mirror of
https://github.com/torvalds/linux.git
synced 2024-12-12 14:12:51 +00:00
3a861560cc
btree_iter is used in two ways: either allocated on the stack with a fixed size MAX_BSETS, or from a mempool with a dynamic size based on the specific cache set. Previously, the struct had a fixed-length array of size MAX_BSETS which was indexed out-of-bounds for the dynamically-sized iterators, which causes UBSAN to complain. This patch uses the same approach as in bcachefs's sort_iter and splits the iterator into a btree_iter with a flexible array member and a btree_iter_stack which embeds a btree_iter as well as a fixed-length data array. Cc: stable@vger.kernel.org Closes: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/2039368 Signed-off-by: Matthew Mirvish <matthew@mm12.xyz> Signed-off-by: Coly Li <colyli@suse.de> Link: https://lore.kernel.org/r/20240509011117.2697-3-colyli@suse.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
1391 lines
33 KiB
C
1391 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Code for working with individual keys, and sorted sets of keys with in a
|
|
* btree node
|
|
*
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "bcache: %s() " fmt, __func__
|
|
|
|
#include "util.h"
|
|
#include "bset.h"
|
|
|
|
#include <linux/console.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/random.h>
|
|
#include <linux/prefetch.h>
|
|
|
|
#ifdef CONFIG_BCACHE_DEBUG
|
|
|
|
void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
|
|
{
|
|
struct bkey *k, *next;
|
|
|
|
for (k = i->start; k < bset_bkey_last(i); k = next) {
|
|
next = bkey_next(k);
|
|
|
|
pr_err("block %u key %u/%u: ", set,
|
|
(unsigned int) ((u64 *) k - i->d), i->keys);
|
|
|
|
if (b->ops->key_dump)
|
|
b->ops->key_dump(b, k);
|
|
else
|
|
pr_cont("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
|
|
|
|
if (next < bset_bkey_last(i) &&
|
|
bkey_cmp(k, b->ops->is_extents ?
|
|
&START_KEY(next) : next) > 0)
|
|
pr_err("Key skipped backwards\n");
|
|
}
|
|
}
|
|
|
|
void bch_dump_bucket(struct btree_keys *b)
|
|
{
|
|
unsigned int i;
|
|
|
|
console_lock();
|
|
for (i = 0; i <= b->nsets; i++)
|
|
bch_dump_bset(b, b->set[i].data,
|
|
bset_sector_offset(b, b->set[i].data));
|
|
console_unlock();
|
|
}
|
|
|
|
int __bch_count_data(struct btree_keys *b)
|
|
{
|
|
unsigned int ret = 0;
|
|
struct btree_iter_stack iter;
|
|
struct bkey *k;
|
|
|
|
if (b->ops->is_extents)
|
|
for_each_key(b, k, &iter)
|
|
ret += KEY_SIZE(k);
|
|
return ret;
|
|
}
|
|
|
|
void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
struct bkey *k, *p = NULL;
|
|
struct btree_iter_stack iter;
|
|
const char *err;
|
|
|
|
for_each_key(b, k, &iter) {
|
|
if (b->ops->is_extents) {
|
|
err = "Keys out of order";
|
|
if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
|
|
goto bug;
|
|
|
|
if (bch_ptr_invalid(b, k))
|
|
continue;
|
|
|
|
err = "Overlapping keys";
|
|
if (p && bkey_cmp(p, &START_KEY(k)) > 0)
|
|
goto bug;
|
|
} else {
|
|
if (bch_ptr_bad(b, k))
|
|
continue;
|
|
|
|
err = "Duplicate keys";
|
|
if (p && !bkey_cmp(p, k))
|
|
goto bug;
|
|
}
|
|
p = k;
|
|
}
|
|
#if 0
|
|
err = "Key larger than btree node key";
|
|
if (p && bkey_cmp(p, &b->key) > 0)
|
|
goto bug;
|
|
#endif
|
|
return;
|
|
bug:
|
|
bch_dump_bucket(b);
|
|
|
|
va_start(args, fmt);
|
|
vprintk(fmt, args);
|
|
va_end(args);
|
|
|
|
panic("bch_check_keys error: %s:\n", err);
|
|
}
|
|
|
|
static void bch_btree_iter_next_check(struct btree_iter *iter)
|
|
{
|
|
struct bkey *k = iter->data->k, *next = bkey_next(k);
|
|
|
|
if (next < iter->data->end &&
|
|
bkey_cmp(k, iter->b->ops->is_extents ?
