linux/net/ipv4/inet_connection_sock.c
Kuniyuki Iwashima be9832c2e9 net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
Commit 2c02d41d71 ("net/ulp: prevent ULP without clone op from entering
the LISTEN status") guarantees that all ULP listeners have clone() op, so
we no longer need to test it in inet_clone_ulp().

Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20230217200920.85306-1-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-02-20 16:31:49 -08:00

1495 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Support for INET connection oriented protocols.
*
* Authors: See the TCP sources
*/
#include <linux/module.h>
#include <linux/jhash.h>
#include <net/inet_connection_sock.h>
#include <net/inet_hashtables.h>
#include <net/inet_timewait_sock.h>
#include <net/ip.h>
#include <net/route.h>
#include <net/tcp_states.h>
#include <net/xfrm.h>
#include <net/tcp.h>
#include <net/sock_reuseport.h>
#include <net/addrconf.h>
#if IS_ENABLED(CONFIG_IPV6)
/* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
* if IPv6 only, and any IPv4 addresses
* if not IPv6 only
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
* IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
* and 0.0.0.0 equals to 0.0.0.0 only
*/
static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
const struct in6_addr *sk2_rcv_saddr6,
__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
bool sk1_ipv6only, bool sk2_ipv6only,
bool match_sk1_wildcard,
bool match_sk2_wildcard)
{
int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
/* if both are mapped, treat as IPv4 */
if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
if (!sk2_ipv6only) {
if (sk1_rcv_saddr == sk2_rcv_saddr)
return true;
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
(match_sk2_wildcard && !sk2_rcv_saddr);
}
return false;
}
if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
return true;
if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
!(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
return true;
if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
!(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
return true;
if (sk2_rcv_saddr6 &&
ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
return true;
return false;
}
#endif
/* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
* 0.0.0.0 only equals to 0.0.0.0
*/
static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
bool sk2_ipv6only, bool match_sk1_wildcard,
bool match_sk2_wildcard)
{
if (!sk2_ipv6only) {
if (sk1_rcv_saddr == sk2_rcv_saddr)
return true;
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
(match_sk2_wildcard && !sk2_rcv_saddr);
}
return false;
}
bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
bool match_wildcard)
{
#if IS_ENABLED(CONFIG_IPV6)
if (sk->sk_family == AF_INET6)
return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
inet6_rcv_saddr(sk2),
sk->sk_rcv_saddr,
sk2->sk_rcv_saddr,
ipv6_only_sock(sk),
ipv6_only_sock(sk2),
match_wildcard,
match_wildcard);
#endif
return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
ipv6_only_sock(sk2), match_wildcard,
match_wildcard);
}
EXPORT_SYMBOL(inet_rcv_saddr_equal);
bool inet_rcv_saddr_any(const struct sock *sk)
{
#if IS_ENABLED(CONFIG_IPV6)
if (sk->sk_family == AF_INET6)
return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
#endif
return !sk->sk_rcv_saddr;
}
void inet_get_local_port_range(const struct net *net, int *low, int *high)
{
unsigned int seq;
do {
seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
*low = net->ipv4.ip_local_ports.range[0];
*high = net->ipv4.ip_local_ports.range[1];
} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
}
EXPORT_SYMBOL(inet_get_local_port_range);
void inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
{
const struct inet_sock *inet = inet_sk(sk);
const struct net *net = sock_net(sk);
int lo, hi, sk_lo, sk_hi;
inet_get_local_port_range(net, &lo, &hi);
sk_lo = inet->local_port_range.lo;
sk_hi = inet->local_port_range.hi;
if (unlikely(lo <= sk_lo && sk_lo <= hi))
lo = sk_lo;
if (unlikely(lo <= sk_hi && sk_hi <= hi))
hi = sk_hi;
*low = lo;
*high = hi;
}
EXPORT_SYMBOL(inet_sk_get_local_port_range);
static bool inet_use_bhash2_on_bind(const struct sock *sk)
{
#if IS_ENABLED(CONFIG_IPV6)
if (sk->sk_family == AF_INET6) {
int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
return addr_type != IPV6_ADDR_ANY &&
addr_type != IPV6_ADDR_MAPPED;
}
#endif
return sk->sk_rcv_saddr != htonl(INADDR_ANY);
}
static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
kuid_t sk_uid, bool relax,
bool reuseport_cb_ok, bool reuseport_ok)
{
int bound_dev_if2;
if (sk == sk2)
return false;
bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
