linux/kernel/time/ntp.c
Thomas Gleixner 12850b4658 ntp: Move pps_freq/stabil into ntp_data
Continue the conversion from static variables to struct based data.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20240911-devel-anna-maria-b4-timers-ptp-ntp-v1-20-2d52f4e13476@linutronix.de
2024-10-02 16:53:41 +02:00

1103 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* NTP state machine interfaces and logic.
*
* This code was mainly moved from kernel/timer.c and kernel/time.c
* Please see those files for relevant copyright info and historical
* changelogs.
*/
#include <linux/capability.h>
#include <linux/clocksource.h>
#include <linux/workqueue.h>
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/audit.h>
#include "ntp_internal.h"
#include "timekeeping_internal.h"
/**
* struct ntp_data - Structure holding all NTP related state
* @tick_usec: USER_HZ period in microseconds
* @tick_length: Adjusted tick length
* @tick_length_base: Base value for @tick_length
* @time_state: State of the clock synchronization
* @time_status: Clock status bits
* @time_offset: Time adjustment in nanoseconds
* @time_constant: PLL time constant
* @time_maxerror: Maximum error in microseconds holding the NTP sync distance
* (NTP dispersion + delay / 2)
* @time_esterror: Estimated error in microseconds holding NTP dispersion
* @time_freq: Frequency offset scaled nsecs/secs
* @time_reftime: Time at last adjustment in seconds
* @time_adjust: Adjustment value
* @ntp_tick_adj: Constant boot-param configurable NTP tick adjustment (upscaled)
* @ntp_next_leap_sec: Second value of the next pending leapsecond, or TIME64_MAX if no leap
*
* @pps_valid: PPS signal watchdog counter
* @pps_tf: PPS phase median filter
* @pps_jitter: PPS current jitter in nanoseconds
* @pps_fbase: PPS beginning of the last freq interval
* @pps_shift: PPS current interval duration in seconds (shift value)
* @pps_intcnt: PPS interval counter
* @pps_freq: PPS frequency offset in scaled ns/s
* @pps_stabil: PPS current stability in scaled ns/s
*
* Protected by the timekeeping locks.
*/
struct ntp_data {
unsigned long tick_usec;
u64 tick_length;
u64 tick_length_base;
int time_state;
int time_status;
s64 time_offset;
long time_constant;
long time_maxerror;
long time_esterror;
s64 time_freq;
time64_t time_reftime;
long time_adjust;
s64 ntp_tick_adj;
time64_t ntp_next_leap_sec;
#ifdef CONFIG_NTP_PPS
int pps_valid;
long pps_tf[3];
long pps_jitter;
struct timespec64 pps_fbase;
int pps_shift;
int pps_intcnt;
s64 pps_freq;
long pps_stabil;
#endif
};
static struct ntp_data tk_ntp_data = {
.tick_usec = USER_TICK_USEC,
.time_state = TIME_OK,
.time_status = STA_UNSYNC,
.time_constant = 2,
.time_maxerror = NTP_PHASE_LIMIT,
.time_esterror = NTP_PHASE_LIMIT,
.ntp_next_leap_sec = TIME64_MAX,
};
#define SECS_PER_DAY 86400
#define MAX_TICKADJ 500LL /* usecs */
#define MAX_TICKADJ_SCALED \
(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
#define MAX_TAI_OFFSET 100000
#ifdef CONFIG_NTP_PPS
/*
* The following variables are used when a pulse-per-second (PPS) signal
* is available. They establish the engineering parameters of the clock
* discipline loop when controlled by the PPS signal.
*/
#define PPS_VALID 10 /* PPS signal watchdog max (s) */
#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
increase pps_shift or consecutive bad
intervals to decrease it */
#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
/*
* PPS signal quality monitors
*/
static long pps_calcnt; /* calibration intervals */
static long pps_jitcnt; /* jitter limit exceeded */
static long pps_stbcnt; /* stability limit exceeded */
static long pps_errcnt; /* calibration errors */
/*
* PPS kernel consumer compensates the whole phase error immediately.
* Otherwise, reduce the offset by a fixed factor times the time constant.