|
|
&START_KEY(next) : next) > 0) {
|
|
bch_dump_bucket(iter->b);
|
|
panic("Key skipped backwards\n");
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
|
|
|
|
#endif
|
|
|
|
/* Keylists */
|
|
|
|
int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
|
|
{
|
|
size_t oldsize = bch_keylist_nkeys(l);
|
|
size_t newsize = oldsize + u64s;
|
|
uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
|
|
uint64_t *new_keys;
|
|
|
|
newsize = roundup_pow_of_two(newsize);
|
|
|
|
if (newsize <= KEYLIST_INLINE ||
|
|
roundup_pow_of_two(oldsize) == newsize)
|
|
return 0;
|
|
|
|
new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
|
|
|
|
if (!new_keys)
|
|
return -ENOMEM;
|
|
|
|
if (!old_keys)
|
|
memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
|
|
|
|
l->keys_p = new_keys;
|
|
l->top_p = new_keys + oldsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Pop the top key of keylist by pointing l->top to its previous key */
|
|
struct bkey *bch_keylist_pop(struct keylist *l)
|
|
{
|
|
struct bkey *k = l->keys;
|
|
|
|
if (k == l->top)
|
|
return NULL;
|
|
|
|
while (bkey_next(k) != l->top)
|
|
k = bkey_next(k);
|
|
|
|
return l->top = k;
|
|
}
|
|
|
|
/* Pop the bottom key of keylist and update l->top_p */
|
|
void bch_keylist_pop_front(struct keylist *l)
|
|
{
|
|
l->top_p -= bkey_u64s(l->keys);
|
|
|
|
memmove(l->keys,
|
|
bkey_next(l->keys),
|
|
bch_keylist_bytes(l));
|
|
}
|
|
|
|
/* Key/pointer manipulation */
|
|
|
|
void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
|
|
unsigned int i)
|
|
{
|
|
BUG_ON(i > KEY_PTRS(src));
|
|
|
|
/* Only copy the header, key, and one pointer. */
|
|
memcpy(dest, src, 2 * sizeof(uint64_t));
|
|
dest->ptr[0] = src->ptr[i];
|
|
SET_KEY_PTRS(dest, 1);
|
|
/* We didn't copy the checksum so clear that bit. */
|
|
SET_KEY_CSUM(dest, 0);
|
|
}
|
|
|
|
bool __bch_cut_front(const struct bkey *where, struct bkey *k)
|
|
{
|
|
unsigned int i, len = 0;
|
|
|
|
if (bkey_cmp(where, &START_KEY(k)) <= 0)
|
|
return false;
|
|
|
|
if (bkey_cmp(where, k) < 0)
|
|
len = KEY_OFFSET(k) - KEY_OFFSET(where);
|
|
else
|
|
bkey_copy_key(k, where);
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
|
|
|
|
BUG_ON(len > KEY_SIZE(k));
|
|
SET_KEY_SIZE(k, len);
|
|
return true;
|
|
}
|
|
|
|
bool __bch_cut_back(const struct bkey *where, struct bkey *k)
|
|
{
|
|
unsigned int len = 0;
|
|
|
|
if (bkey_cmp(where, k) >= 0)
|
|
return false;
|
|
|
|
BUG_ON(KEY_INODE(where) != KEY_INODE(k));
|
|
|
|
if (bkey_cmp(where, &START_KEY(k)) > 0)
|
|
len = KEY_OFFSET(where) - KEY_START(k);
|
|
|
|
bkey_copy_key(k, where);
|
|
|
|
BUG_ON(len > KEY_SIZE(k));
|
|
SET_KEY_SIZE(k, len);
|
|
return true;
|
|
}
|
|
|
|
/* Auxiliary search trees */
|
|
|
|
/* 32 bits total: */
|
|
#define BKEY_MID_BITS 3
|
|
#define BKEY_EXPONENT_BITS 7
|
|
#define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
|
|
#define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
|
|
|
|
struct bkey_float {
|
|
unsigned int exponent:BKEY_EXPONENT_BITS;
|
|
unsigned int m:BKEY_MID_BITS;
|
|
unsigned int mantissa:BKEY_MANTISSA_BITS;
|
|
} __packed;
|
|
|
|
/*
|
|
* BSET_CACHELINE was originally intended to match the hardware cacheline size -
|
|
* it used to be 64, but I realized the lookup code would touch slightly less
|
|
* memory if it was 128.
|
|
*
|
|
* It definites the number of bytes (in struct bset) per struct bkey_float in
|
|
* the auxiliar search tree - when we're done searching the bset_float tree we
|
|
* have this many bytes left that we do a linear search over.
|
|
*
|
|
* Since (after level 5) every level of the bset_tree is on a new cacheline,
|
|
* we're touching one fewer cacheline in the bset tree in exchange for one more
|
|
* cacheline in the linear search - but the linear search might stop before it
|
|
* gets to the second cacheline.
|
|
*/
|
|
|
|
#define BSET_CACHELINE 128
|
|
|
|
/* Space required for the btree node keys */
|
|
static inline size_t btree_keys_bytes(struct btree_keys *b)
|
|
{
|
|
return PAGE_SIZE << b->page_order;
|
|
}
|
|
|
|
static inline size_t btree_keys_cachelines(struct btree_keys *b)
|
|
{
|
|
return btree_keys_bytes(b) / BSET_CACHELINE;
|
|
}
|
|
|
|
/* Space required for the auxiliary search trees */
|
|
static inline size_t bset_tree_bytes(struct btree_keys *b)
|
|
{
|
|
return btree_keys_cachelines(b) * sizeof(struct bkey_float);
|
|
}
|
|
|
|
/* Space required for the prev pointers */
|
|
static inline size_t bset_prev_bytes(struct btree_keys *b)
|
|
{
|
|
return btree_keys_cachelines(b) * sizeof(uint8_t);
|
|
}
|
|
|
|
/* Memory allocation */
|
|
|
|
void bch_btree_keys_free(struct btree_keys *b)
|
|
{
|
|
struct bset_tree *t = b->set;
|
|
|
|
if (bset_prev_bytes(b) < PAGE_SIZE)
|
|
kfree(t->prev);
|
|
else
|
|
free_pages((unsigned long) t->prev,
|
|
get_order(bset_prev_bytes(b)));
|
|
|
|
if (bset_tree_bytes(b) < PAGE_SIZE)
|
|
kfree(t->tree);
|
|
else
|
|
free_pages((unsigned long) t->tree,
|
|
get_order(bset_tree_bytes(b)));
|
|
|
|
free_pages((unsigned long) t->data, b->page_order);
|
|
|
|
t->prev = NULL;
|
|
t->tree = NULL;
|
|
t->data = NULL;
|
|
}
|
|
|
|
int bch_btree_keys_alloc(struct btree_keys *b,
|
|
unsigned int page_order,
|
|
gfp_t gfp)
|
|
{
|
|
struct bset_tree *t = b->set;
|
|
|
|
BUG_ON(t->data);
|
|
|
|
b->page_order = page_order;
|
|
|
|
t->data = (void *) __get_free_pages(__GFP_COMP|gfp, b->page_order);
|
|
if (!t->data)
|
|
goto err;
|
|
|
|
t->tree = bset_tree_bytes(b) < PAGE_SIZE
|
|
? kmalloc(bset_tree_bytes(b), gfp)
|
|
: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
|
|
if (!t->tree)
|
|
goto err;
|
|
|
|
t->prev = bset_prev_bytes(b) < PAGE_SIZE
|
|
? kmalloc(bset_prev_bytes(b), gfp)
|
|
: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
|
|
if (!t->prev)
|
|
goto err;
|
|
|
|
return 0;
|
|
err:
|
|
bch_btree_keys_free(b);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
|
|
bool *expensive_debug_checks)
|
|
{
|
|
b->ops = ops;
|
|
b->expensive_debug_checks = expensive_debug_checks;
|
|
b->nsets = 0;
|
|
b->last_set_unwritten = 0;
|
|
|
|
/*
|
|
* struct btree_keys in embedded in struct btree, and struct
|
|
* bset_tree is embedded into struct btree_keys. They are all
|
|
* initialized as 0 by kzalloc() in mca_bucket_alloc(), and
|
|
* b->set[0].data is allocated in bch_btree_keys_alloc(), so we
|
|
* don't have to initiate b->set[].size and b->set[].data here
|
|
* any more.