sk->sk_bound_dev_if == bound_dev_if2) {
if (sk->sk_reuse && sk2->sk_reuse &&
sk2->sk_state != TCP_LISTEN) {
if (!relax || (!reuseport_ok && sk->sk_reuseport &&
sk2->sk_reuseport && reuseport_cb_ok &&
(sk2->sk_state == TCP_TIME_WAIT ||
uid_eq(sk_uid, sock_i_uid(sk2)))))
return true;
} else if (!reuseport_ok || !sk->sk_reuseport ||
!sk2->sk_reuseport || !reuseport_cb_ok ||
(sk2->sk_state != TCP_TIME_WAIT &&
!uid_eq(sk_uid, sock_i_uid(sk2)))) {
return true;
}
}
return false;
}
static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
kuid_t sk_uid, bool relax,
bool reuseport_cb_ok, bool reuseport_ok)
{
if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
return false;
return inet_bind_conflict(sk, sk2, sk_uid, relax,
reuseport_cb_ok, reuseport_ok);
}
static bool inet_bhash2_conflict(const struct sock *sk,
const struct inet_bind2_bucket *tb2,
kuid_t sk_uid,
bool relax, bool reuseport_cb_ok,
bool reuseport_ok)
{
struct inet_timewait_sock *tw2;
struct sock *sk2;
sk_for_each_bound_bhash2(sk2, &tb2->owners) {
if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
reuseport_cb_ok, reuseport_ok))
return true;
}
twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) {
sk2 = (struct sock *)tw2;
if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
reuseport_cb_ok, reuseport_ok))
return true;
}
return false;
}
/* This should be called only when the tb and tb2 hashbuckets' locks are held */
static int inet_csk_bind_conflict(const struct sock *sk,
const struct inet_bind_bucket *tb,
const struct inet_bind2_bucket *tb2, /* may be null */
bool relax, bool reuseport_ok)
{
bool reuseport_cb_ok;
struct sock_reuseport *reuseport_cb;
kuid_t uid = sock_i_uid((struct sock *)sk);
rcu_read_lock();
reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
rcu_read_unlock();
/*
* Unlike other sk lookup places we do not check
* for sk_net here, since _all_ the socks listed
* in tb->owners and tb2->owners list belong
* to the same net - the one this bucket belongs to.
*/
if (!inet_use_bhash2_on_bind(sk)) {
struct sock *sk2;
sk_for_each_bound(sk2, &tb->owners)
if (inet_bind_conflict(sk, sk2, uid, relax,
reuseport_cb_ok, reuseport_ok) &&
inet_rcv_saddr_equal(sk, sk2, true))
return true;
return false;
}
/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
* ipv4) should have been checked already. We need to do these two
* checks separately because their spinlocks have to be acquired/released
* independently of each other, to prevent possible deadlocks
*/
return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
reuseport_ok);
}
/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
* INADDR_ANY (if ipv4) socket.
*
* Caller must hold bhash hashbucket lock with local bh disabled, to protect
* against concurrent binds on the port for addr any
*/
static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
bool relax, bool reuseport_ok)
{
kuid_t uid = sock_i_uid((struct sock *)sk);
const struct net *net = sock_net(sk);
struct sock_reuseport *reuseport_cb;
struct inet_bind_hashbucket *head2;
struct inet_bind2_bucket *tb2;
bool reuseport_cb_ok;
rcu_read_lock();
reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
rcu_read_unlock();
head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
spin_lock(&head2->lock);
inet_bind_bucket_for_each(tb2, &head2->chain)
if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
break;
if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
reuseport_ok)) {
spin_unlock(&head2->lock);
return true;
}
spin_unlock(&head2->lock);
return false;
}
/*
* Find an open port number for the socket. Returns with the
* inet_bind_hashbucket locks held if successful.
*/
static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
struct inet_bind2_bucket **tb2_ret,
struct inet_bind_hashbucket **head2_ret, int *port_ret)
{
struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
int i, low, high, attempt_half, port, l3mdev;
struct inet_bind_hashbucket *head, *head2;
struct net *net = sock_net(sk);
struct inet_bind2_bucket *tb2;
struct inet_bind_bucket *tb;
u32 remaining, offset;
bool relax = false;
l3mdev = inet_sk_bound_l3mdev(sk);
ports_exhausted:
attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
other_half_scan:
inet_sk_get_local_port_range(sk, &low, &high);
high++; /* [32768, 60999] -> [32768, 61000[ */
if (high - low < 4)
attempt_half = 0;
if (attempt_half) {
int half = low + (((high - low) >> 2) << 1);
if (attempt_half == 1)
high = half;
else
low = half;
}
remaining = high - low;
if (likely(remaining > 1))
remaining &= ~1U;
offset = get_random_u32_below(remaining);
/* __inet_hash_connect() favors ports having @low parity
* We do the opposite to not pollute connect() users.
