|
{
|
|
ASSERT((mask & ~XFS_SICK_INO_ZAPPED) == 0);
|
|
|
|
if (sc->flags & XREP_ALREADY_FIXED)
|
|
return false;
|
|
|
|
return xfs_inode_has_sickness(sc->ip, mask);
|
|
}
|
|
|
|
/*
|
|
* Scrub gave the filesystem a clean bill of health, so clear all the indirect
|
|
* markers of past problems (at least for the fs and ags) so that we can be
|
|
* healthy again.
|
|
*/
|
|
STATIC void
|
|
xchk_mark_all_healthy(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag = NULL;
|
|
struct xfs_rtgroup *rtg = NULL;
|
|
|
|
xfs_fs_mark_healthy(mp, XFS_SICK_FS_INDIRECT);
|
|
while ((pag = xfs_perag_next(mp, pag)))
|
|
xfs_group_mark_healthy(pag_group(pag), XFS_SICK_AG_INDIRECT);
|
|
while ((rtg = xfs_rtgroup_next(mp, rtg)))
|
|
xfs_group_mark_healthy(rtg_group(rtg), XFS_SICK_RG_INDIRECT);
|
|
}
|
|
|
|
/*
|
|
* Update filesystem health assessments based on what we found and did.
|
|
*
|
|
* If the scrubber finds errors, we mark sick whatever's mentioned in
|
|
* sick_mask, no matter whether this is a first scan or an
|
|
* evaluation of repair effectiveness.
|
|
*
|
|
* Otherwise, no direct corruption was found, so mark whatever's in
|
|
* sick_mask as healthy.
|
|
*/
|
|
void
|
|
xchk_update_health(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
struct xfs_perag *pag;
|
|
struct xfs_rtgroup *rtg;
|
|
bool bad;
|
|
|
|
/*
|
|
* The HEALTHY scrub type is a request from userspace to clear all the
|
|
* indirect flags after a clean scan of the entire filesystem. As such
|
|
* there's no sick flag defined for it, so we branch here ahead of the
|
|
* mask check.
|
|
*/
|
|
if (sc->sm->sm_type == XFS_SCRUB_TYPE_HEALTHY &&
|
|
!(sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) {
|
|
xchk_mark_all_healthy(sc->mp);
|
|
return;
|
|
}
|
|
|
|
if (!sc->sick_mask)
|
|
return;
|
|
|
|
bad = (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
|
|
XFS_SCRUB_OFLAG_XCORRUPT));
|
|
switch (type_to_health_flag[sc->sm->sm_type].group) {
|
|
case XHG_AG:
|
|
pag = xfs_perag_get(sc->mp, sc->sm->sm_agno);
|
|
if (bad)
|
|
xfs_group_mark_corrupt(pag_group(pag), sc->sick_mask);
|
|
else
|
|
xfs_group_mark_healthy(pag_group(pag), sc->sick_mask);
|
|
xfs_perag_put(pag);
|
|
break;
|
|
case XHG_INO:
|
|
if (!sc->ip)
|
|
return;
|
|
if (bad) {
|
|
unsigned int mask = sc->sick_mask;
|
|
|
|
/*
|
|
* If we're coming in for repairs then we don't want
|
|
* sickness flags to propagate to the incore health
|
|
* status if the inode gets inactivated before we can
|
|
* fix it.
|
|
*/
|
|
if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
|
|
mask |= XFS_SICK_INO_FORGET;
|
|
xfs_inode_mark_corrupt(sc->ip, mask);
|
|
} else
|
|
xfs_inode_mark_healthy(sc->ip, sc->sick_mask);
|
|
break;
|
|
case XHG_FS:
|
|
if (bad)
|
|
xfs_fs_mark_corrupt(sc->mp, sc->sick_mask);
|
|
else
|
|
xfs_fs_mark_healthy(sc->mp, sc->sick_mask);
|
|
break;
|
|
case XHG_RTGROUP:
|
|
rtg = xfs_rtgroup_get(sc->mp, sc->sm->sm_agno);
|
|
if (bad)
|
|
xfs_group_mark_corrupt(rtg_group(rtg), sc->sick_mask);
|
|
else
|
|
xfs_group_mark_healthy(rtg_group(rtg), sc->sick_mask);
|
|
xfs_rtgroup_put(rtg);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Is the given per-AG btree healthy enough for scanning? */
|
|
void
|
|
xchk_ag_btree_del_cursor_if_sick(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_btree_cur **curp,
|
|
unsigned int sm_type)
|
|
{
|
|
unsigned int mask = (*curp)->bc_ops->sick_mask;
|
|
|
|
/*
|
|
* We always want the cursor if it's the same type as whatever we're
|
|
* scrubbing, even if we already know the structure is corrupt.
|
|
*
|
|
* Otherwise, we're only interested in the btree for cross-referencing.
|
|
* If we know the btree is bad then don't bother, just set XFAIL.
|
|
*/
|
|
if (sc->sm->sm_type == sm_type)
|
|
return;
|
|
|
|
/*
|
|
* If we just repaired some AG metadata, sc->sick_mask will reflect all
|
|
* the per-AG metadata types that were repaired. Exclude these from
|
|
* the filesystem health query because we have not yet updated the
|
|
* health status and we want everything to be scanned.
|
|
*/
|
|
if ((sc->flags & XREP_ALREADY_FIXED) &&
|
|
type_to_health_flag[sc->sm->sm_type].group == XHG_AG)
|
|
mask &= ~sc->sick_mask;
|
|
|
|
if (xfs_group_has_sickness((*curp)->bc_group, mask)) {
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
|
|
xfs_btree_del_cursor(*curp, XFS_BTREE_NOERROR);
|
|
*curp = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Quick scan to double-check that there isn't any evidence of lingering
|
|
* primary health problems. If we're still clear, then the health update will
|
|
* take care of clearing the indirect evidence.
|
|
*/
|
|
int
|
|
xchk_health_record(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_perag *pag = NULL;
|
|
struct xfs_rtgroup *rtg = NULL;
|
|
unsigned int sick;
|
|
unsigned int checked;
|
|
|
|
xfs_fs_measure_sickness(mp, &sick, &checked);
|
|
if (sick & XFS_SICK_FS_PRIMARY)
|
|
xchk_set_corrupt(sc);
|
|
|
|
while ((pag = xfs_perag_next(mp, pag))) {
|
|
xfs_group_measure_sickness(pag_group(pag), &sick, &checked);
|
|
if (sick & XFS_SICK_AG_PRIMARY)
|
|
xchk_set_corrupt(sc);
|
|
}
|
|
|
|
while ((rtg = xfs_rtgroup_next(mp, rtg))) {
|
|
xfs_group_measure_sickness(rtg_group(rtg), &sick, &checked);
|
|
if (sick & XFS_SICK_RG_PRIMARY)
|
|
xchk_set_corrupt(sc);
|
|
}
|
|
|
|
return 0;
|
|
}
|