|
|
*/
|
|
}
|
|
|
|
/* Binary tree stuff for auxiliary search trees */
|
|
|
|
/*
|
|
* return array index next to j when does in-order traverse
|
|
* of a binary tree which is stored in a linear array
|
|
*/
|
|
static unsigned int inorder_next(unsigned int j, unsigned int size)
|
|
{
|
|
if (j * 2 + 1 < size) {
|
|
j = j * 2 + 1;
|
|
|
|
while (j * 2 < size)
|
|
j *= 2;
|
|
} else
|
|
j >>= ffz(j) + 1;
|
|
|
|
return j;
|
|
}
|
|
|
|
/*
|
|
* return array index previous to j when does in-order traverse
|
|
* of a binary tree which is stored in a linear array
|
|
*/
|
|
static unsigned int inorder_prev(unsigned int j, unsigned int size)
|
|
{
|
|
if (j * 2 < size) {
|
|
j = j * 2;
|
|
|
|
while (j * 2 + 1 < size)
|
|
j = j * 2 + 1;
|
|
} else
|
|
j >>= ffs(j);
|
|
|
|
return j;
|
|
}
|
|
|
|
/*
|
|
* I have no idea why this code works... and I'm the one who wrote it
|
|
*
|
|
* However, I do know what it does:
|
|
* Given a binary tree constructed in an array (i.e. how you normally implement
|
|
* a heap), it converts a node in the tree - referenced by array index - to the
|
|
* index it would have if you did an inorder traversal.
|
|
*
|
|
* Also tested for every j, size up to size somewhere around 6 million.
|
|
*
|
|
* The binary tree starts at array index 1, not 0
|
|
* extra is a function of size:
|
|
* extra = (size - rounddown_pow_of_two(size - 1)) << 1;
|
|
*/
|
|
static unsigned int __to_inorder(unsigned int j,
|
|
unsigned int size,
|
|
unsigned int extra)
|
|
{
|
|
unsigned int b = fls(j);
|
|
unsigned int shift = fls(size - 1) - b;
|
|
|
|
j ^= 1U << (b - 1);
|
|
j <<= 1;
|
|
j |= 1;
|
|
j <<= shift;
|
|
|
|
if (j > extra)
|
|
j -= (j - extra) >> 1;
|
|
|
|
return j;
|
|
}
|
|
|
|
/*
|
|
* Return the cacheline index in bset_tree->data, where j is index
|
|
* from a linear array which stores the auxiliar binary tree
|
|
*/
|
|
static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
|
|
{
|
|
return __to_inorder(j, t->size, t->extra);
|
|
}
|
|
|
|
static unsigned int __inorder_to_tree(unsigned int j,
|
|
unsigned int size,
|
|
unsigned int extra)
|
|
{
|
|
unsigned int shift;
|
|
|
|
if (j > extra)
|
|
j += j - extra;
|
|
|
|
shift = ffs(j);
|
|
|
|
j >>= shift;
|
|
j |= roundup_pow_of_two(size) >> shift;
|
|
|
|
return j;
|
|
}
|
|
|
|
/*
|
|
* Return an index from a linear array which stores the auxiliar binary
|
|
* tree, j is the cacheline index of t->data.
|
|
*/
|
|
static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
|
|
{
|
|
return __inorder_to_tree(j, t->size, t->extra);
|
|
}
|
|
|
|
#if 0
|
|
void inorder_test(void)
|
|
{
|
|
unsigned long done = 0;
|
|
ktime_t start = ktime_get();
|
|
|
|
for (unsigned int size = 2;
|
|
size < 65536000;
|
|
size++) {
|
|
unsigned int extra =
|
|
(size - rounddown_pow_of_two(size - 1)) << 1;
|
|
unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
|
|
|
|
if (!(size % 4096))
|
|
pr_notice("loop %u, %llu per us\n", size,
|
|
done / ktime_us_delta(ktime_get(), start));
|
|
|
|
while (1) {
|
|
if (__inorder_to_tree(i, size, extra) != j)
|
|
panic("size %10u j %10u i %10u", size, j, i);
|
|
|
|
if (__to_inorder(j, size, extra) != i)
|
|
panic("size %10u j %10u i %10u", size, j, i);
|
|
|
|
if (j == rounddown_pow_of_two(size) - 1)
|
|
break;
|
|
|
|
BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
|
|
|
|
j = inorder_next(j, size);
|
|
i++;
|
|
}
|
|
|
|
done += size - 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Cacheline/offset <-> bkey pointer arithmetic:
|
|
*
|
|
* t->tree is a binary search tree in an array; each node corresponds to a key
|
|
* in one cacheline in t->set (BSET_CACHELINE bytes).
|
|
*
|
|
* This means we don't have to store the full index of the key that a node in
|
|
* the binary tree points to; to_inorder() gives us the cacheline, and then
|
|
* bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
|
|
*
|
|
* cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
|
|
* make this work.