*/
offset |= 1U;
other_parity_scan:
port = low + offset;
for (i = 0; i < remaining; i += 2, port += 2) {
if (unlikely(port >= high))
port -= remaining;
if (inet_is_local_reserved_port(net, port))
continue;
head = &hinfo->bhash[inet_bhashfn(net, port,
hinfo->bhash_size)];
spin_lock_bh(&head->lock);
if (inet_use_bhash2_on_bind(sk)) {
if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
goto next_port;
}
head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
spin_lock(&head2->lock);
tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
inet_bind_bucket_for_each(tb, &head->chain)
if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
if (!inet_csk_bind_conflict(sk, tb, tb2,
relax, false))
goto success;
spin_unlock(&head2->lock);
goto next_port;
}
tb = NULL;
goto success;
next_port:
spin_unlock_bh(&head->lock);
cond_resched();
}
offset--;
if (!(offset & 1))
goto other_parity_scan;
if (attempt_half == 1) {
/* OK we now try the upper half of the range */
attempt_half = 2;
goto other_half_scan;
}
if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
/* We still have a chance to connect to different destinations */
relax = true;
goto ports_exhausted;
}
return NULL;
success:
*port_ret = port;
*tb_ret = tb;
*tb2_ret = tb2;
*head2_ret = head2;
return head;
}
static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
struct sock *sk)
{
kuid_t uid = sock_i_uid(sk);
if (tb->fastreuseport <= 0)
return 0;
if (!sk->sk_reuseport)
return 0;
if (rcu_access_pointer(sk->sk_reuseport_cb))
return 0;
if (!uid_eq(tb->fastuid, uid))
return 0;
/* We only need to check the rcv_saddr if this tb was once marked
* without fastreuseport and then was reset, as we can only know that
* the fast_*rcv_saddr doesn't have any conflicts with the socks on the
* owners list.
*/
if (tb->fastreuseport == FASTREUSEPORT_ANY)
return 1;
#if IS_ENABLED(CONFIG_IPV6)
if (tb->fast_sk_family == AF_INET6)
return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
inet6_rcv_saddr(sk),
tb->fast_rcv_saddr,
sk->sk_rcv_saddr,
tb->fast_ipv6_only,
ipv6_only_sock(sk), true, false);
#endif
return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
ipv6_only_sock(sk), true, false);
}
void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
struct sock *sk)
{
kuid_t uid = sock_i_uid(sk);
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
if (hlist_empty(&tb->owners)) {
tb->fastreuse = reuse;
if (sk->sk_reuseport) {
tb->fastreuseport = FASTREUSEPORT_ANY;
tb->fastuid = uid;
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
tb->fast_ipv6_only = ipv6_only_sock(sk);
tb->fast_sk_family = sk->sk_family;
#if IS_ENABLED(CONFIG_IPV6)
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
#endif
} else {
tb->fastreuseport = 0;
}
} else {
if (!reuse)
tb->fastreuse = 0;
if (sk->sk_reuseport) {
/* We didn't match or we don't have fastreuseport set on
* the tb, but we have sk_reuseport set on this socket
* and we know that there are no bind conflicts with
* this socket in this tb, so reset our tb's reuseport
* settings so that any subsequent sockets that match
* our current socket will be put on the fast path.
*
* If we reset we need to set FASTREUSEPORT_STRICT so we
* do extra checking for all subsequent sk_reuseport
* socks.
*/
if (!sk_reuseport_match(tb, sk)) {
tb->fastreuseport = FASTREUSEPORT_STRICT;
tb->fastuid = uid;
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
tb->fast_ipv6_only = ipv6_only_sock(sk);
tb->fast_sk_family = sk->sk_family;
#if IS_ENABLED(CONFIG_IPV6)
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
#endif
}
} else {
tb->fastreuseport = 0;
}
}
}
/* Obtain a reference to a local port for the given sock,
* if snum is zero it means select any available local port.