*/
static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
{
if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
return offset;
else
return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
}
static inline void pps_reset_freq_interval(struct ntp_data *ntpdata)
{
/* The PPS calibration interval may end surprisingly early */
ntpdata->pps_shift = PPS_INTMIN;
ntpdata->pps_intcnt = 0;
}
/**
* pps_clear - Clears the PPS state variables
* @ntpdata: Pointer to ntp data
*/
static inline void pps_clear(struct ntp_data *ntpdata)
{
pps_reset_freq_interval(ntpdata);
ntpdata->pps_tf[0] = 0;
ntpdata->pps_tf[1] = 0;
ntpdata->pps_tf[2] = 0;
ntpdata->pps_fbase.tv_sec = ntpdata->pps_fbase.tv_nsec = 0;
ntpdata->pps_freq = 0;
}
/*
* Decrease pps_valid to indicate that another second has passed since the
* last PPS signal. When it reaches 0, indicate that PPS signal is missing.
*/
static inline void pps_dec_valid(struct ntp_data *ntpdata)
{
if (ntpdata->pps_valid > 0) {
ntpdata->pps_valid--;
} else {
ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
STA_PPSWANDER | STA_PPSERROR);
pps_clear(ntpdata);
}
}
static inline void pps_set_freq(struct ntp_data *ntpdata)
{
ntpdata->pps_freq = ntpdata->time_freq;
}
static inline bool is_error_status(int status)
{
return (status & (STA_UNSYNC|STA_CLOCKERR))
/*
* PPS signal lost when either PPS time or PPS frequency
* synchronization requested
*/
|| ((status & (STA_PPSFREQ|STA_PPSTIME))
&& !(status & STA_PPSSIGNAL))
/*
* PPS jitter exceeded when PPS time synchronization
* requested
*/
|| ((status & (STA_PPSTIME|STA_PPSJITTER))
== (STA_PPSTIME|STA_PPSJITTER))
/*
* PPS wander exceeded or calibration error when PPS
* frequency synchronization requested
*/
|| ((status & STA_PPSFREQ)
&& (status & (STA_PPSWANDER|STA_PPSERROR)));
}
static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
{
txc->ppsfreq = shift_right((ntpdata->pps_freq >> PPM_SCALE_INV_SHIFT) *
PPM_SCALE_INV, NTP_SCALE_SHIFT);
txc->jitter = ntpdata->pps_jitter;
if (!(ntpdata->time_status & STA_NANO))
txc->jitter = ntpdata->pps_jitter / NSEC_PER_USEC;
txc->shift = ntpdata->pps_shift;
txc->stabil = ntpdata->pps_stabil;
txc->jitcnt = pps_jitcnt;
txc->calcnt = pps_calcnt;
txc->errcnt = pps_errcnt;
txc->stbcnt = pps_stbcnt;
}
#else /* !CONFIG_NTP_PPS */
static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
{
return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
}
static inline void pps_reset_freq_interval(struct ntp_data *ntpdata) {}
static inline void pps_clear(struct ntp_data *ntpdata) {}
static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
static inline void pps_set_freq(struct ntp_data *ntpdata) {}
static inline bool is_error_status(int status)
{
return status & (STA_UNSYNC|STA_CLOCKERR);
}
static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
{
/* PPS is not implemented, so these are zero */
txc->ppsfreq = 0;
txc->jitter = 0;
txc->shift = 0;
txc->stabil = 0;
txc->jitcnt = 0;
txc->calcnt = 0;
txc->errcnt = 0;
txc->stbcnt = 0;
}
#endif /* CONFIG_NTP_PPS */
/*
* Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and
* time_freq:
*/
static void ntp_update_frequency(struct ntp_data *ntpdata)
{
u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec;
second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT;
second_length += ntpdata->ntp_tick_adj;
second_length += ntpdata->time_freq;
new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
/*
* Don't wait for the next second_overflow, apply the change to the
* tick length immediately:
*/
ntpdata->tick_length += new_base - ntpdata->tick_length_base;
ntpdata->tick_length_base = new_base;
}
static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
{
ntpdata->time_status &= ~STA_MODE;
if (secs < MINSEC)
return 0;
if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
return 0;
ntpdata->time_status |= STA_MODE;
return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
}
static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
{
s64 freq_adj, offset64;
long secs, real_secs;
if (!(ntpdata->time_status & STA_PLL))
return;
if (!(ntpdata->time_status & STA_NANO)) {
/* Make sure the multiplication below won't overflow */
offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
offset *= NSEC_PER_USEC;
}
/* Scale the phase adjustment and clamp to the operating range. */
offset = clamp(offset, -MAXPHASE, MAXPHASE);
/*
* Select how the frequency is to be controlled
* and in which mode (PLL or FLL).