|
|
*
|
|
* To construct the bfloat for an arbitrary key we need to know what the key
|
|
* immediately preceding it is: we have to check if the two keys differ in the
|
|
* bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
|
|
* of the previous key so we can walk backwards to it from t->tree[j]'s key.
|
|
*/
|
|
|
|
static struct bkey *cacheline_to_bkey(struct bset_tree *t,
|
|
unsigned int cacheline,
|
|
unsigned int offset)
|
|
{
|
|
return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
|
|
}
|
|
|
|
static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
|
|
{
|
|
return ((void *) k - (void *) t->data) / BSET_CACHELINE;
|
|
}
|
|
|
|
static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
|
|
unsigned int cacheline,
|
|
struct bkey *k)
|
|
{
|
|
return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
|
|
}
|
|
|
|
static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
|
|
{
|
|
return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
|
|
}
|
|
|
|
static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
|
|
{
|
|
return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
|
|
}
|
|
|
|
/*
|
|
* For the write set - the one we're currently inserting keys into - we don't
|
|
* maintain a full search tree, we just keep a simple lookup table in t->prev.
|
|
*/
|
|
static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
|
|
{
|
|
return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
|
|
}
|
|
|
|
static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
|
|
{
|
|
low >>= shift;
|
|
low |= (high << 1) << (63U - shift);
|
|
return low;
|
|
}
|
|
|
|
/*
|
|
* Calculate mantissa value for struct bkey_float.
|
|
* If most significant bit of f->exponent is not set, then
|
|
* - f->exponent >> 6 is 0
|
|
* - p[0] points to bkey->low
|
|
* - p[-1] borrows bits from KEY_INODE() of bkey->high
|
|
* if most isgnificant bits of f->exponent is set, then
|
|
* - f->exponent >> 6 is 1
|
|
* - p[0] points to bits from KEY_INODE() of bkey->high
|
|
* - p[-1] points to other bits from KEY_INODE() of
|
|
* bkey->high too.
|
|
* See make_bfloat() to check when most significant bit of f->exponent
|
|
* is set or not.
|
|
*/
|
|
static inline unsigned int bfloat_mantissa(const struct bkey *k,
|
|
struct bkey_float *f)
|
|
{
|
|
const uint64_t *p = &k->low - (f->exponent >> 6);
|
|
|
|
return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
|
|
}
|
|
|
|
static void make_bfloat(struct bset_tree *t, unsigned int j)
|
|
{
|
|
struct bkey_float *f = &t->tree[j];
|
|
struct bkey *m = tree_to_bkey(t, j);
|
|
struct bkey *p = tree_to_prev_bkey(t, j);
|
|
|
|
struct bkey *l = is_power_of_2(j)
|
|
? t->data->start
|
|
: tree_to_prev_bkey(t, j >> ffs(j));
|
|
|
|
struct bkey *r = is_power_of_2(j + 1)
|
|
? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
|
|
: tree_to_bkey(t, j >> (ffz(j) + 1));
|
|
|
|
BUG_ON(m < l || m > r);
|
|
BUG_ON(bkey_next(p) != m);
|
|
|
|
/*
|
|
* If l and r have different KEY_INODE values (different backing
|
|
* device), f->exponent records how many least significant bits
|
|
* are different in KEY_INODE values and sets most significant
|
|
* bits to 1 (by +64).
|
|
* If l and r have same KEY_INODE value, f->exponent records
|
|
* how many different bits in least significant bits of bkey->low.
|
|
* See bfloat_mantiss() how the most significant bit of
|
|
* f->exponent is used to calculate bfloat mantissa value.
|
|
*/
|
|
if (KEY_INODE(l) != KEY_INODE(r))
|
|
f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
|
|
else
|
|
f->exponent = fls64(r->low ^ l->low);
|
|
|
|
f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
|
|
|
|
/*
|
|
* Setting f->exponent = 127 flags this node as failed, and causes the
|
|
* lookup code to fall back to comparing against the original key.
|
|
*/
|
|
|
|
if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
|
|
f->mantissa = bfloat_mantissa(m, f) - 1;
|
|
else
|
|
f->exponent = 127;
|
|
}
|
|
|
|
static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
|
|
{
|
|
if (t != b->set) {
|
|
unsigned int j = roundup(t[-1].size,
|
|
64 / sizeof(struct bkey_float));
|
|
|
|
t->tree = t[-1].tree + j;
|
|
t->prev = t[-1].prev + j;
|
|
}
|
|
|
|
while (t < b->set + MAX_BSETS)
|
|
t++->size = 0;
|
|
}
|
|
|
|
static void bch_bset_build_unwritten_tree(struct btree_keys *b)
|
|
{
|
|
struct bset_tree *t = bset_tree_last(b);
|
|
|
|
BUG_ON(b->last_set_unwritten);
|
|
b->last_set_unwritten = 1;
|
|
|
|
bset_alloc_tree(b, t);
|
|
|
|
if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
|
|
t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
|
|
t->size = 1;
|
|
}
|
|
}
|
|
|
|
void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
|
|
{
|
|
if (i != b->set->data) {
|
|
b->set[++b->nsets].data = i;
|
|
i->seq = b->set->data->seq;
|
|
} else
|
|
get_random_bytes(&i->seq, sizeof(uint64_t));
|
|
|
|
i->magic = magic;
|
|
i->version = 0;
|
|
i->keys = 0;
|
|
|
|
bch_bset_build_unwritten_tree(b);
|
|
}
|
|
|
|
/*
|
|
* Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
|
|
* accelerate bkey search in a btree node (pointed by bset_tree->data in
|
|
* memory). After search in the auxiliar tree by calling bset_search_tree(),
|
|
* a struct bset_search_iter is returned which indicates range [l, r] from
|
|
* bset_tree->data where the searching bkey might be inside. Then a followed
|
|
* linear comparison does the exact search, see __bch_bset_search() for how
|
|
* the auxiliary tree is used.