* We try to allocate an odd port (and leave even ports for connect())
*/
int inet_csk_get_port(struct sock *sk, unsigned short snum)
{
struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
bool found_port = false, check_bind_conflict = true;
bool bhash_created = false, bhash2_created = false;
int ret = -EADDRINUSE, port = snum, l3mdev;
struct inet_bind_hashbucket *head, *head2;
struct inet_bind2_bucket *tb2 = NULL;
struct inet_bind_bucket *tb = NULL;
bool head2_lock_acquired = false;
struct net *net = sock_net(sk);
l3mdev = inet_sk_bound_l3mdev(sk);
if (!port) {
head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
if (!head)
return ret;
head2_lock_acquired = true;
if (tb && tb2)
goto success;
found_port = true;
} else {
head = &hinfo->bhash[inet_bhashfn(net, port,
hinfo->bhash_size)];
spin_lock_bh(&head->lock);
inet_bind_bucket_for_each(tb, &head->chain)
if (inet_bind_bucket_match(tb, net, port, l3mdev))
break;
}
if (!tb) {
tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
head, port, l3mdev);
if (!tb)
goto fail_unlock;
bhash_created = true;
}
if (!found_port) {
if (!hlist_empty(&tb->owners)) {
if (sk->sk_reuse == SK_FORCE_REUSE ||
(tb->fastreuse > 0 && reuse) ||
sk_reuseport_match(tb, sk))
check_bind_conflict = false;
}
if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
goto fail_unlock;
}
head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
spin_lock(&head2->lock);
head2_lock_acquired = true;
tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
}
if (!tb2) {
tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
net, head2, port, l3mdev, sk);
if (!tb2)
goto fail_unlock;
bhash2_created = true;
}
if (!found_port && check_bind_conflict) {
if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
goto fail_unlock;
}
success:
inet_csk_update_fastreuse(tb, sk);
if (!inet_csk(sk)->icsk_bind_hash)
inet_bind_hash(sk, tb, tb2, port);
WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
ret = 0;
fail_unlock:
if (ret) {
if (bhash_created)
inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
if (bhash2_created)
inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
tb2);
}
if (head2_lock_acquired)
spin_unlock(&head2->lock);
spin_unlock_bh(&head->lock);
return ret;
}
EXPORT_SYMBOL_GPL(inet_csk_get_port);
/*
* Wait for an incoming connection, avoid race conditions. This must be called
* with the socket locked.
*/
static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
{
struct inet_connection_sock *icsk = inet_csk(sk);
DEFINE_WAIT(wait);
int err;
/*
* True wake-one mechanism for incoming connections: only
* one process gets woken up, not the 'whole herd'.
* Since we do not 'race & poll' for established sockets
* anymore, the common case will execute the loop only once.
*
* Subtle issue: "add_wait_queue_exclusive()" will be added
* after any current non-exclusive waiters, and we know that
* it will always _stay_ after any new non-exclusive waiters
* because all non-exclusive waiters are added at the
* beginning of the wait-queue. As such, it's ok to "drop"
* our exclusiveness temporarily when we get woken up without
* having to remove and re-insert us on the wait queue.
*/
for (;;) {
prepare_to_wait_exclusive(sk_sleep(sk), &wait,
TASK_INTERRUPTIBLE);
release_sock(sk);
if (reqsk_queue_empty(&icsk->icsk_accept_queue))
timeo = schedule_timeout(timeo);
sched_annotate_sleep();
lock_sock(sk);
err = 0;
if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
break;
err = -EINVAL;
if (sk->sk_state != TCP_LISTEN)
break;
err = sock_intr_errno(timeo);
if (signal_pending(current))
break;
err = -EAGAIN;
if (!timeo)
break;
}
finish_wait(sk_sleep(sk), &wait);
return err;
}
/*
* This will accept the next outstanding connection.
*/
struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
struct request_sock *req;
struct sock *newsk;
int error;
lock_sock(sk);
/* We need to make sure that this socket is listening,
* and that it has something pending.
*/
error = -EINVAL;
if (sk->sk_state != TCP_LISTEN)
goto out_err;
/* Find already established connection */
if (reqsk_queue_empty(queue)) {
long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
/* If this is a non blocking socket don't sleep */
error = -EAGAIN;
if (!timeo)
goto out_err;
error = inet_csk_wait_for_connect(sk, timeo);
if (error)
goto out_err;
}
req = reqsk_queue_remove(queue, sk);
newsk = req->sk;
if (sk->sk_protocol == IPPROTO_TCP &&
tcp_rsk(req)->tfo_listener) {
spin_lock_bh(&queue->fastopenq.lock);
if (tcp_rsk(req)->tfo_listener) {
/* We are still waiting for the final ACK from 3WHS
* so can't free req now. Instead, we set req->sk to
* NULL to signify that the child socket is taken
* so reqsk_fastopen_remove() will free the req
* when 3WHS finishes (or is aborted).
*/
req->sk = NULL;
req = NULL;
}
spin_unlock_bh(&queue->fastopenq.lock);
}
out:
release_sock(sk);
if (newsk && mem_cgroup_sockets_enabled) {
int amt;
/* atomically get the memory usage, set and charge the
* newsk->sk_memcg.
*/
lock_sock(newsk);
/* The socket has not been accepted yet, no need to look at
* newsk->sk_wmem_queued.
*/
amt = sk_mem_pages(newsk->sk_forward_alloc +
atomic_read(&newsk->sk_rmem_alloc));
mem_cgroup_sk_alloc(newsk);
if (newsk->sk_memcg && amt)
mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
GFP_KERNEL | __GFP_NOFAIL);
release_sock(newsk);
}
if (req)
reqsk_put(req);
return newsk;
out_err:
newsk = NULL;
req = NULL;
*err = error;
goto out;
}
EXPORT_SYMBOL(inet_csk_accept);
/*
* Using different timers for retransmit, delayed acks and probes
* We may wish use just one timer maintaining a list of expire jiffies
* to optimize.