*/
real_secs = __ktime_get_real_seconds();
secs = (long)(real_secs - ntpdata->time_reftime);
if (unlikely(ntpdata->time_status & STA_FREQHOLD))
secs = 0;
ntpdata->time_reftime = real_secs;
offset64 = offset;
freq_adj = ntp_update_offset_fll(ntpdata, offset64, secs);
/*
* Clamp update interval to reduce PLL gain with low
* sampling rate (e.g. intermittent network connection)
* to avoid instability.
*/
if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant)))
secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant);
freq_adj += (offset64 * secs) <<
(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant));
freq_adj = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED);
ntpdata->time_freq = max(freq_adj, -MAXFREQ_SCALED);
ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
}
static void __ntp_clear(struct ntp_data *ntpdata)
{
/* Stop active adjtime() */
ntpdata->time_adjust = 0;
ntpdata->time_status |= STA_UNSYNC;
ntpdata->time_maxerror = NTP_PHASE_LIMIT;
ntpdata->time_esterror = NTP_PHASE_LIMIT;
ntp_update_frequency(ntpdata);
ntpdata->tick_length = ntpdata->tick_length_base;
ntpdata->time_offset = 0;
ntpdata->ntp_next_leap_sec = TIME64_MAX;
/* Clear PPS state variables */
pps_clear(ntpdata);
}
/**
* ntp_clear - Clears the NTP state variables
*/
void ntp_clear(void)
{
__ntp_clear(&tk_ntp_data);
}
u64 ntp_tick_length(void)
{
return tk_ntp_data.tick_length;
}
/**
* ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
*
* Provides the time of the next leapsecond against CLOCK_REALTIME in
* a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
*/
ktime_t ntp_get_next_leap(void)
{
struct ntp_data *ntpdata = &tk_ntp_data;
ktime_t ret;
if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
return ktime_set(ntpdata->ntp_next_leap_sec, 0);
ret = KTIME_MAX;
return ret;
}
/*
* This routine handles the overflow of the microsecond field
*
* The tricky bits of code to handle the accurate clock support
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
* They were originally developed for SUN and DEC kernels.
* All the kudos should go to Dave for this stuff.
*
* Also handles leap second processing, and returns leap offset
*/
int second_overflow(time64_t secs)
{
struct ntp_data *ntpdata = &tk_ntp_data;
s64 delta;
int leap = 0;
s32 rem;
/*
* Leap second processing. If in leap-insert state at the end of the
* day, the system clock is set back one second; if in leap-delete
* state, the system clock is set ahead one second.
*/
switch (ntpdata->time_state) {
case TIME_OK:
if (ntpdata->time_status & STA_INS) {
ntpdata->time_state = TIME_INS;
div_s64_rem(secs, SECS_PER_DAY, &rem);
ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
} else if (ntpdata->time_status & STA_DEL) {
ntpdata->time_state = TIME_DEL;
div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
}
break;
case TIME_INS:
if (!(ntpdata->time_status & STA_INS)) {
ntpdata->ntp_next_leap_sec = TIME64_MAX;
ntpdata->time_state = TIME_OK;
} else if (secs == ntpdata->ntp_next_leap_sec) {
leap = -1;
ntpdata->time_state = TIME_OOP;
pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
}
break;
case TIME_DEL:
if (!(ntpdata->time_status & STA_DEL)) {
ntpdata->ntp_next_leap_sec = TIME64_MAX;
ntpdata->time_state = TIME_OK;
} else if (secs == ntpdata->ntp_next_leap_sec) {
leap = 1;
ntpdata->ntp_next_leap_sec = TIME64_MAX;
ntpdata->time_state = TIME_WAIT;
pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
}
break;
case TIME_OOP:
ntpdata->ntp_next_leap_sec = TIME64_MAX;
ntpdata->time_state = TIME_WAIT;
break;
case TIME_WAIT:
if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
ntpdata->time_state = TIME_OK;
break;
}
/* Bump the maxerror field */
ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC;
if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) {
ntpdata->time_maxerror = NTP_PHASE_LIMIT;
ntpdata->time_status |= STA_UNSYNC;
}
/* Compute the phase adjustment for the next second */
ntpdata->tick_length = ntpdata->tick_length_base;
delta = ntp_offset_chunk(ntpdata, ntpdata->time_offset);
ntpdata->time_offset -= delta;
ntpdata->tick_length += delta;
/* Check PPS signal */
pps_dec_valid(ntpdata);
if (!ntpdata->time_adjust)
goto out;
if (ntpdata->time_adjust > MAX_TICKADJ) {