|
|
*/
|
|
void bch_bset_build_written_tree(struct btree_keys *b)
|
|
{
|
|
struct bset_tree *t = bset_tree_last(b);
|
|
struct bkey *prev = NULL, *k = t->data->start;
|
|
unsigned int j, cacheline = 1;
|
|
|
|
b->last_set_unwritten = 0;
|
|
|
|
bset_alloc_tree(b, t);
|
|
|
|
t->size = min_t(unsigned int,
|
|
bkey_to_cacheline(t, bset_bkey_last(t->data)),
|
|
b->set->tree + btree_keys_cachelines(b) - t->tree);
|
|
|
|
if (t->size < 2) {
|
|
t->size = 0;
|
|
return;
|
|
}
|
|
|
|
t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
|
|
|
|
/* First we figure out where the first key in each cacheline is */
|
|
for (j = inorder_next(0, t->size);
|
|
j;
|
|
j = inorder_next(j, t->size)) {
|
|
while (bkey_to_cacheline(t, k) < cacheline) {
|
|
prev = k;
|
|
k = bkey_next(k);
|
|
}
|
|
|
|
t->prev[j] = bkey_u64s(prev);
|
|
t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
|
|
}
|
|
|
|
while (bkey_next(k) != bset_bkey_last(t->data))
|
|
k = bkey_next(k);
|
|
|
|
t->end = *k;
|
|
|
|
/* Then we build the tree */
|
|
for (j = inorder_next(0, t->size);
|
|
j;
|
|
j = inorder_next(j, t->size))
|
|
make_bfloat(t, j);
|
|
}
|
|
|
|
/* Insert */
|
|
|
|
void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
|
|
{
|
|
struct bset_tree *t;
|
|
unsigned int inorder, j = 1;
|
|
|
|
for (t = b->set; t <= bset_tree_last(b); t++)
|
|
if (k < bset_bkey_last(t->data))
|
|
goto found_set;
|
|
|
|
BUG();
|
|
found_set:
|
|
if (!t->size || !bset_written(b, t))
|
|
return;
|
|
|
|
inorder = bkey_to_cacheline(t, k);
|
|
|
|
if (k == t->data->start)
|
|
goto fix_left;
|
|
|
|
if (bkey_next(k) == bset_bkey_last(t->data)) {
|
|
t->end = *k;
|
|
goto fix_right;
|
|
}
|
|
|
|
j = inorder_to_tree(inorder, t);
|
|
|
|
if (j &&
|
|
j < t->size &&
|
|
k == tree_to_bkey(t, j))
|
|
fix_left: do {
|
|
make_bfloat(t, j);
|
|
j = j * 2;
|
|
} while (j < t->size);
|
|
|
|
j = inorder_to_tree(inorder + 1, t);
|
|
|
|
if (j &&
|
|
j < t->size &&
|
|
k == tree_to_prev_bkey(t, j))
|
|
fix_right: do {
|
|
make_bfloat(t, j);
|
|
j = j * 2 + 1;
|
|
} while (j < t->size);
|
|
}
|
|
|
|
static void bch_bset_fix_lookup_table(struct btree_keys *b,
|
|
struct bset_tree *t,
|
|
struct bkey *k)
|
|
{
|
|
unsigned int shift = bkey_u64s(k);
|
|
unsigned int j = bkey_to_cacheline(t, k);
|
|
|
|
/* We're getting called from btree_split() or btree_gc, just bail out */
|
|
if (!t->size)
|
|
return;
|
|
|
|
/*
|
|
* k is the key we just inserted; we need to find the entry in the
|
|
* lookup table for the first key that is strictly greater than k:
|
|
* it's either k's cacheline or the next one
|
|
*/
|
|
while (j < t->size &&
|
|
table_to_bkey(t, j) <= k)
|
|
j++;
|
|
|
|
/*
|
|
* Adjust all the lookup table entries, and find a new key for any that
|
|
* have gotten too big
|
|
*/
|
|
for (; j < t->size; j++) {
|
|
t->prev[j] += shift;
|
|
|
|
if (t->prev[j] > 7) {
|
|
k = table_to_bkey(t, j - 1);
|
|
|
|
while (k < cacheline_to_bkey(t, j, 0))
|
|
k = bkey_next(k);
|
|
|
|
t->prev[j] = bkey_to_cacheline_offset(t, j, k);
|
|
}
|
|
}
|
|
|
|
if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
|
|
return;
|
|
|
|
/* Possibly add a new entry to the end of the lookup table */
|
|
|
|
for (k = table_to_bkey(t, t->size - 1);
|
|
k != bset_bkey_last(t->data);
|
|
k = bkey_next(k))
|
|
if (t->size == bkey_to_cacheline(t, k)) {
|
|
t->prev[t->size] =
|
|
bkey_to_cacheline_offset(t, t->size, k);
|
|
t->size++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tries to merge l and r: l should be lower than r
|
|
* Returns true if we were able to merge. If we did merge, l will be the merged
|
|
* key, r will be untouched.