*/
void inet_csk_init_xmit_timers(struct sock *sk,
void (*retransmit_handler)(struct timer_list *t),
void (*delack_handler)(struct timer_list *t),
void (*keepalive_handler)(struct timer_list *t))
{
struct inet_connection_sock *icsk = inet_csk(sk);
timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
timer_setup(&sk->sk_timer, keepalive_handler, 0);
icsk->icsk_pending = icsk->icsk_ack.pending = 0;
}
EXPORT_SYMBOL(inet_csk_init_xmit_timers);
void inet_csk_clear_xmit_timers(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
icsk->icsk_pending = icsk->icsk_ack.pending = 0;
sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
sk_stop_timer(sk, &icsk->icsk_delack_timer);
sk_stop_timer(sk, &sk->sk_timer);
}
EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
void inet_csk_delete_keepalive_timer(struct sock *sk)
{
sk_stop_timer(sk, &sk->sk_timer);
}
EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
{
sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
}
EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
struct dst_entry *inet_csk_route_req(const struct sock *sk,
struct flowi4 *fl4,
const struct request_sock *req)
{
const struct inet_request_sock *ireq = inet_rsk(req);
struct net *net = read_pnet(&ireq->ireq_net);
struct ip_options_rcu *opt;
struct rtable *rt;
rcu_read_lock();
opt = rcu_dereference(ireq->ireq_opt);
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
sk->sk_protocol, inet_sk_flowi_flags(sk),
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
ireq->ir_loc_addr, ireq->ir_rmt_port,
htons(ireq->ir_num), sk->sk_uid);
security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
rt = ip_route_output_flow(net, fl4, sk);
if (IS_ERR(rt))
goto no_route;
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
goto route_err;
rcu_read_unlock();
return &rt->dst;
route_err:
ip_rt_put(rt);
no_route:
rcu_read_unlock();
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
return NULL;
}
EXPORT_SYMBOL_GPL(inet_csk_route_req);
struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
struct sock *newsk,
const struct request_sock *req)
{
const struct inet_request_sock *ireq = inet_rsk(req);
struct net *net = read_pnet(&ireq->ireq_net);
struct inet_sock *newinet = inet_sk(newsk);
struct ip_options_rcu *opt;
struct flowi4 *fl4;
struct rtable *rt;
opt = rcu_dereference(ireq->ireq_opt);
fl4 = &newinet->cork.fl.u.ip4;
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
sk->sk_protocol, inet_sk_flowi_flags(sk),
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
ireq->ir_loc_addr, ireq->ir_rmt_port,
htons(ireq->ir_num), sk->sk_uid);
security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
rt = ip_route_output_flow(net, fl4, sk);
if (IS_ERR(rt))
goto no_route;
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
goto route_err;
return &rt->dst;
route_err:
ip_rt_put(rt);
no_route:
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
return NULL;
}
EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
/* Decide when to expire the request and when to resend SYN-ACK */
static void syn_ack_recalc(struct request_sock *req,
const int max_syn_ack_retries,
const u8 rskq_defer_accept,
int *expire, int *resend)
{
if (!rskq_defer_accept) {
*expire = req->num_timeout >= max_syn_ack_retries;
*resend = 1;
return;
}
*expire = req->num_timeout >= max_syn_ack_retries &&
(!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
/* Do not resend while waiting for data after ACK,
* start to resend on end of deferring period to give
* last chance for data or ACK to create established socket.
*/
*resend = !inet_rsk(req)->acked ||
req->num_timeout >= rskq_defer_accept - 1;
}
int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
{
int err = req->rsk_ops->rtx_syn_ack(parent, req);
if (!err)
req->num_retrans++;
return err;
}
EXPORT_SYMBOL(inet_rtx_syn_ack);
static struct request_sock *inet_reqsk_clone(struct request_sock *req,
struct sock *sk)
{
struct sock *req_sk, *nreq_sk;
struct request_sock *nreq;
nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
if (!nreq) {
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
sock_put(sk);
return NULL;
}
req_sk = req_to_sk(req);
nreq_sk = req_to_sk(nreq);
memcpy(nreq_sk, req_sk,
offsetof(struct sock, sk_dontcopy_begin));
memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
sk_node_init(&nreq_sk->sk_node);
nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
#endif
nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
nreq->rsk_listener = sk;
/* We need not acquire fastopenq->lock
* because the child socket is locked in inet_csk_listen_stop().