ntpdata->time_adjust -= MAX_TICKADJ;
ntpdata->tick_length += MAX_TICKADJ_SCALED;
goto out;
}
if (ntpdata->time_adjust < -MAX_TICKADJ) {
ntpdata->time_adjust += MAX_TICKADJ;
ntpdata->tick_length -= MAX_TICKADJ_SCALED;
goto out;
}
ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
<< NTP_SCALE_SHIFT;
ntpdata->time_adjust = 0;
out:
return leap;
}
#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
static void sync_hw_clock(struct work_struct *work);
static DECLARE_WORK(sync_work, sync_hw_clock);
static struct hrtimer sync_hrtimer;
#define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
{
queue_work(system_freezable_power_efficient_wq, &sync_work);
return HRTIMER_NORESTART;
}
static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
{
ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
if (retry)
exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
else
exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
}
/*
* Check whether @now is correct versus the required time to update the RTC
* and calculate the value which needs to be written to the RTC so that the
* next seconds increment of the RTC after the write is aligned with the next
* seconds increment of clock REALTIME.
*
* tsched t1 write(t2.tv_sec - 1sec)) t2 RTC increments seconds
*
* t2.tv_nsec == 0
* tsched = t2 - set_offset_nsec
* newval = t2 - NSEC_PER_SEC
*
* ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
*
* As the execution of this code is not guaranteed to happen exactly at
* tsched this allows it to happen within a fuzzy region:
*
* abs(now - tsched) < FUZZ
*
* If @now is not inside the allowed window the function returns false.
*/
static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
struct timespec64 *to_set,
const struct timespec64 *now)
{
/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
struct timespec64 delay = {.tv_sec = -1,
.tv_nsec = set_offset_nsec};
*to_set = timespec64_add(*now, delay);
if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
to_set->tv_nsec = 0;
return true;
}
if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
to_set->tv_sec++;
to_set->tv_nsec = 0;
return true;
}
return false;
}
#ifdef CONFIG_GENERIC_CMOS_UPDATE
int __weak update_persistent_clock64(struct timespec64 now64)
{
return -ENODEV;
}
#else
static inline int update_persistent_clock64(struct timespec64 now64)
{
return -ENODEV;
}
#endif
#ifdef CONFIG_RTC_SYSTOHC
/* Save NTP synchronized time to the RTC */
static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
{
struct rtc_device *rtc;
struct rtc_time tm;
int err = -ENODEV;
rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
if (!rtc)
return -ENODEV;
if (!rtc->ops || !rtc->ops->set_time)
goto out_close;
/* First call might not have the correct offset */
if (*offset_nsec == rtc->set_offset_nsec) {
rtc_time64_to_tm(to_set->tv_sec, &tm);
err = rtc_set_time(rtc, &tm);
} else {
/* Store the update offset and let the caller try again */
*offset_nsec = rtc->set_offset_nsec;
err = -EAGAIN;
}
out_close:
rtc_class_close(rtc);
return err;
}
#else
static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
{
return -ENODEV;
}
#endif
/**
* ntp_synced - Tells whether the NTP status is not UNSYNC
* Returns: true if not UNSYNC, false otherwise
*/
static inline bool ntp_synced(void)
{
return !(tk_ntp_data.time_status & STA_UNSYNC);
}
/*
* If we have an externally synchronized Linux clock, then update RTC clock
* accordingly every ~11 minutes. Generally RTCs can only store second
* precision, but many RTCs will adjust the phase of their second tick to
* match the moment of update. This infrastructure arranges to call to the RTC
* set at the correct moment to phase synchronize the RTC second tick over
* with the kernel clock.
*/
static void sync_hw_clock(struct work_struct *work)
{
/*
* The default synchronization offset is 500ms for the deprecated
* update_persistent_clock64() under the assumption that it uses
* the infamous CMOS clock (MC146818).
*/
static unsigned long offset_nsec = NSEC_PER_SEC / 2;
struct timespec64 now, to_set;
int res = -EAGAIN;
/*
* Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
* managed to schedule the work between the timer firing and the
* work being able to rearm the timer. Wait for the timer to expire.