|
|
*/
|
|
bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
|
|
{
|
|
if (!b->ops->key_merge)
|
|
return false;
|
|
|
|
/*
|
|
* Generic header checks
|
|
* Assumes left and right are in order
|
|
* Left and right must be exactly aligned
|
|
*/
|
|
if (!bch_bkey_equal_header(l, r) ||
|
|
bkey_cmp(l, &START_KEY(r)))
|
|
return false;
|
|
|
|
return b->ops->key_merge(b, l, r);
|
|
}
|
|
|
|
void bch_bset_insert(struct btree_keys *b, struct bkey *where,
|
|
struct bkey *insert)
|
|
{
|
|
struct bset_tree *t = bset_tree_last(b);
|
|
|
|
BUG_ON(!b->last_set_unwritten);
|
|
BUG_ON(bset_byte_offset(b, t->data) +
|
|
__set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
|
|
PAGE_SIZE << b->page_order);
|
|
|
|
memmove((uint64_t *) where + bkey_u64s(insert),
|
|
where,
|
|
(void *) bset_bkey_last(t->data) - (void *) where);
|
|
|
|
t->data->keys += bkey_u64s(insert);
|
|
bkey_copy(where, insert);
|
|
bch_bset_fix_lookup_table(b, t, where);
|
|
}
|
|
|
|
unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
|
|
struct bkey *replace_key)
|
|
{
|
|
unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
|
|
struct bset *i = bset_tree_last(b)->data;
|
|
struct bkey *m, *prev = NULL;
|
|
struct btree_iter_stack iter;
|
|
struct bkey preceding_key_on_stack = ZERO_KEY;
|
|
struct bkey *preceding_key_p = &preceding_key_on_stack;
|
|
|
|
BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
|
|
|
|
/*
|
|
* If k has preceding key, preceding_key_p will be set to address
|
|
* of k's preceding key; otherwise preceding_key_p will be set
|
|
* to NULL inside preceding_key().
|
|
*/
|
|
if (b->ops->is_extents)
|
|
preceding_key(&START_KEY(k), &preceding_key_p);
|
|
else
|
|
preceding_key(k, &preceding_key_p);
|
|
|
|
m = bch_btree_iter_stack_init(b, &iter, preceding_key_p);
|
|
|
|
if (b->ops->insert_fixup(b, k, &iter.iter, replace_key))
|
|
return status;
|
|
|
|
status = BTREE_INSERT_STATUS_INSERT;
|
|
|
|
while (m != bset_bkey_last(i) &&
|
|
bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) {
|
|
prev = m;
|
|
m = bkey_next(m);
|
|
}
|
|
|
|
/* prev is in the tree, if we merge we're done */
|
|
status = BTREE_INSERT_STATUS_BACK_MERGE;
|
|
if (prev &&
|
|
bch_bkey_try_merge(b, prev, k))
|
|
goto merged;
|
|
#if 0
|
|
status = BTREE_INSERT_STATUS_OVERWROTE;
|
|
if (m != bset_bkey_last(i) &&
|
|
KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
|
|
goto copy;
|
|
#endif
|
|
status = BTREE_INSERT_STATUS_FRONT_MERGE;
|
|
if (m != bset_bkey_last(i) &&
|
|
bch_bkey_try_merge(b, k, m))
|
|
goto copy;
|
|
|
|
bch_bset_insert(b, m, k);
|
|
copy: bkey_copy(m, k);
|
|
merged:
|
|
return status;
|
|
}
|
|
|
|
/* Lookup */
|
|
|
|
struct bset_search_iter {
|
|
struct bkey *l, *r;
|
|
};
|
|
|
|
static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
|
|
const struct bkey *search)
|
|
{
|
|
unsigned int li = 0, ri = t->size;
|
|
|
|
while (li + 1 != ri) {
|
|
unsigned int m = (li + ri) >> 1;
|
|
|
|
if (bkey_cmp(table_to_bkey(t, m), search) > 0)
|
|
ri = m;
|
|
else
|
|
li = m;
|
|
}
|
|
|
|
return (struct bset_search_iter) {
|
|
table_to_bkey(t, li),
|
|
ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
|
|
};
|
|
}
|
|
|
|
static struct bset_search_iter bset_search_tree(struct bset_tree *t,
|
|
const struct bkey *search)
|
|
{
|
|
struct bkey *l, *r;
|
|
struct bkey_float *f;
|
|
unsigned int inorder, j, n = 1;
|
|
|
|
do {
|
|
unsigned int p = n << 4;
|
|
|
|
if (p < t->size)
|
|
prefetch(&t->tree[p]);
|
|
|
|
j = n;
|
|
f = &t->tree[j];
|
|
|
|
if (likely(f->exponent != 127)) {
|
|
if (f->mantissa >= bfloat_mantissa(search, f))
|
|
n = j * 2;
|
|
else
|
|
n = j * 2 + 1;
|
|
} else {
|
|
if (bkey_cmp(tree_to_bkey(t, j), search) > 0)
|
|
n = j * 2;
|
|
else
|
|
n = j * 2 + 1;
|
|
}
|
|
} while (n < t->size);
|
|
|
|
inorder = to_inorder(j, t);
|
|
|
|
/*
|
|
* n would have been the node we recursed to - the low bit tells us if
|
|
* we recursed left or recursed right.
|
|
*/
|
|
if (n & 1) {
|
|
l = cacheline_to_bkey(t, inorder, f->m);
|
|
|
|
if (++inorder != t->size) {
|
|
f = &t->tree[inorder_next(j, t->size)];
|
|
r = cacheline_to_bkey(t, inorder, f->m);
|
|
} else
|
|
r = bset_bkey_last(t->data);
|
|
} else {
|
|
r = cacheline_to_bkey(t, inorder, f->m);
|
|
|
|
if (--inorder) {
|
|
f = &t->tree[inorder_prev(j, t->size)];
|
|
l = cacheline_to_bkey(t, inorder, f->m);
|
|
} else
|
|
l = t->data->start;
|
|
}
|
|
|
|
return (struct bset_search_iter) {l, r};
|
|
}
|
|
|
|
struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
|
|
const struct bkey *search)
|
|
{
|
|
struct bset_search_iter i;
|
|
|
|
/*
|
|
* First, we search for a cacheline, then lastly we do a linear search
|
|
* within that cacheline.
|
|
*
|
|
* To search for the cacheline, there's three different possibilities:
|
|
* * The set is too small to have a search tree, so we just do a linear
|
|
* search over the whole set.
|
|
* * The set is the one we're currently inserting into; keeping a full
|
|
* auxiliary search tree up to date would be too expensive, so we
|
|
* use a much simpler lookup table to do a binary search -
|
|
* bset_search_write_set().