*/
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
return nreq;
}
static void reqsk_queue_migrated(struct request_sock_queue *queue,
const struct request_sock *req)
{
if (req->num_timeout == 0)
atomic_inc(&queue->young);
atomic_inc(&queue->qlen);
}
static void reqsk_migrate_reset(struct request_sock *req)
{
req->saved_syn = NULL;
#if IS_ENABLED(CONFIG_IPV6)
inet_rsk(req)->ipv6_opt = NULL;
inet_rsk(req)->pktopts = NULL;
#else
inet_rsk(req)->ireq_opt = NULL;
#endif
}
/* return true if req was found in the ehash table */
static bool reqsk_queue_unlink(struct request_sock *req)
{
struct sock *sk = req_to_sk(req);
bool found = false;
if (sk_hashed(sk)) {
struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
spin_lock(lock);
found = __sk_nulls_del_node_init_rcu(sk);
spin_unlock(lock);
}
if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
reqsk_put(req);
return found;
}
bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
{
bool unlinked = reqsk_queue_unlink(req);
if (unlinked) {
reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
reqsk_put(req);
}
return unlinked;
}
EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
{
inet_csk_reqsk_queue_drop(sk, req);
reqsk_put(req);
}
EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
static void reqsk_timer_handler(struct timer_list *t)
{
struct request_sock *req = from_timer(req, t, rsk_timer);
struct request_sock *nreq = NULL, *oreq = req;
struct sock *sk_listener = req->rsk_listener;
struct inet_connection_sock *icsk;
struct request_sock_queue *queue;
struct net *net;
int max_syn_ack_retries, qlen, expire = 0, resend = 0;
if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
struct sock *nsk;
nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
if (!nsk)
goto drop;
nreq = inet_reqsk_clone(req, nsk);
if (!nreq)
goto drop;
/* The new timer for the cloned req can decrease the 2
* by calling inet_csk_reqsk_queue_drop_and_put(), so
* hold another count to prevent use-after-free and
* call reqsk_put() just before return.
*/
refcount_set(&nreq->rsk_refcnt, 2 + 1);
timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
req = nreq;
sk_listener = nsk;
}
icsk = inet_csk(sk_listener);
net = sock_net(sk_listener);
max_syn_ack_retries = icsk->icsk_syn_retries ? :
READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
/* Normally all the openreqs are young and become mature
* (i.e. converted to established socket) for first timeout.
* If synack was not acknowledged for 1 second, it means
* one of the following things: synack was lost, ack was lost,
* rtt is high or nobody planned to ack (i.e. synflood).
* When server is a bit loaded, queue is populated with old
* open requests, reducing effective size of queue.
* When server is well loaded, queue size reduces to zero
* after several minutes of work. It is not synflood,
* it is normal operation. The solution is pruning
* too old entries overriding normal timeout, when
* situation becomes dangerous.
*
* Essentially, we reserve half of room for young
* embrions; and abort old ones without pity, if old
* ones are about to clog our table.
*/
queue = &icsk->icsk_accept_queue;
qlen = reqsk_queue_len(queue);
if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
int young = reqsk_queue_len_young(queue) << 1;
while (max_syn_ack_retries > 2) {
if (qlen < young)
break;
max_syn_ack_retries--;
young <<= 1;
}
}
syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
&expire, &resend);
req->rsk_ops->syn_ack_timeout(req);
if (!expire &&
(!resend ||
!inet_rtx_syn_ack(sk_listener, req) ||
inet_rsk(req)->acked)) {
if (req->num_timeout++ == 0)
atomic_dec(&queue->young);
mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
if (!nreq)
return;
if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
/* delete timer */
inet_csk_reqsk_queue_drop(sk_listener, nreq);
goto no_ownership;
}
__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
reqsk_migrate_reset(oreq);
reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
reqsk_put(oreq);
reqsk_put(nreq);
return;
}
/* Even if we can clone the req, we may need not retransmit any more
* SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
* CPU may win the "own_req" race so that inet_ehash_insert() fails.
*/
if (nreq) {
__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
no_ownership:
reqsk_migrate_reset(nreq);
reqsk_queue_removed(queue, nreq);
__reqsk_free(nreq);
}
drop:
inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
}
static void reqsk_queue_hash_req(struct request_sock *req,
unsigned long timeout)
{
timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
mod_timer(&req->rsk_timer, jiffies + timeout);
inet_ehash_insert(req_to_sk(req), NULL, NULL);
/* before letting lookups find us, make sure all req fields
* are committed to memory and refcnt initialized.