*/
if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
return;
ktime_get_real_ts64(&now);
/* If @now is not in the allowed window, try again */
if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
goto rearm;
/* Take timezone adjusted RTCs into account */
if (persistent_clock_is_local)
to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
/* Try the legacy RTC first. */
res = update_persistent_clock64(to_set);
if (res != -ENODEV)
goto rearm;
/* Try the RTC class */
res = update_rtc(&to_set, &offset_nsec);
if (res == -ENODEV)
return;
rearm:
sched_sync_hw_clock(offset_nsec, res != 0);
}
void ntp_notify_cmos_timer(bool offset_set)
{
/*
* If the time jumped (using ADJ_SETOFFSET) cancels sync timer,
* which may have been running if the time was synchronized
* prior to the ADJ_SETOFFSET call.
*/
if (offset_set)
hrtimer_cancel(&sync_hrtimer);
/*
* When the work is currently executed but has not yet the timer
* rearmed this queues the work immediately again. No big issue,
* just a pointless work scheduled.
*/
if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
queue_work(system_freezable_power_efficient_wq, &sync_work);
}
static void __init ntp_init_cmos_sync(void)
{
hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
sync_hrtimer.function = sync_timer_callback;
}
#else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
static inline void __init ntp_init_cmos_sync(void) { }
#endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
/*
* Propagate a new txc->status value into the NTP state:
*/
static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
{
if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
ntpdata->time_state = TIME_OK;
ntpdata->time_status = STA_UNSYNC;
ntpdata->ntp_next_leap_sec = TIME64_MAX;
/* Restart PPS frequency calibration */
pps_reset_freq_interval(ntpdata);
}
/*
* If we turn on PLL adjustments then reset the
* reference time to current time.
*/
if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
ntpdata->time_reftime = __ktime_get_real_seconds();
/* only set allowed bits */
ntpdata->time_status &= STA_RONLY;
ntpdata->time_status |= txc->status & ~STA_RONLY;
}
static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
s32 *time_tai)
{
if (txc->modes & ADJ_STATUS)
process_adj_status(ntpdata, txc);
if (txc->modes & ADJ_NANO)
ntpdata->time_status |= STA_NANO;
if (txc->modes & ADJ_MICRO)
ntpdata->time_status &= ~STA_NANO;
if (txc->modes & ADJ_FREQUENCY) {
ntpdata->time_freq = txc->freq * PPM_SCALE;
ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED);
ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED);
/* Update pps_freq */
pps_set_freq(ntpdata);
}
if (txc->modes & ADJ_MAXERROR)
ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
if (txc->modes & ADJ_ESTERROR)
ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
if (txc->modes & ADJ_TIMECONST) {
ntpdata->time_constant = clamp(txc->constant, 0, MAXTC);
if (!(ntpdata->time_status & STA_NANO))
ntpdata->time_constant += 4;
ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC);
}
if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
*time_tai = txc->constant;
if (txc->modes & ADJ_OFFSET)
ntp_update_offset(ntpdata, txc->offset);
if (txc->modes & ADJ_TICK)
ntpdata->tick_usec = txc->tick;
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
ntp_update_frequency(ntpdata);
}
/*
* adjtimex() mainly allows reading (and writing, if superuser) of
* kernel time-keeping variables. used by xntpd.