|
|
* * Or we use the auxiliary search tree we constructed earlier -
|
|
* bset_search_tree()
|
|
*/
|
|
|
|
if (unlikely(!t->size)) {
|
|
i.l = t->data->start;
|
|
i.r = bset_bkey_last(t->data);
|
|
} else if (bset_written(b, t)) {
|
|
/*
|
|
* Each node in the auxiliary search tree covers a certain range
|
|
* of bits, and keys above and below the set it covers might
|
|
* differ outside those bits - so we have to special case the
|
|
* start and end - handle that here:
|
|
*/
|
|
|
|
if (unlikely(bkey_cmp(search, &t->end) >= 0))
|
|
return bset_bkey_last(t->data);
|
|
|
|
if (unlikely(bkey_cmp(search, t->data->start) < 0))
|
|
return t->data->start;
|
|
|
|
i = bset_search_tree(t, search);
|
|
} else {
|
|
BUG_ON(!b->nsets &&
|
|
t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
|
|
|
|
i = bset_search_write_set(t, search);
|
|
}
|
|
|
|
if (btree_keys_expensive_checks(b)) {
|
|
BUG_ON(bset_written(b, t) &&
|
|
i.l != t->data->start &&
|
|
bkey_cmp(tree_to_prev_bkey(t,
|
|
inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
|
|
search) > 0);
|
|
|
|
BUG_ON(i.r != bset_bkey_last(t->data) &&
|
|
bkey_cmp(i.r, search) <= 0);
|
|
}
|
|
|
|
while (likely(i.l != i.r) &&
|
|
bkey_cmp(i.l, search) <= 0)
|
|
i.l = bkey_next(i.l);
|
|
|
|
return i.l;
|
|
}
|
|
|
|
/* Btree iterator */
|
|
|
|
typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
|
|
struct btree_iter_set);
|
|
|
|
static inline bool btree_iter_cmp(struct btree_iter_set l,
|
|
struct btree_iter_set r)
|
|
{
|
|
return bkey_cmp(l.k, r.k) > 0;
|
|
}
|
|
|
|
static inline bool btree_iter_end(struct btree_iter *iter)
|
|
{
|
|
return !iter->used;
|
|
}
|
|
|
|
void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
|
|
struct bkey *end)
|
|
{
|
|
if (k != end)
|
|
BUG_ON(!heap_add(iter,
|
|
((struct btree_iter_set) { k, end }),
|
|
btree_iter_cmp));
|
|
}
|
|
|
|
static struct bkey *__bch_btree_iter_stack_init(struct btree_keys *b,
|
|
struct btree_iter_stack *iter,
|
|
struct bkey *search,
|
|
struct bset_tree *start)
|
|
{
|
|
struct bkey *ret = NULL;
|
|
|
|
iter->iter.size = ARRAY_SIZE(iter->stack_data);
|
|
iter->iter.used = 0;
|
|
|
|
#ifdef CONFIG_BCACHE_DEBUG
|
|
iter->iter.b = b;
|
|
#endif
|
|
|
|
for (; start <= bset_tree_last(b); start++) {
|
|
ret = bch_bset_search(b, start, search);
|
|
bch_btree_iter_push(&iter->iter, ret, bset_bkey_last(start->data));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct bkey *bch_btree_iter_stack_init(struct btree_keys *b,
|
|
struct btree_iter_stack *iter,
|
|
struct bkey *search)
|
|
{
|
|
return __bch_btree_iter_stack_init(b, iter, search, b->set);
|
|
}
|
|
|
|
static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
|
|
btree_iter_cmp_fn *cmp)
|
|
{
|
|
struct btree_iter_set b __maybe_unused;
|
|
struct bkey *ret = NULL;
|
|
|
|
if (!btree_iter_end(iter)) {
|
|
bch_btree_iter_next_check(iter);
|
|
|
|
ret = iter->data->k;
|
|
iter->data->k = bkey_next(iter->data->k);
|
|
|
|
if (iter->data->k > iter->data->end) {
|
|
WARN_ONCE(1, "bset was corrupt!\n");
|
|
iter->data->k = iter->data->end;
|
|
}
|
|
|
|
if (iter->data->k == iter->data->end)
|
|
heap_pop(iter, b, cmp);
|
|
else
|
|
heap_sift(iter, 0, cmp);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct bkey *bch_btree_iter_next(struct btree_iter *iter)
|
|
{
|
|
return __bch_btree_iter_next(iter, btree_iter_cmp);
|
|
|
|
}
|
|
|
|
struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
|
|
struct btree_keys *b, ptr_filter_fn fn)
|
|
{
|
|
struct bkey *ret;
|
|
|
|
do {
|
|
ret = bch_btree_iter_next(iter);
|
|
} while (ret && fn(b, ret));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Mergesort */
|
|
|
|
void bch_bset_sort_state_free(struct bset_sort_state *state)
|
|
{
|
|
mempool_exit(&state->pool);
|
|
}
|
|
|
|
int bch_bset_sort_state_init(struct bset_sort_state *state,
|
|
unsigned int page_order)
|
|
{
|
|
spin_lock_init(&state->time.lock);
|
|
|
|
state->page_order = page_order;
|
|
state->crit_factor = int_sqrt(1 << page_order);
|
|
|
|
return mempool_init_page_pool(&state->pool, 1, page_order);
|
|
}
|
|
|
|
static void btree_mergesort(struct btree_keys *b, struct bset *out,
|
|
struct btree_iter *iter,
|
|
bool fixup, bool remove_stale)
|
|
{
|
|
int i;
|
|
struct bkey *k, *last = NULL;
|
|
BKEY_PADDED(k) tmp;
|
|
bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
|
|
? bch_ptr_bad
|
|
: bch_ptr_invalid;
|
|
|
|
/* Heapify the iterator, using our comparison function */
|
|
for (i = iter->used / 2 - 1; i >= 0; --i)
|
|
heap_sift(iter, i, b->ops->sort_cmp);
|