*/
smp_wmb();
refcount_set(&req->rsk_refcnt, 2 + 1);
}
void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
unsigned long timeout)
{
reqsk_queue_hash_req(req, timeout);
inet_csk_reqsk_queue_added(sk);
}
EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
const gfp_t priority)
{
struct inet_connection_sock *icsk = inet_csk(newsk);
if (!icsk->icsk_ulp_ops)
return;
icsk->icsk_ulp_ops->clone(req, newsk, priority);
}
/**
* inet_csk_clone_lock - clone an inet socket, and lock its clone
* @sk: the socket to clone
* @req: request_sock
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
*
* Caller must unlock socket even in error path (bh_unlock_sock(newsk))
*/
struct sock *inet_csk_clone_lock(const struct sock *sk,
const struct request_sock *req,
const gfp_t priority)
{
struct sock *newsk = sk_clone_lock(sk, priority);
if (newsk) {
struct inet_connection_sock *newicsk = inet_csk(newsk);
inet_sk_set_state(newsk, TCP_SYN_RECV);
newicsk->icsk_bind_hash = NULL;
newicsk->icsk_bind2_hash = NULL;
inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
/* listeners have SOCK_RCU_FREE, not the children */
sock_reset_flag(newsk, SOCK_RCU_FREE);
inet_sk(newsk)->mc_list = NULL;
newsk->sk_mark = inet_rsk(req)->ir_mark;
atomic64_set(&newsk->sk_cookie,
atomic64_read(&inet_rsk(req)->ir_cookie));
newicsk->icsk_retransmits = 0;
newicsk->icsk_backoff = 0;
newicsk->icsk_probes_out = 0;
newicsk->icsk_probes_tstamp = 0;
/* Deinitialize accept_queue to trap illegal accesses. */
memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
inet_clone_ulp(req, newsk, priority);
security_inet_csk_clone(newsk, req);
}
return newsk;
}
EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
/*
* At this point, there should be no process reference to this
* socket, and thus no user references at all. Therefore we
* can assume the socket waitqueue is inactive and nobody will
* try to jump onto it.
*/
void inet_csk_destroy_sock(struct sock *sk)
{
WARN_ON(sk->sk_state != TCP_CLOSE);
WARN_ON(!sock_flag(sk, SOCK_DEAD));
/* It cannot be in hash table! */
WARN_ON(!sk_unhashed(sk));
/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
sk->sk_prot->destroy(sk);
sk_stream_kill_queues(sk);
xfrm_sk_free_policy(sk);
this_cpu_dec(*sk->sk_prot->orphan_count);
sock_put(sk);
}
EXPORT_SYMBOL(inet_csk_destroy_sock);
/* This function allows to force a closure of a socket after the call to
* tcp/dccp_create_openreq_child().
*/
void inet_csk_prepare_forced_close(struct sock *sk)
__releases(&sk->sk_lock.slock)
{
/* sk_clone_lock locked the socket and set refcnt to 2 */
bh_unlock_sock(sk);
sock_put(sk);
inet_csk_prepare_for_destroy_sock(sk);
inet_sk(sk)->inet_num = 0;
}
EXPORT_SYMBOL(inet_csk_prepare_forced_close);
static int inet_ulp_can_listen(const struct sock *sk)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
return -EINVAL;
return 0;
}
int inet_csk_listen_start(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct inet_sock *inet = inet_sk(sk);
int err;
err = inet_ulp_can_listen(sk);
if (unlikely(err))
return err;
reqsk_queue_alloc(&icsk->icsk_accept_queue);
sk->sk_ack_backlog = 0;
inet_csk_delack_init(sk);
/* There is race window here: we announce ourselves listening,
* but this transition is still not validated by get_port().
* It is OK, because this socket enters to hash table only
* after validation is complete.
*/
inet_sk_state_store(sk, TCP_LISTEN);
err = sk->sk_prot->get_port(sk, inet->inet_num);
if (!err) {
inet->inet_sport = htons(inet->inet_num);
sk_dst_reset(sk);
err = sk->sk_prot->hash(sk);
if (likely(!err))
return 0;
}
inet_sk_set_state(sk, TCP_CLOSE);
return err;
}
EXPORT_SYMBOL_GPL(inet_csk_listen_start);
static void inet_child_forget(struct sock *sk, struct request_sock *req,
struct sock *child)
{
sk->sk_prot->disconnect(child, O_NONBLOCK);
sock_orphan(child);
this_cpu_inc(*sk->sk_prot->orphan_count);
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
BUG_ON(sk != req->rsk_listener);
/* Paranoid, to prevent race condition if
* an inbound pkt destined for child is
* blocked by sock lock in tcp_v4_rcv().
* Also to satisfy an assertion in
* tcp_v4_destroy_sock().