*/
int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
s32 *time_tai, struct audit_ntp_data *ad)
{
struct ntp_data *ntpdata = &tk_ntp_data;
int result;
if (txc->modes & ADJ_ADJTIME) {
long save_adjust = ntpdata->time_adjust;
if (!(txc->modes & ADJ_OFFSET_READONLY)) {
/* adjtime() is independent from ntp_adjtime() */
ntpdata->time_adjust = txc->offset;
ntp_update_frequency(ntpdata);
audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust);
audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, ntpdata->time_adjust);
}
txc->offset = save_adjust;
} else {
/* If there are input parameters, then process them: */
if (txc->modes) {
audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset);
audit_ntp_set_old(ad, AUDIT_NTP_FREQ, ntpdata->time_freq);
audit_ntp_set_old(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai);
audit_ntp_set_old(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
process_adjtimex_modes(ntpdata, txc, time_tai);
audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset);
audit_ntp_set_new(ad, AUDIT_NTP_FREQ, ntpdata->time_freq);
audit_ntp_set_new(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai);
audit_ntp_set_new(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
}
txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT);
if (!(ntpdata->time_status & STA_NANO))
txc->offset = (u32)txc->offset / NSEC_PER_USEC;
}
result = ntpdata->time_state;
if (is_error_status(ntpdata->time_status))
result = TIME_ERROR;
txc->freq = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) *
PPM_SCALE_INV, NTP_SCALE_SHIFT);
txc->maxerror = ntpdata->time_maxerror;
txc->esterror = ntpdata->time_esterror;
txc->status = ntpdata->time_status;
txc->constant = ntpdata->time_constant;
txc->precision = 1;
txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
txc->tick = ntpdata->tick_usec;
txc->tai = *time_tai;
/* Fill PPS status fields */
pps_fill_timex(ntpdata, txc);
txc->time.tv_sec = ts->tv_sec;
txc->time.tv_usec = ts->tv_nsec;
if (!(ntpdata->time_status & STA_NANO))
txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
/* Handle leapsec adjustments */
if (unlikely(ts->tv_sec >= ntpdata->ntp_next_leap_sec)) {
if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
result = TIME_OOP;
txc->tai++;
txc->time.tv_sec--;
}
if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
result = TIME_WAIT;
txc->tai--;
txc->time.tv_sec++;
}
if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntpdata->ntp_next_leap_sec))
result = TIME_WAIT;
}
return result;
}
#ifdef CONFIG_NTP_PPS
/*
* struct pps_normtime is basically a struct timespec, but it is
* semantically different (and it is the reason why it was invented):
* pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
* while timespec.tv_nsec has a range of [0, NSEC_PER_SEC)
*/
struct pps_normtime {
s64 sec; /* seconds */
long nsec; /* nanoseconds */
};
/*
* Normalize the timestamp so that nsec is in the
* [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval
*/
static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
{
struct pps_normtime norm = {
.sec = ts.tv_sec,
.nsec = ts.tv_nsec
};
if (norm.nsec > (NSEC_PER_SEC >> 1)) {
norm.nsec -= NSEC_PER_SEC;
norm.sec++;
}
return norm;
}
/* Get current phase correction and jitter */
static inline long pps_phase_filter_get(struct ntp_data *ntpdata, long *jitter)
{
*jitter = ntpdata->pps_tf[0] - ntpdata->pps_tf[1];
if (*jitter < 0)
*jitter = -*jitter;
/* TODO: test various filters */
return ntpdata->pps_tf[0];
}
/* Add the sample to the phase filter */
static inline void pps_phase_filter_add(struct ntp_data *ntpdata, long err)
{
ntpdata->pps_tf[2] = ntpdata->pps_tf[1];
ntpdata->pps_tf[1] = ntpdata->pps_tf[0];
ntpdata->pps_tf[0] = err;
}
/*
* Decrease frequency calibration interval length. It is halved after four
* consecutive unstable intervals.
*/
static inline void pps_dec_freq_interval(struct ntp_data *ntpdata)
{
if (--ntpdata->pps_intcnt <= -PPS_INTCOUNT) {
ntpdata->pps_intcnt = -PPS_INTCOUNT;
if (ntpdata->pps_shift > PPS_INTMIN) {
ntpdata->pps_shift--;
ntpdata->pps_intcnt = 0;
}
}
}
/*
* Increase frequency calibration interval length. It is doubled after
* four consecutive stable intervals.
*/
static inline void pps_inc_freq_interval(struct ntp_data *ntpdata)
{
if (++ntpdata->pps_intcnt >= PPS_INTCOUNT) {
ntpdata->pps_intcnt = PPS_INTCOUNT;
if (ntpdata->pps_shift < PPS_INTMAX) {
ntpdata->pps_shift++;
ntpdata->pps_intcnt = 0;
}
}
}
/*
* Update clock frequency based on MONOTONIC_RAW clock PPS signal
* timestamps
*
* At the end of the calibration interval the difference between the
* first and last MONOTONIC_RAW clock timestamps divided by the length
* of the interval becomes the frequency update. If the interval was
* too long, the data are discarded.
* Returns the difference between old and new frequency values.
*/
static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm)
{
long delta, delta_mod;
s64 ftemp;
/* Check if the frequency interval was too long */
if (freq_norm.sec > (2 << ntpdata->pps_shift)) {
ntpdata->time_status |= STA_PPSERROR;
pps_errcnt++;
pps_dec_freq_interval(ntpdata);
printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
freq_norm.sec);
return 0;
}
/*
* Here the raw frequency offset and wander (stability) is
* calculated. If the wander is less than the wander threshold the
* interval is increased; otherwise it is decreased.