|
|
|
while (!btree_iter_end(iter)) {
|
|
if (b->ops->sort_fixup && fixup)
|
|
k = b->ops->sort_fixup(iter, &tmp.k);
|
|
else
|
|
k = NULL;
|
|
|
|
if (!k)
|
|
k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
|
|
|
|
if (bad(b, k))
|
|
continue;
|
|
|
|
if (!last) {
|
|
last = out->start;
|
|
bkey_copy(last, k);
|
|
} else if (!bch_bkey_try_merge(b, last, k)) {
|
|
last = bkey_next(last);
|
|
bkey_copy(last, k);
|
|
}
|
|
}
|
|
|
|
out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
|
|
|
|
pr_debug("sorted %i keys\n", out->keys);
|
|
}
|
|
|
|
static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
|
|
unsigned int start, unsigned int order, bool fixup,
|
|
struct bset_sort_state *state)
|
|
{
|
|
uint64_t start_time;
|
|
bool used_mempool = false;
|
|
struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
|
|
order);
|
|
if (!out) {
|
|
struct page *outp;
|
|
|
|
BUG_ON(order > state->page_order);
|
|
|
|
outp = mempool_alloc(&state->pool, GFP_NOIO);
|
|
out = page_address(outp);
|
|
used_mempool = true;
|
|
order = state->page_order;
|
|
}
|
|
|
|
start_time = local_clock();
|
|
|
|
btree_mergesort(b, out, iter, fixup, false);
|
|
b->nsets = start;
|
|
|
|
if (!start && order == b->page_order) {
|
|
/*
|
|
* Our temporary buffer is the same size as the btree node's
|
|
* buffer, we can just swap buffers instead of doing a big
|
|
* memcpy()
|
|
*
|
|
* Don't worry event 'out' is allocated from mempool, it can
|
|
* still be swapped here. Because state->pool is a page mempool
|
|
* created by mempool_init_page_pool(), which allocates
|
|
* pages by alloc_pages() indeed.
|
|
*/
|
|
|
|
out->magic = b->set->data->magic;
|
|
out->seq = b->set->data->seq;
|
|
out->version = b->set->data->version;
|
|
swap(out, b->set->data);
|
|
} else {
|
|
b->set[start].data->keys = out->keys;
|
|
memcpy(b->set[start].data->start, out->start,
|
|
(void *) bset_bkey_last(out) - (void *) out->start);
|
|
}
|
|
|
|
if (used_mempool)
|
|
mempool_free(virt_to_page(out), &state->pool);
|
|
else
|
|
free_pages((unsigned long) out, order);
|
|
|
|
bch_bset_build_written_tree(b);
|
|
|
|
if (!start)
|
|
bch_time_stats_update(&state->time, start_time);
|
|
}
|
|
|
|
void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
|
|
struct bset_sort_state *state)
|
|
{
|
|
size_t order = b->page_order, keys = 0;
|
|
struct btree_iter_stack iter;
|
|
int oldsize = bch_count_data(b);
|
|
|
|
__bch_btree_iter_stack_init(b, &iter, NULL, &b->set[start]);
|
|
|
|
if (start) {
|
|
unsigned int i;
|
|
|
|
for (i = start; i <= b->nsets; i++)
|
|
keys += b->set[i].data->keys;
|
|
|
|
order = get_order(__set_bytes(b->set->data, keys));
|
|
}
|
|
|
|
__btree_sort(b, &iter.iter, start, order, false, state);
|
|
|
|
EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
|
|
}
|
|
|
|
void bch_btree_sort_and_fix_extents(struct btree_keys *b,
|
|
struct btree_iter *iter,
|
|
struct bset_sort_state *state)
|
|
{
|
|
__btree_sort(b, iter, 0, b->page_order, true, state);
|
|
}
|
|
|
|
void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
|
|
struct bset_sort_state *state)
|
|
{
|
|
uint64_t start_time = local_clock();
|
|
struct btree_iter_stack iter;
|
|
|
|
bch_btree_iter_stack_init(b, &iter, NULL);
|
|
|
|
btree_mergesort(b, new->set->data, &iter.iter, false, true);
|
|
|
|
bch_time_stats_update(&state->time, start_time);
|
|
|
|
new->set->size = 0; // XXX: why?
|
|
}
|
|
|
|
#define SORT_CRIT (4096 / sizeof(uint64_t))
|
|
|
|
void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
|
|
{
|
|
unsigned int crit = SORT_CRIT;
|
|
int i;
|
|
|
|
/* Don't sort if nothing to do */
|
|
if (!b->nsets)
|
|
goto out;
|
|
|
|
for (i = b->nsets - 1; i >= 0; --i) {
|
|
crit *= state->crit_factor;
|
|
|
|
if (b->set[i].data->keys < crit) {
|
|
bch_btree_sort_partial(b, i, state);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Sort if we'd overflow */
|
|
if (b->nsets + 1 == MAX_BSETS) {
|
|
bch_btree_sort(b, state);
|
|
return;
|
|
}
|
|
|
|
out:
|
|
bch_bset_build_written_tree(b);
|
|
}
|
|
|
|
void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i <= b->nsets; i++) {
|
|
struct bset_tree *t = &b->set[i];
|
|
size_t bytes = t->data->keys * sizeof(uint64_t);
|
|
size_t j;
|
|
|
|
if (bset_written(b, t)) {
|
|
stats->sets_written++;
|
|
stats->bytes_written += bytes;
|
|
|
|
stats->floats += t->size - 1;
|
|
|
|
for (j = 1; j < t->size; j++)
|
|
if (t->tree[j].exponent == 127)
|
|
stats->failed++;
|
|
} else {
|
|
stats->sets_unwritten++;
|
|
stats->bytes_unwritten += bytes;
|
|
}
|
|
}
|
|
}
|