*/
RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
}
inet_csk_destroy_sock(child);
}
struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
struct request_sock *req,
struct sock *child)
{
struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
spin_lock(&queue->rskq_lock);
if (unlikely(sk->sk_state != TCP_LISTEN)) {
inet_child_forget(sk, req, child);
child = NULL;
} else {
req->sk = child;
req->dl_next = NULL;
if (queue->rskq_accept_head == NULL)
WRITE_ONCE(queue->rskq_accept_head, req);
else
queue->rskq_accept_tail->dl_next = req;
queue->rskq_accept_tail = req;
sk_acceptq_added(sk);
}
spin_unlock(&queue->rskq_lock);
return child;
}
EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
struct request_sock *req, bool own_req)
{
if (own_req) {
inet_csk_reqsk_queue_drop(req->rsk_listener, req);
reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
if (sk != req->rsk_listener) {
/* another listening sk has been selected,
* migrate the req to it.
*/
struct request_sock *nreq;
/* hold a refcnt for the nreq->rsk_listener
* which is assigned in inet_reqsk_clone()
*/
sock_hold(sk);
nreq = inet_reqsk_clone(req, sk);
if (!nreq) {
inet_child_forget(sk, req, child);
goto child_put;
}
refcount_set(&nreq->rsk_refcnt, 1);
if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
reqsk_migrate_reset(req);
reqsk_put(req);
return child;
}
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
reqsk_migrate_reset(nreq);
__reqsk_free(nreq);
} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
return child;
}
}
/* Too bad, another child took ownership of the request, undo. */
child_put:
bh_unlock_sock(child);
sock_put(child);
return NULL;
}
EXPORT_SYMBOL(inet_csk_complete_hashdance);
/*
* This routine closes sockets which have been at least partially
* opened, but not yet accepted.
*/
void inet_csk_listen_stop(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
struct request_sock *next, *req;
/* Following specs, it would be better either to send FIN
* (and enter FIN-WAIT-1, it is normal close)
* or to send active reset (abort).
* Certainly, it is pretty dangerous while synflood, but it is
* bad justification for our negligence 8)
* To be honest, we are not able to make either
* of the variants now. --ANK
*/
while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
struct sock *child = req->sk, *nsk;
struct request_sock *nreq;
local_bh_disable();
bh_lock_sock(child);
WARN_ON(sock_owned_by_user(child));
sock_hold(child);
nsk = reuseport_migrate_sock(sk, child, NULL);
if (nsk) {
nreq = inet_reqsk_clone(req, nsk);
if (nreq) {
refcount_set(&nreq->rsk_refcnt, 1);
if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
__NET_INC_STATS(sock_net(nsk),
LINUX_MIB_TCPMIGRATEREQSUCCESS);
reqsk_migrate_reset(req);
} else {
__NET_INC_STATS(sock_net(nsk),
LINUX_MIB_TCPMIGRATEREQFAILURE);
reqsk_migrate_reset(nreq);
__reqsk_free(nreq);
}
/* inet_csk_reqsk_queue_add() has already
* called inet_child_forget() on failure case.
*/
goto skip_child_forget;
}
}
inet_child_forget(sk, req, child);
skip_child_forget:
reqsk_put(req);
bh_unlock_sock(child);
local_bh_enable();
sock_put(child);
cond_resched();
}
if (queue->fastopenq.rskq_rst_head) {
/* Free all the reqs queued in rskq_rst_head. */
spin_lock_bh(&queue->fastopenq.lock);
req = queue->fastopenq.rskq_rst_head;
queue->fastopenq.rskq_rst_head = NULL;
spin_unlock_bh(&queue->fastopenq.lock);
while (req != NULL) {
next = req->dl_next;
reqsk_put(req);
req = next;
}
}
WARN_ON_ONCE(sk->sk_ack_backlog);
}
EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
{
struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
const struct inet_sock *inet = inet_sk(sk);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = inet->inet_daddr;
sin->sin_port = inet->inet_dport;
}
EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
{
const struct inet_sock *inet = inet_sk(sk);
const struct ip_options_rcu *inet_opt;
__be32 daddr = inet->inet_daddr;
struct flowi4 *fl4;
struct rtable *rt;
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
if (inet_opt && inet_opt->opt.srr)
daddr = inet_opt->opt.faddr;
fl4 = &fl->u.ip4;
rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
inet->inet_saddr, inet->inet_dport,
inet->inet_sport, sk->sk_protocol,
RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
if (IS_ERR(rt))
rt = NULL;
if (rt)
sk_setup_caps(sk, &rt->dst);
rcu_read_unlock();
return &rt->dst;
}
struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
{
struct dst_entry *dst = __sk_dst_check(sk, 0);
struct inet_sock *inet = inet_sk(sk);
if (!dst) {
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
if (!dst)
goto out;
}
dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
dst = __sk_dst_check(sk, 0);
if (!dst)
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
out:
return dst;
}
EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);