*/
ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
freq_norm.sec);
delta = shift_right(ftemp - ntpdata->pps_freq, NTP_SCALE_SHIFT);
ntpdata->pps_freq = ftemp;
if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
ntpdata->time_status |= STA_PPSWANDER;
pps_stbcnt++;
pps_dec_freq_interval(ntpdata);
} else {
/* Good sample */
pps_inc_freq_interval(ntpdata);
}
/*
* The stability metric is calculated as the average of recent
* frequency changes, but is used only for performance monitoring
*/
delta_mod = delta;
if (delta_mod < 0)
delta_mod = -delta_mod;
ntpdata->pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC),
NSEC_PER_USEC) - ntpdata->pps_stabil) >> PPS_INTMIN;
/* If enabled, the system clock frequency is updated */
if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
ntpdata->time_freq = ntpdata->pps_freq;
ntp_update_frequency(ntpdata);
}
return delta;
}
/* Correct REALTIME clock phase error against PPS signal */
static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
{
long correction = -error;
long jitter;
/* Add the sample to the median filter */
pps_phase_filter_add(ntpdata, correction);
correction = pps_phase_filter_get(ntpdata, &jitter);
/*
* Nominal jitter is due to PPS signal noise. If it exceeds the
* threshold, the sample is discarded; otherwise, if so enabled,
* the time offset is updated.
*/
if (jitter > (ntpdata->pps_jitter << PPS_POPCORN)) {
printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
jitter, (ntpdata->pps_jitter << PPS_POPCORN));
ntpdata->time_status |= STA_PPSJITTER;
pps_jitcnt++;
} else if (ntpdata->time_status & STA_PPSTIME) {
/* Correct the time using the phase offset */
ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
NTP_INTERVAL_FREQ);
/* Cancel running adjtime() */
ntpdata->time_adjust = 0;
}
/* Update jitter */
ntpdata->pps_jitter += (jitter - ntpdata->pps_jitter) >> PPS_INTMIN;
}
/*
* __hardpps() - discipline CPU clock oscillator to external PPS signal
*
* This routine is called at each PPS signal arrival in order to
* discipline the CPU clock oscillator to the PPS signal. It takes two
* parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
* is used to correct clock phase error and the latter is used to
* correct the frequency.
*
* This code is based on David Mills's reference nanokernel
* implementation. It was mostly rewritten but keeps the same idea.
*/
void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
{
struct pps_normtime pts_norm, freq_norm;
struct ntp_data *ntpdata = &tk_ntp_data;
pts_norm = pps_normalize_ts(*phase_ts);
/* Clear the error bits, they will be set again if needed */
ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
/* indicate signal presence */
ntpdata->time_status |= STA_PPSSIGNAL;
ntpdata->pps_valid = PPS_VALID;
/*
* When called for the first time, just start the frequency
* interval
*/
if (unlikely(ntpdata->pps_fbase.tv_sec == 0)) {
ntpdata->pps_fbase = *raw_ts;
return;
}
/* Ok, now we have a base for frequency calculation */
freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, ntpdata->pps_fbase));
/*
* Check that the signal is in the range
* [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it
*/
if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
ntpdata->time_status |= STA_PPSJITTER;
/* Restart the frequency calibration interval */
ntpdata->pps_fbase = *raw_ts;
printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
return;
}
/* Signal is ok. Check if the current frequency interval is finished */
if (freq_norm.sec >= (1 << ntpdata->pps_shift)) {
pps_calcnt++;
/* Restart the frequency calibration interval */
ntpdata->pps_fbase = *raw_ts;
hardpps_update_freq(ntpdata, freq_norm);
}
hardpps_update_phase(ntpdata, pts_norm.nsec);
}
#endif /* CONFIG_NTP_PPS */
static int __init ntp_tick_adj_setup(char *str)
{
int rc = kstrtos64(str, 0, &tk_ntp_data.ntp_tick_adj);
if (rc)
return rc;
tk_ntp_data.ntp_tick_adj <<= NTP_SCALE_SHIFT;
return 1;
}
__setup("ntp_tick_adj=", ntp_tick_adj_setup);
void __init ntp_init(void)
{
ntp_clear();
ntp_init_cmos_sync();
}